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Abstract

The vast amount of data captured by robots in large-scale en-
vironments brings the computing and storage bottlenecks to
the typical methods of modeling the spaces the robots travel
in. In order to efficiently construct a compact terrain model
from uncertain, incomplete point cloud data of large-scale
environments, in this paper, we first propose a novel feature
mapping method, named random mapping, based on the fast
random construction of base functions, which can efficiently
project the messy points in the low-dimensional space into the
high-dimensional space where the points are approximately
linearly distributed. Then, in this mapped space, we propose
to learn a continuous linear regression model to represent the
terrain. We show that this method can model the environ-
ments in much less computation time, memory consumption,
and access time, with high accuracy. Furthermore, the models
possess the generalization capabilities comparable to the per-
formances on the training set, and its inference accuracy grad-
ually increases as the random mapping dimension increases.
To better solve the large-scale environmental modeling prob-
lem, we adopt the idea of parallel computing to train the mod-
els. This strategy greatly reduces the wall-clock time of cal-
culation without losing much accuracy. Experiments show the
effectiveness of the random mapping method and the effects
of some important parameters on its performance. Moreover,
we evaluate the proposed terrain modeling method based on
the random mapping method and compare its performances
with popular typical methods and state-of-art methods.

Introduction
Mobile robot environment modeling is aimed at providing a
suitable representation of the space of interest, and it plays
a vital role in robot autonomous navigation and environ-
ment exploration. However, the construction of a lightweight
environmental model for a large-scale, unstructured, and
open environment is still a challenge. Specifically, the chal-
lenge results from several factors, such as: data uncertainty
brought by the inevitable sensor noise and compounded lo-
calization uncertainty, which will make the data ambiguous;
data incompleteness caused by the shielding or absorp-
tion of the sensor rays, and the gaps in the environments,
which will also make the generated maps incomplete; large
amount of data that results in high computation complexity
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and storage consumption, in which the former one prohibit
the real-time mapping and the latter has become the bottle-
neck of large-scale environmental modeling.

To obtain a clean, complete, and accurate environmental
model efficiently and compactly, the traditional representa-
tion methods, such as the point cloud maps (Cole and New-
man 2006), elevations maps (EM) (Krotkov and Hoffman
1994), multi-level surface maps (Triebel, Pfaff, and Burgard
2006), 3D voxel maps such as OctoMap (Hornung et al.
2013), and triangulated irregular networks (TIN) (Rekleitis
et al. 2009), are incompetent. Point cloud maps directly store
the measurements points, thus its memory consumption de-
pends on how large the mapping area is and how sparse
the point cloud is. Similarly, the grid-based method includ-
ing 3D voxel maps, elevations maps, and multi-level sur-
face maps, are not memory-efficient when there is a need
for fine resolutions. TIN is a sample-based approach, which
also suffers from a huge memory footprint when encounter-
ing highly textured surfaces. Furthermore, all of the above
representations are obtained by pure geometric processing of
the original measurements, which typically cannot deal with
the data uncertainty in a statistically sound way and handle
the data incompleteness through terrain inference from the
information implied in the data.

The fact that the traditional methods can hardly deal with
the challenges brought by the large-scale terrain modeling
makes the state-of-art modeling techniques resort to proba-
bilistic reasoning and machine learning. There are two main
ideas for using machine learning to model terrain. One is
to train a classifier to indicate if a three-dimensional (3D)
point is occupied, and the other is to establish a regression
model to fit the relationship between the two-dimensional
(2D) positions and their elevations. Current methods are
typically Bayesian-based, such as the Gaussian processes
(GPs) (Williams and Rasmussen 2006; Lee et al. 2019;
Jadidi, Miro, and Dissanayake 2018; Stork and Stoyanov
2020), variational inference (VI) (Bishop and Nasrabadi
2006; Guizilini and Ramos 2019), Bayesian kernel inference
(Doherty et al. 2019), Gaussian mixture model (GMM) (Sri-
vastava and Michael 2018; O’Meadhra, Tabib, and Michael
2018), and some others involve the deep learning (Bauer,
Kuhnert, and Eckstein 2019). These techniques are sophis-
ticated and possess good performances that they may incor-
porate uncertainty in a statistic way and replenish the incom-
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pleteness through generalized inference. However, those
Bayesian-based non-parametric models need to keep the
original training data for future predictions, which will also
lead to the problem of excessive storage consumption. In ad-
dition, the standard GP suffers from a computation complex-
ity of O(n3) with the number of training points, which is
prohibitive even using simple approximation methods when
there are large amounts of data. Deep learning, regardless of
its end-to-end manner, requires a lot of time and resources to
iteratively train a complex model. Thus, the current methods
can not deal with all of the problems of large-scale terrain
modeling.

In fact, from the perspectives of environmental model-
ing and machine learning, a terrain modeling method is re-
quired to possess the following properties: data fusion that
can consider the measurement uncertainty. The measure-
ment noise is commonly at the centimeter level, and a robust
and unbiased estimate can be statistically obtained; terrain
reasoning that can infer the states of unobserved areas such
as the occluded using spatial association of the available
data; efficient construction that possess acceptable compu-
tation speed, memory consumption, and access time.

Attempting to solve all of the problems in large-scale ter-
rain modeling, in this paper, we propose to build a concise
linear regression model to represent the terrain. The essence
of this method is to generate an approximately linearly dis-
tributed space, using random mapping, to enable the linear
model. This method is efficient in computation and storage
since it does not depend on iterative calculation and only
needs to save limited model parameters. Furthermore, the
models are obtained by parallel training using the extracted
terrain surface data, which greatly reduces the training time
and handles the data uncertainty well. Overall, the main con-
tributions of this paper are: 1) We propose a novel method to
rapidly generate linearly distributed high-dimensional fea-
ture space; 2) We propose a novel compact and efficient lin-
ear parameter representation for the large-scale terrain.

Related Work
Learning-based Robotics Mapping
Ramos and Ott (2016) regard the occupancy mapping prob-
lem as a classification task and train a discrimination model
to present the occupancy maps using the kernel approxi-
mations and logistic regression classifier. This method have
extended to 3D environments (Doherty, Wang, and Englot
2016; Guizilini and Ramos 2018a,b) and dynamic scenarios
(Guizilini, Senanayake, and Ramos 2019; Senanayake et al.
2016). These methods can avoid assuming that the grids are
independent of each other, thereby introducing spatial as-
sociation among them. Another method often used in ter-
rain modeling is to establish a regression model to fit the
relationship between the 2D location and their elevations,
and the most popular is the Gaussian process (Popović et al.
2017; Le Gentil et al. 2020; Li et al. 2020). This method
can predict the terrain by information implied in the covari-
ance functions. However, it suffers from a O(n3) computa-
tion complexity with the sample number and needs to keep
the original points. In addition to the terrain maps based on

the geometric features, some others take advantage of the vi-
sual features to build the semantic terrain maps (Zhou et al.
2019; Schilling et al. 2017), and some others use the sound-
based method (Valada, Spinello, and Burgard 2018). These
feature-based methods may fail in the environments that lake
of features and these methods are commonly based on the
deep convolutional networks (Long, Shelhamer, and Dar-
rell 2015), which always requires more consumption time
and computing resources. Taking these into account, we use
compact and efficient linear parametric models to model ter-
rain. So far, to our best knowledge, no one has done so.

Random Mapping
In the past many years, there are similar concepts to random
mapping. In the artificial neural network, Pao and Takefuji
(1992) and Pao, Park, and Sobajic (1994) proposed Random
Vector Functional Link Networks, in which the input layer
is directly connected to both the hidden layer and the out-
put layer, and the weights between the input layer and hid-
den layer are randomly selected. Schmidt et al. (1992) pro-
posed another standard feed-forward neural network with
random weights between the input layer and hidden layer.
These methods accelerate the training of the network and
reduce the hardware requirements. Kaski (1998) applied the
random mapping to dimensionality reduction for fast simi-
larity computation in document classification and Bingham
and Mannila (2001) applied it to the processing of both
noisy and noiseless images, and information retrieval in text
documents. To accelerate the training of kernel machines,
Rahimi, Recht et al.(2007) proposed to map the input high-
dimensional feature space to a randomized low-dimensional
one and then apply existing fast linear methods for classi-
fication and regression tasks. Our initial inspiration for ran-
dom mapping originates from this. In this paper, we consider
random mapping from a new perspective, which is used
to generate a linearly distributed high-dimensional feature
space, which enables a linear regression model in it. Partic-
ularly, we prove this property mathematically rigorously.

Random Mapping Method
Random Mapping Concept
We begin the representation of random mapping method
by first introducing the notions and concepts. Assuming
that we have an arbitrary set of samples {xi, ti}Li=1, where
xi ∈ RN×1 is the feature vector and ti ∈ Rm is the
target value. In the case when the data in low-dimensional
feature space is not linearly separable, a popular and effec-
tive machine learning technique we often use is kernel trick
k(x,x′) = φ(x)φ(x′) (Boser, Guyon, and Vapnik 1992;
Hofmann, Schölkopf, and Smola 2008) or kernel approxi-
mation k(x,x′) ≈ φ(x)φ(x′) (Williams and Seeger 2001),
which allows us to implicitly use the features in a high, even
infinite dimensional reproducing kernel Hilbert space. How-
ever, we may struggle to find a suitable kernel or mapping
function, which is time-consuming or difficult.

Considering that we may be trapped in the dilemmas
when constructing a valid kernel or mapping function, we
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propose the random method to efficiently generate a feature
mapping function φ(xi) for a vector xi as follows:

φ(xi) = g(Wxi) = g(vi) = si (1)

where W is a M ×N matrix denoting a linear transforma-
tion. Particularly, as the essential property of our proposed
method, all elements of W are generated at random from a
probability distribution, such as a uniform distribution. Here,
M is called random mapping dimension which is always de-
termined by trials and far larger than N but much less than
L. As a result, vi ,Wxi denotes a M × 1 random vector.
The vector-valued function g(v) : RM → RM is called ac-
tivation function which is defined based on a scalar-valued
function g(v) : R→ R as follows:

g(v) = [g(v1), g(v2), · · · , g(vM )]T (2)

Mathematically, g(v) is required to be a nonlinear func-
tion possessing derivatives of at least L − 1 order, such as
the sine function g(v) = sin(v) and one kind of the sig-
moid functions g(v) = (1 + exp(−v))−1 . Thus, si is a
M × 1 random feature vector that has a nonlinear relation-
ship with the input vector xi. Here, we introduce a matrix
V = [v1,v2, · · · ,vL]. Further, we define a matrix-valued
functionG(V ) : RM×L → RM×L as follows:

G(V ) = G([v1, · · · ,vL]) = [g(v1), · · · , g(vL)] (3)

As a result, for an input set X = {xi}Li=1 , [x1, · · · ,xL],
which can be written as an N ×L matrix, we can obtain the
random mapping matrix S simply according to the follow-
ing formula:

S = G(WX) = G(V ) (4)
Here, we will call the matrix S random mapping set (RMS)
because it is generated randomly using random mapping
(RM) and each column of it can be treated as a feature vec-
tor. Its dimension M × L is determined by the mapping
dimension M and the number of samples L. Particularly,
for a sample set X , the nonlinear transformation G(WX)
can generate a specified and commonly higher dimensional
RMS in which the data is approximately linearly distributed,
providing M is large enough. Intuitively, it is uncommon
that a randomly obtained set possesses the favorable statisti-
cal property. We will explain this property rigorously soon.

Feasibility and Existence Analysis
As aforementioned, the derived RMSs possess the tractable
linearly distributed property. We now study the micro de-
tails to understand why it has such macro performance.
Here, we only provide qualitative analysis at some minor
points by omitting obscure derivations but meanwhile try
to keep the processes serious. Assuming that a linear (or a
generalized linear (Bishop and Nasrabadi 2006)) classifier
f(x,β) = βTg(Wx) is learnt in a RMS, and our goal is
to find the optimal weight vector β ∈ RM×1 that can min-
imize the sum-of-squares error

∑L
i=1(f(xi,β) − ti)2, i.e.,

min ||βTS − T || where T = [ti]
L
i=1 is a 1 × L target vec-

tor. Then we have the following claim that we are going to
prove.

Claim: For every real number ε > 0, there exists a natural
number P such that for allM meetingM > P , we will have
at least one weight vector β that enables ||βTS − T || < ε.
Here, every symbol is defined as above, i.e., M is the ran-
dom mapping dimension and S is an M × L RMS.

To prove the above claim, we first define two lemmas:
Lemma 1: When the random mapping dimension M is

sufficiently large, there exists a weight vector β that makes
||βTS − T || = 0 with probability 1.

Proof of Lemma 1: Here, without loss of generality, we
prove that the RMS S is column full rank when the mapping
dimensionM is large enough. It is worth noting that this is a
stronger condition since even ifS is not full rank, we can get
the same conclusion as long as r(S) = r(ST ,T T ) (Greub
2012), where r(S) is the rank of matrix S.

First of all, we define a sequence of 1×N random weight
vectors as {wi}+∞i=1 . Using these vectors, we further de-
fine a sequence of i × N weight matrix as {W i}+∞i=1 by
stacking the first i element in {wi}+∞i=1 . According to (4),
given a dataset X , we can then acquire a sequence of RMS
as {Si}+∞i=1 . Represent Si by its row vectors as Si =
[r1, · · · , ri]T , where ri = [g(wi · x1), · · · , g(wi · xL)],
comprising the inner product between wi and each sample.
Obviously, we have the following result

r(Si+1) ≥ r(Si) (5)

which means that the sequence {r(Si)}∞i=1 is monotoni-
cally increasing. Then ,we will prove that L is its reachable
supremum. To this end, we equivalently prove that when
the mapping dimension is sufficiently large, i.e., when i is
large enough, there must be L linearly independent vectors
{rk}Lk=1 in Si. Here, we prove this by contradiction. Sup-
posing that no matter how big i is, there are at most L − 1
linearly independent vectors in Si. Under this condition, we
can acquire that all of those vectors in Si are from a sub-
space whose dimension is L− 1, spanned by L− 1 linearly
independent vectors. Then, there will exists at least one non-
zero L× 1 vector n orthogonal to this subspace, yielding

ri · n = g(wi · x1) · n1 + · · ·+ g(wi · xL) · nL = 0 (6)

Since g(v) is at least (L-1)-order derivable, we have

L∑
j=1

nj · g(p)(wi · xj) = 0 (7)

for p = 1, 2, · · · , L− 1, where g(p) is the p-order derivative
of g with respect to wi. This is a system of linear equations
comprisingL equations andL variables ni for i = 1, · · · , L,
whose coefficient matrix is

C =

 g(wi · x1) · · · g(wi · xL)
...

. . .
...

g(L−1)(wi · x1) · · · gL−1(wi · xL)

 (8)

Assuming a week condition that xl 6= xl′ for l 6= l′, we
can acquire that wi · xl 6= wi · xl′ for l 6= l′ almost ev-
erywhere (Dudley 2018). Then, given the functions g(p)(v)
which are unequal almost everywhere, we can obtain that
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g(p)(wi ·xl) 6= g(p)(wi ·xl′) for l 6= l′ almost everywhere,
and their function value can be arbitrary one belonging to the
value domain of g(p)(v). Considering that the determinant of
the square matrix C is a multivariable polynomial function
f : RL2

→ R of its elements (Horn and Johnson 2012)
and the zero set of a polynomial has Lebesgue measure zero
(Fleming 2012; Caron and Traynor 2005), we have that the
set of matrices with zero determinant has Lebesgue measure
zero. From the perspective of probability theory, we con-
struct a probability space (Ω,F , P ), where Ω is the set of
all matrices generated by (8). Divide the elements in Ω into
two subsets A1 and A2, where A1 comprising the matrices
with determinant zero and A2 with determinant non-zero.
F is the σ-algebra, defined as F = {Ω,A1,A2,∅}. Then,
define P (A) = m(A)/m(Ω), where m is the Lebesgue
measure and A ∈ F . Then we have P (A1) = 0, so C is
singular with probability zero. Noticeably, it is possible for
the sets being non-empty even infinite to still have Lebesgue
measure zero. Therefore, the system of linear equations only
has zero solution, which is contradictory to the fact that n is
non-zero. Thus, there must exist L linearly independent vec-
tors in Sk when k is large enough.

Thus, we can naturally acquire that {r(Si)}+∞i=1 have a
reachable supremum L. Recall that {r(Si)}+∞i=1 is monoton-
ically increasing, so we have the following result

lim
i→∞

r(Si) = sup(r(Si)|i ∈N) = L (9)

according to the monotone bounded convergence theorem
(Fitzpatrick 2009). Thus, we have that matrix S is column
full rank almost everywhere in the case when the mapping
dimension M is large enough. Q.E.D.

Lemma 2: Given two arbitrary RMSs S1 and S4 that
are M1 × L and M4 × L, where M1 � L and M4 � L,
defining

S2 =

(
S1

S4

)
(10)

that is (M1 +M4)× L by stacking S1 and S4, and

E(S1) = min ||βT
1 S1 − T || = ||β∗T1 S1 − T || (11)

denoting the training error of the linear model trained by S1,
in which β∗1 = argmin ||βT

1 S1−T ||. DefineE(S2) and β∗2
in the similar way. Then we will have E(S2) ≤ E(S1).

Proof of Lemma 2: In term of the above definitions, we
can represent E(S2) based on S1 and S4 as follows:

E(S2) = ||β∗T2 S2 − T || = ||β∗T2
(
S1

S4

)
− T || (12)

Since β∗2 has the smallest error among all β2, yielding

E(S2) ≤ ||
(
β∗1
0

)T (
S1

S4

)
− T || (13)

where 0 is the zero vector ofM4×1. Using the block matrix
multiplication, (13) can further yield

E(S2) ≤ ||β∗T1 S1 − T || = E(S1) (14)

Q.E.D.

Based on Lemma 1 and Lemma 2, our initial claim can be
proved as follows:

Proof of Claim: Given a sequence {E(Si)}∞i=1, where
Si is an i×L RMS andE(Si) = ||β∗Ti Si−T ||. According
to Lemma 1 and Lemma 2, {E(Si)}∞i=1 is monotonically
decreasing as i increases and has a lower bound zero when
i is large enough. According to the monotone convergence
theorem again, we have the following result

lim
i→∞

E(Si|i ∈N) = 0 (15)

Thus, for ∀ε > 0, ∃P ∈ N , when M > P , there is β ∈
RM×1 that makes ||βTS − T || < ε. Q.E.D.

This result enables us to choose a natural numberM � L
to reduce the computational complexity in practical applica-
tions. Moreover, since the weight matrix W is obtained at
random, we avoid the training and construction of kernels.
Thus, this method is very time-saving. In this paper, we first
applied the RM method to the terrain modeling that can be
regarded as a regression problem. Even so, RM can simply
extend to many other classification and regression tasks with
arbitrary dimensionalities and sizes.

Terrain Models Learning
Assume that a robot has captured a data setD = {xi, ti}Li=1
by the end points of a laser ranger finder or depth cameras
when moving in the environments, where xi is a 2D location
and ti is its elevation. Then, treating the terrain modeling for
the unstructured environments as a regression problem, we
attempt to build a linear parametric model between {xi}Li=1

and {ti}Li=1 , based on the RM method, which is

y = f(x,β) = βTg(Wx) + b = βTs+ b = βTs (16)

Here, the symbols are defined as above, and to make the
notations simple, we expand β with b and s with 1. In this
problem, our goal is to find the optimal weight β for terrain
inference. Here, depending on if online learning is required,
we provide two solutions.

Closed-form Solution of β
Here, we use all of the data at once to train the model. To
optimize β, we minimize the objective function with L2-
norm regularizer, given by:

J(β) =
1

2

L∑
i=1

(ti − yi)2 +
1

2
α||β||22 (17)

where α is the regularization parameter. The gradient of
J(β) with respect to β can be calculated as

∇J(β) = SSTβ − ST T + αβ (18)

Let ∇J(β) = 0, which yields

(SST + αI)β = ST T (19)

where I denotes the identity matrix. The linear equation (19)
has a symmetric and positive definite coefficient matrix, so
it can be solved using Cholesky decomposition or singular
value decomposition (SVD).
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Otherwise, since S is a nonsquare matrix, a more direct
solution to solve the linear equation βTS = T is given by

β = (TS†) (20)
where S† is the Penrose-Moore generalized inverse of S.
This solution is a least squares solution with smallest norm,
playing a similar role to the regularization items.

Iterative Solution of β
To ensure the model can be learnt online, the fast stochastic
gradient descent (SGD) method can be used. SGD optimizes
β using one sample at a time by

β ← β − ηt
2
(
∂((ti − βTsi)

2 + α||β||22)
∂β

) (21)

where ηt is the learning rate that can be constant or grad-
ually decaying with the time step t. Convergence analysis
usually requires it to satisfy the conditions

∑
t η

2
t < ∞

and
∑

t ηt = ∞ (Zhang 2004; Bottou 2012). Commonly,
it is given by ηt = 1/(α(t0 + t)), where t0 is determined
based on a heuristic (Bottou 2012). Thanks to the general-
ization performance analysis done by Buttoud Bottou(2010)
and Bottou and Bousquet(2011), the unregularized version
of (21) still possesses good generalization performance.

The computation complexity of SGD isO(kLp), where k
is the number of iterations, L is the sample number, and p
is the average number of nonzero attributes per sample. So,
SGD can efficiently update the parameters in linear time.

Experiments Setup
Used Dataset
The used point cloud datasets are ample, shown in Table 1.
Planet (Tong et al. 2013) and quarry are publicly available in
http://asrl.utias.utoronto.ca/datasets/3dmap/index.html and
http://www.pointcab-software.com/en/downloads/, respec-
tively. The mountain is collected by ourselves. Datasets and
code are open source in https://github.com/LiuXuSIA/rmm.

Experiments Settings
Some settings will be explained in the specific section of
experiments result and technical appendix. Here are the im-
portant general settings.
• The results are averaged of 10-fold cross-validation.
• The model weight parameters β are solved by SVD.
• The models are trained by the terrain surfaces extracted

from the noisy original data (Liu, Li, and He 2021).
• The experiments are conducted on a computer having an

Intel i7 CPU with 16 cores of 3.8GHz, 64GB memory,
and Windows 10 OS.

Evaluation Metrics
Mean of coefficient of determination (MR2): fit goodness.
Mean of mean square error (MMSE): inference accuracy.
Mean of standard deviation (SMSE): inference stability.
Mapping time (MT): time spent in modeling the terrain.
Memory consumption (MC): occupied disk size.
Access time (AT): time spent in accessing the map.
unit: MMSE (m2) MT&AT (s) MC (Mb)

name data size region size elevation range
planet 731,937 24.9×28.5 -2.3-1.1
quarry 39,460,480 140×140 5.1-21.2

mountain 43,364,312 3172×3332 372.1-923.9

Table 1: The main properties of the used datasets.

Experiments Results
Validity of Random Mapping Method
We first conduct experiments to validate the effectiveness of
the RM method, then evaluate the effects of activation func-
tion g(v) and mapping dimension M on inference accuracy
and time consumption. The following are the main results.

RM method is effective for regression tasks. Table 2
presents quantitative results of random mapping regression
(RMR) and other regression techniques (see the technical
appendix) when applied to the planet dataset, using two n-
fold cross-validation experiments. In these experiments, the
mapping dimension used by RMR is 850 and the random
weights are sampled from the uniform distribution [-4,4].
Except for the training time, all data are acquired from test
sets. MMSE and SMSE measure the accuracy and stabil-
ity of these techniques’ interpolation over the available data,
and R2 is a more intuitive representation of model fitting
ability. As expected, the standard interpolation methods are
unable to deal with this complex regression task for the big-
ger residual errors, regardless of the faster speed. The RMR
and some kernel-based methods can achieve much better fit-
ting results and much lower MMSEs, however, RMR con-
sistently outperforms the kernel-based method in terms of
MMSE while obtaining these results significantly faster in
both training time and test time.

Noting that the kernel-based methods, especially the GP,
suffer from a high computation complexity, even using
an approximation method (Quinonero-Candela, Rasmussen,
and Williams 2007) such as kd-trees (Vasudevan et al. 2009).
In our implementation, we divide the whole areas into sev-
eral sub-regions, using GMM, and train an individual GP
model for each sub-region (see the technical appendix). This
considerably decreases the training time and increases the
accuracy, however, the GPR still needs much more time to
generate the models. The time consumption presented in Ta-
ble 2 validates RMR’s scalability to the much larger datasets.
We attribute the efficiency of RMR to its randomness and the
closed-form solution, while the others depend on the sophis-
ticated iterative solution.

Increasing RM dimensions can reinforce the model.
Figure 1 shows the effects of the mapping dimension and
activation function on the inference accuracy of RMR, both
in the training set and the test set. As proved, the MMSE
of RMR continues to increase until it approaches one as
the mapping dimension increases. Generally, increasing the
feature dimension will alleviate the problem of the model
under-fitting, which is consistent with the Cover’s Theorem
(Cover 1965). Note that there is no evident difference be-
tween the performance of MMSE on the training set and
the test set, enabling RMR a good generalization ability that
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Ten-fold cross-validation Ten two-fold cross-validation

MR2 MMSE SMSE TraT TeT R2 MMSE SMSE TraT TeT
RMR(sin 850) 0.94 0.009 0.0003 0.826 0.036 0.94 0.009 0.0002 0.456 0.020

RMR(sigmod 850) 0.92 0.013 0.0010 0.804 0.035 0.91 0.014 0.0028 0.443 0.020
GPR(rbf) -2.39 0.564 0.0057 716.48 37.31 -2.42 0.565 0.0021 147.33 11.58
GPR(rq) 0.94 0.009 0.0002 15456.5 33.95 0.94 0.010 0.0002 3243.60 10.34
KRR(rbf) 0.94 0.010 0.0002 76.76 15.46 0.94 0.010 0.0001 18.99 4.81
NNR(relu) 0.79 0.035 0.0041 306.41 0.957 0.76 0.039 0.0063 118.87 0.541
SVR(rbf) 0.61 0.065 0.0012 9.43 3.90 0.60 0.066 0.0007 3.016 1.20

LR 0.44 0.091 0.0021 0.005 0.0001 0.45 0.090 0.0007 0.0015 0.0001
QL 0.49 0.085 0.0019 0.003 0.0003 0.49 0.085 0.0006 0.0014 0.0001
CL 0.52 0.079 0.0017 0.005 0.0004 0.52 0.079 0.0007 0.0026 0.0003

Table 2: The performances of different regression techniques in planet, including the Gaussian process regression (GPR)
(Williams and Rasmussen 2006), kernel ridge regression (KRR) (Vovk 2013), neural network regression (NNR), support vector
regression (KRR) (Smola and Schölkopf 2004), linear regression (LR), quadratic regression (QR), and cubic regression (CR)
(Draper and Smith 1998). The brackets after the method are the kernel function or activation function&mapping dimension
used by the method. (TraT: training time, TeT: test time, rq: rational quadratic kernel (refer to the technical appendix))

Figure 1: The effects of mapping dimension and activation
function to the model inference accuracy. (a) MMSE of the
training set. (b) MMSE of the test set.

Figure 2: The effects of mapping dimension and activation
function to time consumption. (a) Time consumption using
sine function. (b) Time consumption using tanh function.

can infer the unobserved areas. But meanwhile, the time
consumption, including the random mapping time, training
time, and test time, also increases, as shown in Figure 2. This
is reasonable since the larger mapping dimension will ac-
count for more complex matrix computing, particularly the
matrix inversion. This requires us to make a trade-off be-
tween time and accuracy. In our experiments, once the acti-
vation function is selected, we treat the mapping dimension
M as a hyper-parameter determined by trials. Note that a too
large mapping dimension may account for over-fitting.

MMSE MC MT AT

P
RMR(sin 600) 0.009 0.016 0.556 0.022

GPR(NN) 0.036 38.29 142.5 4.634
VI 0.022 38.29 0.975 1.587

Q
RMR(sin 800) 0.030 0.017 5.739 0.723

GPR(NN) 0.008 1576 967.7 60.74
VI 0.003 1576 9.266 8.694

Table 3: Comparisons between RMR and other terrain mod-
eling methods in planet (P) and quarry (Q). (NN: neural net-
work kernel, Chapter 4 in (Williams and Rasmussen 2006))

Functions having at least (L-1)-order derivative can be
the activation function. As shown in Figure 1, we use sev-
eral different functions as the activation function, including
the infinitely derivable and the one-order derivable. As ex-
pected, the linear function is incompetent to be an activa-
tion function for its terrible performance. The reason can be
found in the proof section, that is, the linear function can-
not guarantee the nonsingularity of the coefficient matrixC.
For the models with infinitely derivable activation functions,
though the resulting performance is a little different, they are
all generally competent, especially the sine function.

Evaluation of Terrain Modeling
The second set of experiments is to evaluate the capacity of
RMR for terrain modeling, using planet and quarry datasets.
Except for basic fidelity, we are concerned with the model-
ing efficiency and the processing of unobserved areas and
uncertainties. We compare the results with the typical GP
(Vasudevan et al. 2009) and state-of-the-art VI (Guizilini and
Ramos 2019). Since the source code of VI is not available,
we quote the results from the original paper (Table 1). Al-
though RMR can model terrain online using SGD, we per-
form it offline to compare it with the two offline methods.
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Figure 3: The planet terrain. (a) Terrain surface extrated
from the original data. (b) Terrain restored by RMR.

Figure 4: The quarry terrain. (a) Terrain surface extracted
from the original data. (b) Terrain restored by RMR.

Modeling efficiency. Specifically, this contains three
meanings, namely creation speed, access time, and memory
consumption. Table 3 presents the modeling efficiency of
different terrain modeling methods. As above, RMR consis-
tently outperforms the other two methods in terms of map-
ping time, memory consumption, and access time. This at-
tributes to the function approximation ability and fast solv-
ing process of RMR. More than this, as Bayesian methods,
the GP and VI need to save all the original data for later in-
ference, which causes bulky storage. From a practical point
of view, this ought to be prohibited. Indeed, it is important to
build a compact model in memory so that the large-scale en-
vironmental model can be kept in the robots itself and trans-
mitted efficiently among multiple robots. As a result, RMR
is more attractive for its parametric representation with lim-
ited model parameters to storage. These parametric models
can be regarded as implicit representations of the terrains,
from which the terrain maps can be efficiently accessed by
substituting the querying point g(Wx + b) into the para-
metric model. By contrast, even in the inference stage, the
computation complexity of GP is O(n2m), in which n and
m are the numbers of training and test data, respectively.

Processing of unobserved areas. Occlusion and gaps,
etc. within the environments to be modeled will account for
the unobserved areas that may lead to potential hazards in
the robot trajectory optimization. The powerful inference
ability of RMR in the test datasets inspires us to complete
the unobserved areas, using accurate interpolations. Figure
3 and Figure 4 shows the terrain maps of planet and quarry
visualized by the terrain parameter models, using the points
uniformly generated in the modeling areas. As expected,
the unobserved areas can be completed. In the context of
robotics path planning, this is helpful for the robots to plan
a collision-free path. Otherwise, in exploration, it can guild
the robot to the previously unobserved regions.

Particularly, the data uncertainty has been handled in the
surface extraction process (Liu, Li, and He 2021). We won’t
describe it in detail here but in the technical appendix.

Figure 5: The mountain terrain. (a) Terrain surface extracted
from the original data. (b) Terrain restored by RMR.

1 4 8 12 16
R2 0.994 0.993 0.994 0.994 0.994

MSE 3.220 3.631 3.219 3.244 3.270
Clock time 12.051 3.109 1.185 0.786 0.604
CPU time 12.051 11.345 9.012 8.823 8.957

Table 4: Model results with different amounts of parallelism.

Practical Application
We show the practicability of RMR for real large-scale
terrain modeling with parallel computing. Here, the used
mountain dataset is generated by applying structure from
motion and stitching techniques (Hartley and Zisserman
2003) to multi-view images captured by a monocular cam-
era attached to a UAV. Here, we randomly divide the training
set into several equal subsets (Meng et al. 2019), and then si-
multaneously train an RMR model for each subset, using the
multiple cores of CPU. The final model is obtained by aver-
aging the parameters of all models. Table 4 presents the re-
sults with different numbers of division. For 1, all points are
used for training one model, while for 16, the points are very
sparse. These results validate the time-saving feature of par-
allel training, without losing much accuracy. Figure 5 shows
the generated terrain maps, using the trained model with 16
divisions. High-fidelity terrain maps show the practicality of
RMR toward modeling the large-scale environments. Par-
ticularly, the attached color information was obtained by the
k-nearest neighbor in the original colored point cloud, which
can be used to terrain classification (Silver et al. 2006).

Conclusion
In this paper, we first propose RMR and prove its linear dis-
tribution property mathematically strictly. The randomness
and closed-form solutions make RMR very efficient. We val-
idate the effectiveness of RMR and present its superiorities
in terms of inference accuracy and computation time. Mean-
while, we illustrate the effects of the mapping dimension
and activation function. Further, based on RMR, we pro-
pose to represent terrain in the form of a linear parameter
model. This can outperform other methods in terms of map-
ping time, memory consumption, and access time. In prac-
tical applications, we show that RMR can resort to parallel
training to greatly reduce the mapping time without losing
much accuracy. In the future, we will first explore the rela-
tionship between RMR and data scale. Next, we will conduct
path planning using this particular terrain representation.
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