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Abstract

Reinforcement Learning (RL) agents in the real world must
satisfy safety constraints in addition to maximizing a reward
objective. Model-based RL algorithms hold promise for re-
ducing unsafe real-world actions: they may synthesize poli-
cies that obey all constraints using simulated samples from a
learned model. However, imperfect models can result in real-
world constraint violations even for actions that are predicted
to satisfy all constraints. We propose Conservative and Adap-
tive Penalty (CAP), a model-based safe RL framework that
accounts for potential modeling errors by capturing model
uncertainty and adaptively exploiting it to balance the reward
and the cost objectives. First, CAP inflates predicted costs us-
ing an uncertainty-based penalty. Theoretically, we show that
policies that satisfy this conservative cost constraint are guar-
anteed to also be feasible in the true environment. We fur-
ther show that this guarantees the safety of all intermediate
solutions during RL training. Further, CAP adaptively tunes
this penalty during training using true cost feedback from
the environment. We evaluate this conservative and adaptive
penalty-based approach for model-based safe RL extensively
on state and image-based environments. Our results demon-
strate substantial gains in sample-efficiency while incurring
fewer violations than prior safe RL algorithms.

1 Introduction
Many applications of reinforcement learning (RL) require
the agent to satisfy safety constraints in addition to the stan-
dard goal of maximizing the expected reward. For example,
in robot locomotion, we may want to impose speed or torque
constraints to prevent the robot from damaging itself. Since
the set of states that violates the imposed constraints is of-
ten a priori unknown, a central goal of safe reinforcement
learning (Pecka and Svoboda 2014; Garcıa and Fernández
2015) is to learn a reward-maximizing policy that satisfies
constraints, while incurring as few constraint violations as
possible during the agent’s training process.

To reduce the cumulative number of constraint viola-
tions during training, a promising approach is to incorporate
safety considerations into sample-efficient RL algorithms,
such as model-based reinforcement learning (MBRL) (Sut-
ton 1990, 1991). MBRL refers to RL algorithms that use
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learned transition models to directly synthesize policies us-
ing simulated samples, thereby reducing the number of real
samples needed to train the policy. Given the true envi-
ronment transition model, it would be trivial to synthesize
safe policies without any violations, since we could simply
simulate a sequence of actions to evaluate its safety. How-
ever, MBRL agents must learn this transition model from
finite experience, which induces approximation errors. In
this paper, we ask: can safety be guaranteed during model-
based reinforcement learning, despite these model errors?
We prove that this is indeed possible, and design a practical
algorithm that permits model-based safe RL even in high-
dimensional problem settings.

Specifically, we propose a model-based safe RL frame-
work involving a conservative and adaptive cost penalty
(CAP). We build on a basic model-based safe RL frame-
work, which simply executes a model-free safe RL algo-
rithm inside a learned transition model. We make two im-
portant conceptual contributions to improve this basic ap-
proach. First, we derive a conservative upper bound on the
error in the policy cost computed according to the learned
model. In particular, we show that this error is bounded
above by a constant factor of an integral probability met-
ric (IPM) (Müller 1997) computed over the true and learned
transition models. Based on this bound, we propose to inflate
the cost function with an uncertainty-aware penalty function.
We prove that all feasible policies with respect to this con-
servative cost function, including the optimal feasible pol-
icy (with highest task reward), are guaranteed to be safe in
the true environment. A direct consequence is that we can
ensure that all intermediate policies are safe and incur zero
safety violations during training.

Second, this penalty function, though theoretically opti-
mal, is often too conservative or cannot be computed for
high-dimensional tasks. Therefore, in practice, we propose
a heuristic penalty term that includes a scale hyperparame-
ter to modulate the degree of conservativeness: higher scales
produce behavior that is more averse to risks arising from
modeling errors. Thus, different scales may be appropriate
for use with different environments and model fidelities.

We observe that this crucial scale hyperparameter need
not be manually set and frozen throughout training. Instead,
we can exploit the fact that the policy receives feedback on
its true cost value from the environment, to formulate the
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entire inflated cost function as a control plant. In this view,
the scale hyparparameter is the control input. Then, we can
readily apply existing update rules from the control literature
to tune the scale. In particular, we use a proportional-integral
(PI) controller (Åström and Hägglund 2006), a simpler vari-
ant of a PID controller, to adaptively update the scale using
cost feedback from the environment.

Our overall CAP framework incorporates a conserva-
tive penalty term into predicted costs in the basic model-
based safe RL framework, and adapts its scale to ensure the
penalty is neither too aggressive nor too modest. To eval-
uate CAP, we first illustrate its proposed benefits in simple
tabular gridworld environments using a linear programming-
based instantiation of CAP; there, we show that CAP indeed
achieves zero training violations and exhibits effective adap-
tive behavior. For state and image-based control environ-
ments, we evaluate a second instantiation of CAP, using a
cost constraint-aware variant (Wen and Topcu 2020) of cross
entropy method (CEM) (De Boer et al. 2005) coupled with
state-of-art dynamics models (Chua et al. 2018; Hafner et al.
2019) to optimize action sequences. Through extensive ex-
periments, we show that our practical algorithms substan-
tially reduce the number of real environment samples and
unsafe episodes required to learn feasible, high-reward poli-
cies compared to model-free baselines as well as ablations
of CAP. In summary, our main contributions are:

• an uncertainty-aware cost penalty function that can guar-
antee the safety of all training policy iterates

• an automatic update rule for dynamically tuning the de-
gree of conservativeness during training.

• a linear program formulation of CAP that achieves near-
optimal policies in tabular gridworlds while incurring zero
training violation

• and finally, scalable implementations of CAP that learn
safe, high-reward actions in continuous control environ-
ments with high-dimensional states, including images.

2 Related Work
Safe RL Our work is broadly related to the safe rein-
forcement learning and control literature; we refer interested
readers to (Garcıa and Fernández 2015; Brunke et al. 2021)
for surveys on this topic. A popular class of approaches
incorporates Lagrangian constraint regularization into the
policy updates in policy-gradient algorithms (Achiam et al.
2017; Ray, Achiam, and Amodei 2019; Tessler, Mankowitz,
and Mannor 2019; Dalal et al. 2018; Cheng et al. 2019;
Zhang, Vuong, and Ross 2020; Chow et al. 2019). These
methods build on model-free deep RL algorithms (Schul-
man et al. 2017b,a), which are often sample-inefficient, and
do not guarantee that intermediate policies during training
are safe. These safe RL algorithms are therefore liable to
perform large numbers of unsafe maneuvers during training.

Model-Based Safe RL Model-based safe RL approaches,
instead, learn to synthesize a policy through the use of a tran-
sition model learned through data. A distinguishing factor
among model-based approaches is their assumption on what
is known or safe in the environment. Most works assume

partially known dynamics (Berkenkamp et al. 2017; Koller
et al. 2019) or safe regions (Bastani 2021; Li and Bastani
2020; Bansal et al. 2017; Akametalu et al. 2014), and come
with safety guarantees that are tied to these assumptions. In
comparison, our work targets the more general setting, ob-
taining safety guarantees in a data-driven manner. In tabular
MDP settings, we prove a high probability guarantee on the
safety of any feasible solution under the conservative objec-
tive; we subsequently extend this result to ensure the safety
of all training episodes. On more complex domains, we pro-
vide approximate and practically effective implementations
for high-dimensional inputs, such as images, on which pre-
vious methods cannot be applied.

Our core idea of using uncertainty estimates as penalty
terms to avoid unsafe regions has been explored in several
prior works (Kahn et al. 2017; Berkenkamp et al. 2017;
Zhang et al. 2020). However, our work provides the first the-
oretical treatment of the uncertainty-based cost penalty that
is independent of the type of the cost (e.g., binary cost) and
the parametric choice of the transition model. Our theoreti-
cal analysis is similar to that of (Yu et al. 2020), though we
extend their results, originally in the offline constraint-free
setting, to the online constrained MDP setting, and introduce
a new result guaranteeing safety for all training episodes.
Furthermore, our framework permits the cost penalty weight
to automatically adjust to transition model updates, using en-
vironment cost feedback during MBRL training.

3 Preliminaries
In safe reinforcement learning, one common problem for-
mulation is to consider an infinite-horizon constrained
Markov Decision Process (CMDP) (Altman 1999) M =
(S,A, T, r, c, γ, µ0). Here, S,A are the state and action
spaces, T (s′ | s, a) is the transition distribution, r(s, a) is
the reward function, c(s, a) is the cost function, γ ∈ (0, 1) is
the discount factor, and s0 ∼ µ0(s0) is the initial state distri-
bution; we assume that both r(s, a) and c(s, a) are bounded.
A policy π : S → ∆(A) is a mapping from state to distri-
bution over actions. Given a fixed policy π, its state-action
occupancy distribution is defined to be ρπT (s, a) := (1 −
γ)
∑∞
t=0 γ

tPrπ(st = s, at = a), where Prπ(st = s, at = a)
is the probability of visiting (s, a) at timestep t when exe-
cuting π inM starting at s0 ∼ µ0. The objective in this safe
RL formulation is to find the optimal feasible policy π∗ that
solves the following constrained optimization problem:

max
π

J(π) := E
[∑
t=0

γtr(st, at)
]

s.t. Jc(π) := E
[∑
t=0

γtc(st, at)
]
≤ C

(1)

where the expectation is over s0 ∼ µ0(·), st ∼ T (st |
st−1, at−1), at ∼ π(· | st), and C is a cumulative constraint
threshold that should not be exceeded. We say that a pol-
icy π is feasible if it does not violate the constraint, and the
optimization problem is feasible if there exists at least one
feasible solution (i.e., policy).
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Unlike unconstrained MDPs, constrained MDPs cannot
be solved by dynamic programming; instead, a common ap-
proach is to consider the dual of Eq (1) (Altman 1999):

max
ρ(s,a)≥0

1

1− γ
∑
s,a

ρ(s, a)r(s, a)

s.t.
1

1− γ
∑
s,a

ρ(s, a)c(s, a) ≤ C

∑
a

ρ(s, a) = (1− γ)µ0(s) + γ
∑
s′,a′

T (s | s′, a′)ρ(s′, a′), ∀s

(2)
The dual problem Eq (2) is a linear program over oc-
cupancy distributions, and can be solved using standard
LP algorithms; the second constraint defines the space of
valid occupancy distributions by ensuring a “conservation
of flow” property among the distributions. Given its so-
lution ρ∗, the optimal policy can be defined as π∗(a |
s) = arg max ρ∗(s, a), or equivalently, π∗(a | s) =
ρ∗(s, a)/

∑
a ρ
∗(s, a) (if the optimal policy is unique).

Typically, the transition function T is not known to the
agent; thus, the optimal policy π∗ cannot be directly com-
puted through LP. In model-based reinforcement learning
(MBRL), the lack of known T is directly addressed by
learning an estimated transition function T̂ through data
D := {(s, a, r, c, s′)}. Then, we can define a surrogate ob-
jective to Eq (2) by simply replacing T with T̂ and solving
Eq (2) as before. Likewise, we can replace J(π) with Ĵ(π),
and Jc(π) with Ĵc(π), to obtained model-based objectives
in Eq (1). Putting all this together, we may define a basic
model-based safe RL framework (Berkenkamp et al. 2017;
Brunke et al. 2021) that iterates among three steps: (1) solv-
ing for π̂∗ approximately, (2) collecting data (s, a, r, c, s′)

from π̂∗, and (3) updating T̂ using all collected data so far.
However, at any fixed training iteration, the modeling error
may lead to sub-optimal, potentially infeasible π̂∗. This mo-
tivates our approach, described in the following sections.

4 CAP: Conservative and Adaptive Penalty
Next, we introduce conservative and adaptive cost-penalty
(CAP), our proposed uncertainty and feedback-aware
model-based safe RL framework. First, we precisely char-
acterize the downstream effect of the model prediction er-
ror on the cost estimate Ĵc(π) by providing an upper bound
on the true cost J∗c (π), which allows us to derive a penalty
function based on the epistemic uncertainty of the model.
To this end, we adapt the return simulation lemma results
in (Luo et al. 2021; Yu et al. 2020) to the cost setting and
derive the following upper bound on the true policy cost
1

1−γ
∑
s,a ρ

π
T (s, a)c(s, a) with respect to the estimated pol-

icy cost 1
1−γ

∑
s,a ρ

π
T̂

(s, a)c(s, a).

4.1 Cost Penalty
First, given a policy mapping π, we define V πc : S → R
such that V πc (s) := Eπ,T [

∑∞
t=0 γ

tc(st, at) | s0 = s]. We
make the following assumption on the realizability of V πc .

Assumption 4.1. There exists a β > 0 and a function class
F such that V πc ∈ βF for all π.

With this assumption, we show that the difference be-
tween the estimated and true costs can be bounded by the
integral probability metric (IPM) defined by F computed
between the true and the learned transition models.
Lemma 4.2 (Cost Simulation Lemma and Upper Bound).
Let the F -induced IPM be defined as

dF (T̂ (s, a), T (s, a))

:= sup
f∈F
|Es′∼T̂ (s,a)[f(s′)]− Es′∼T (s,a)[f(s′)]| (3)

Then, the difference between the expected policy cost
computed using T and T̂ is bounded above:∑

s,a (ρπT (s, a)− ρπ
T̂

(s, a))c(s, a) ≤ γβ
∑
s,a ρ

π
T̂

(s, a)dF (T̂ (s, a), T (s, a))

(4)
We provide a proof in Appendix A. This upper

bound illustrates the risk of applying MBRL with-
out modification in safety-critical settings. Attain-
ing 1

1−γ
∑
s,a ρ

π
T̂

(s, a)c(s, a) ≤ C does not guar-
antee that π will be feasible in the real MDP (i.e.,
1

1−γ
∑
s,a ρ

π
T (s, a)c(s, a) ≤ C) because the vanilla model-

based optimization does not account for the model error’s
impact on the policy cost estimation, βdF (T̂ (s, a), T (s, a)).

To enable model-based safe RL that can transfer feasi-
bility from the model to the real world, for a fixed learned
transition model T̂ , we seek a cost penalty function uT̂ : S×
A → R such that dF (T̂ (s, a), T (s, a)) ≤ uT̂ (s, a), ∀s, a. If
such a function exists, then we can solve the following LP:

max
ρ(s,a)≥0

1

1− γ
∑
s,a

ρ(s, a)r(s, a)

s.t.
1

1− γ
∑
s,a

ρ(s, a)(c(s, a) + γβuT̂ (s, a)) ≤ C

∑
a

ρ(s, a) = (1− γ)µ0(s) + γ
∑
s′,a′

T̂ (s | s′, a′)ρ(s′, a′), ∀s

(5)
We can guarantee that the solution policy π of Eq (5) is fea-
sible for T—in particular, note that

1

1− γ
∑
s,a

ρπT (s, a)c(s, a)

≤ 1

1− γ
∑
s,a

ρπ
T̂

(s, a)(c(s, a) + γβu(s, a)) ≤ C.

However, this result is not useful if we cannot compute
dF (T̂ (s, a), T (s, a)). A suitable function class for analysis
is F = {f : ‖f‖∞ ≤ 1}, which typically can be satis-
fied with Assumption 4.1 since the per-step cost is bounded.
Then, for the tabular-MDP setting (i.e., finite state and action
space), we can in fact obtain a strong probabilistic guarantee
on feasibility.
Theorem 4.3 (Tabular Case High-Probability Feasibility
Guarantee). Assume F = {f : ‖f‖∞ ≤ 1} and that As-
sumption 4.1 holds. Define u(s, a) := ( |S|

8n(s,a) ln 4|S||A|
δ )

1
2 ,
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Algorithm 1: Safe MBRL with Conservative and Adaptive
Penalty (CAP)

1: Inputs: Transition model T̂θ, experience buffer D, cost
limit C, initial κ value, κ learning rate α

2: Initialize D with random policy
3: for Episode = 1, 2, . . . do
4: # Conservative penalty
5: Train T̂θ using D
6: Optimize π using Eq (5) (LP) or Eq (7) (CCEM)
7: Collect trajectory τ := {(st, at, rt, ct, st+1)} and

store to buffer D = D ∪ {τ}
8: # Adaptive penalty
9: Compute Jc(πt) =

∑
t=0 γ

tct
10: Update κ← κ+ α(Jc(πt)− C)
11: end for

where n(s, a) is the count of (s, a) inD and δ ∈ (0, 1]. Then,
with probability 1 − δ, a policy that is feasible for Eq (5) is
also feasible for Eq (2).

Furthermore, we can extend this result to guarantee that
all intermediate solutions during training are safe.

Corollary 4.4 (High-Probability Zero-Training-Violations
Guarantee). Assume the same set of assumptions as Theo-
rem 4.3 and that the training lasts for K episodes. Then,

for any δ ∈ (0, 1], define u(s, a) :=
√

|S|
8n(s,a) ln 4K|S||A|

δ .
Then, with probability 1 − δ, all intermediate solutions to
Eq (5) are feasible for Eq (2).

Proofs are given in Appendix A. At a high level, Theo-
rem 4.3 follows from observing that dF is the total varia-
tion distance for the chosen F and applying concentration
bound on the estimation error of T̂ . Then, Corollary 4.4 can
be shown by a union-bound argument.

Together, these results suggest that a principled way of
incorporating a conservative penalty function into the 3-step
basic model-based safe RL framework described at the end
of Sec. 3 is to replace the original constrained MDP objec-
tive (i.e., Eq (2)) with its conservative variant (i.e., Eq (5)).

4.2 Adaptive Cost Penalty
The upper bound derived in the previous section can be
overly conservative in practice. Thus, we derive an adaptive
penalty function based on environment feedback to make
it more practical. First, we observe that the conservative
penalty modification described above is not yet enough for
a practical algorithm, because the proposed penalty function
as in the theorem or the corollary is too conservative, to the
extent that Eq (5) might admit no solutions. In practice, it is
often estimated as u(s, a) := κ/

√
n(s, a), where κ ∈ R is

some scaling parameter.
We observe that setting κ to a fixed value throughout

training can lead to poor performance. Different scales may
be appropriate for use with different environments, tasks,
and stages of training. If it is set too low, then the cost
penalty may not be large enough to ensure safety. On the
other hand, if it is set too large, then the model may be overly

conservative, discouraging exploration and leading to train-
ing instability.

To avoid these issues, we propose to adaptively update κ
during training. Observe that the effect of a particular κ value
on a policy’s true cost in the environment can be measured
from executing this policy in the real environment. Thus,
we can in fact view the co-evolution of the policy and the
learned transition model as a control plant, for which the
policy cost is the control output; then, κ can be viewed as
its control input. Now, to set κ, we employ a PI controller,
a simple variant of the widely used PID controller (Åström
and Hägglund 2006) from classical control, to incrementally
update κ based on the current gap between the policy’s true
cost and the cost threshold. More precisely, we propose the
following PI control update rule:

κt+1 = κt + α(Jc(πt)− C) (6)

where α is the learning rate.
This update rule is intuitive. Consider the direction of the

κ update when Jc(πt) < C. In this case, the update will be
negative, which matches our intuition that the cost penalty
can be applied less conservatively due to the positive margin
to the cost limit C. The argument for the case Jc(πt) > C
is analogous. In high-dimensional environments, as the full
expected cost cannot be computed exactly, and we instead
approximate it using a single episode (i.e., the current policy
πt rollout in the environment). To ensure κ is non-negative,
we additionally perform a max(0, ·) operation after each PI
update.

Now, the full CAP approach is described in Algorithm 1.
At a high level, CAP extends upon the basic model-based
safe RL framework by (1) solving the conservative LP (Line
7, Eq (5)), and (2) adapting κ using PI control (Lines 10 &
11). We set the initial value for κ using an exponential search
mechanism, which we describe in the Appendix. We validate
this LP formulation of CAP using a gridworld environment
in our experiments.

4.3 CAP for High-Dimensional States
Note that this tabular LP variant of CAP cannot extend to
environments with continuous state and action spaces, repre-
sentative of many high-dimensional RL problems of interest
(e.g., robotics); their continuous nature precludes enumerat-
ing all state-action pairs, which is needed to express the lin-
ear program. Therefore, we propose a scalable implementa-
tion of CAP amenable to continuous control problems. First,
we revert back to the policy-based formulation in Eq (1), and
define the following equivalent objective:

max
π

E
[∑
t=0

γtr(st, at)
]

s.t. E
[∑
t=0

γt · (c(st, at) + κuT̂ (st, at))
]
≤ C

(7)

where u(st, at) is a heuristic penalty function based on
statistics of the learned transition model.

To optimize Eq (7), we employ the constrained cross en-
tropy method (CCEM) (Wen and Topcu 2020; Liu et al.
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Figure 1: Tabular gridworld results. CAP achieves near-optimal policy with zero constraint violations during training, while all
ablations either converge to sub-optimal solutions or incur a high number of training violations.

2021) as our trajectory optimizer; the procedure is summa-
rized in Algorithm 2 in the Appendix. At a high level, CCEM
first samples N action sequences (Line 4) and computes
their values and costs (Line 5). Then, if there were more
than E samples that satisfy the constraint, then the E sam-
ples with highest rewards are selected (Line 10); otherwise,
the E samples with lowest costs are selected (Line 8). These
selected elite samples are used to update the sampling dis-
tribution (Line 12). This process continues for I iterations,
and the eventual distribution mean is selected as the optimal
action sequence (Line 14).

Next, we specify the choice of transition model
and penalty function u(s, a) for state-based and visual
observation-based implementations, respectively. For the
former, we model the environment transition function us-
ing an ensemble of size N , {T̂ iθ = N (µiθ,Σ

i
θ)}Ni=1 (Chua

et al. 2018) and set u(s, a) = maxNi=1

∥∥Σiθ(s, a)
∥∥

F to be
the maximum Frobenius norm of the ensemble standard de-
viation outputs, as done for offline RL in (Yu et al. 2020).
Our visual-based implementation builds on top of PlaNet
(Hafner et al. 2019), a state-of-art visual model-based transi-
tion model; here, we set u(s, a) to be the ensemble disagree-
ment of one-step hidden state prediction models (Sekar et al.
2020). See the Appendix for details. In both tabular and deep
RL settings, CAP adds negligible computational overhead,
making it a practical safe RL algorithm.

5 Experiments
CAP provides a general, principled, and practical frame-
work for applying MBRL to safe RL. To support this claim,
we comprehensively evaluate CAP against its ablations as
well as model-free baselines in various environments. More
specifically, we investigate the following questions:

(Q1) Does CAP’s theoretical guarantees approximately
hold in tabular environments?

(Q2) Does CAP improve reward and safety upon its abla-
tions (i.e., fixed κ values)?

(Q3) Is CAP more sample and cost efficient than state-of-art
model-free baselines?

(Q4) Can CAP learn safe policies even with high-
dimensional inputs, such as images?

We investigate Q1-2 using a gridworld environment, and
Q2-4 on two high-dimensional deep RL benchmarks. Our

code is included in the supplementary materials.

5.1 Gridworld
We begin by validating our theoretical findings in tabular
gridworld, where we can solve the constrained optimization
problem (Eq (5)) exactly using standard LP algorithms.

Environment, Methods, Training Details We consider
an 8 × 8 gridworld with stochastic transitions; the reward
and the cost functions are randomly generated Bernoulli dis-
tributions drawn according to a Beta prior. In addition to
CAP, we compare against CAP ablations with fixed κ val-
ues of 0, 0.01, 0.05, and 0.1; κ = 0 corresponds to the basic
MBRL approach without penalty. We also include the oracle
LP solution computed using the true environment dynamics.
For each method (except the oracle), the training procedure
lasts 30 iterations, in which each iterate includes (1) collect-
ing 500 samples using the current LP solution, (2) updating
T̂ , and (3) solving the new conservative LP objective. See
Appendix for more environment and training details.

Metrics & Results In Figure 1, we illustrate the training
curves for the return, cost, the cumulative number of inter-
mediate policy solutions that violate the cost threshold. The
first two metrics are standard, and the violation metric mea-
sures how safely a method explores. We additionally illus-
trate the training evolution of κ. These curves are the av-
erages taken over the 100 gridworld simulations; we defer
standard deviation error bar to the Appendix for better visu-
alizations except for the kappa curve.

As expected, CAP (κ = 0), due to its asymptotically
consistent nature, converges to the oracle as training con-
tinues; however, this comes at the cost of the highest num-
ber of training violations, precisely due to the lack of an
uncertainty-aware penalty function. In sharp contrast, CAP
is very close to the oracle in both reward and cost, and does
so without incurring a single violation in all 100 trials, as
indicated by its flat horizontal line at 0 in the violation plot.
These results validate our key theoretical claims that when
the cost penalty is applied properly, the resulting policy is
guaranteed to be safe (Theorem 4.3); furthermore, it applies
to all intermediate policies during training (Corollary 4.4),
answering Q1 above.

On the other hand, CAP ablations with fixed κ values,
though constraint-satisfying at the end, incur higher num-

5408



HalfCheetah Car-Racing

Figure 2: High Dimensional Environments.

ber of violations and achieve sub-optimal solutions, vali-
dated by their lower returns and conservative costs. Inter-
estingly, while all these variants on average satisfy the con-
straint from Episode 2 and on (i.e., their average costs are
below the threshold of 0.1 in the cost plot), their average
numbers of violations uniformly increase throughout train-
ing. This suggests that fixed κ values are not robust to ran-
dom gridworld simulations, as the same value may be too
modest for some random draws and hence incur violations,
and too aggressive for some other draws and lead to subop-
timal solutions. Indeed, we observe greater variance in the
performance of fixed κ ablations than CAP (see Appendix).

In contrast, CAP automatically finds suitable sequences
of κ for each simulation, evidenced by the large variance the
κ sequences exhibit over the simulations. Its zero-violation
and lower variance in all metrics suggest that the adaptive
penalty mechanism has the additional benefit of being dis-
tributionally robust to the randomness in the environment
distribution. Finally, the overall downward oscillating trend
indeed reflects CAP’s effectiveness at using feedback to op-
timize reward and cost simultaneously. Together, these abla-
tions answer Q2 affirmatively. In the Appendix, we provide
additional result analysis for this tabular experiment.

5.2 High-Dimensional Environments
Next, we evaluate CAP’s generality and effectiveness in
high-dimensional environments. We begin by summarizing
our experimental setup; details are in the Appendix.

Environments We consider two deep RL environments,
spanning different input modalities, constraint types, and as-
sociated cost types. We describe these environments here;
see Figure 2 for illustrations:

• A velocity-constrained version of Mujoco HalfChee-
tah (Todorov, Erez, and Tassa 2012), representative of
robot tasks in which we want to avoid robots damag-
ing themselves from over-exertion. The state space is 17-
dimensional and the action space is 6-dimensional (con-
trolling the robot joints). To ensure a meaningful cost
constraint, we constrain the average velocity to be below
50% of the average velocity of an unconstrained expert
PPO agent (152) (Zhang, Vuong, and Ross 2020).

Method HalfCheetah
Steps Return (↑) Cost (Limit 152) (↓) Violation (↓)

PPO 1M 2791.3 296.9 378.0
100K 670.2 97.6 0

PPO-Lag 1M 1436.8 150.7 108.0
100K 670.2 97.6 0

FOCOPS 1M 1591.4 160.2 202.8
100K 456.0 84.6 0

CAP 100K 1456.3 144.3 1.7

Method Car-Racing
Steps Return (↑) Cost (Limit 0) (↓) Violation (↓)

PPO 1M 32.7 52.0 975.0
200K 48.8 224.8 196.0

PPO-Lag 1M -3.2 0.0 101.3
200K -3.2 0.3 101.3

FOCOPS 1M 23.4 0.8 581.0
200K 16.2 3.9 172.0

CAP 200K 21.7 0.4 93.3

Table 1: Baseline comparison results. CAP is substantially
more sample-efficient with respect to both return and cost.
In addition, it is much safer during training, as demonstrated
by the significantly fewer violations.

• A 2D image-based racing task Car-Racing (Brockman
et al. 2016), with randomized tracks in every episode.
The state space is a 64×64×3 top-down view of the car;
the action space is continuous and 3-dimensional (steer-
ing, acceleration, and braking). A per-step cost of 1 is in-
curred if any wheels skid from excessive force; the cost
limit is 0, indicating that the car should never skid. This
task is representative of visual environments with com-
plex dynamics.

Baselines In these high-dimensional settings, we compare
against both deep model-free safe RL baselines as well as
CAP ablations. To this end, we include PPO-Lagrangian
(PPO-LAG), which iterates between PPO policy update and
cost lagrangian parameter update to simultaneously opti-
mize return and constraint satisfaction; despite its simplicity,
PPO-LAG has been shown to be a strong safe RL baseline
(Ray, Achiam, and Amodei 2019). Additionally, we include
FOCOPS (Zhang et al. 2020), a state-of-art model-free al-
gorithm which uses first-order projection methods to ensure
that constraint satisfaction minimally deteriorates policy re-
turn. Finally, we include PPO (Schulman et al. 2017b) in
order to provide comparison to an unconstrained method. Fi-
nally, as in the gridworld experiment, we consider CAP abla-
tions with fixed κ values and separately visualize the train-
ing curves. We use κ = 0, 0.1, 1, 10 for both HalfCheetah
and Car-Racing to include a wide range of magnitudes; in
particular, κ = 0 corresponds to the basic model-based safe
RL approach without the conservative penalty; this is the
constrained CEM method introduced by (Liu et al. 2021).
In Appendix E.5, we additionally compare to PETS (Chua
et al. 2018), a widely used unconstrained model-based plan-
ning method.
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Figure 3: CAP Ablations on HalfCheetah (top) and Car-Racing (bottom). The adaptive κ achieves better balance than all fixed
κ values and incurs much fewer violations during training.

Training Details & Evaluation Metrics For model-free
algorithms, we train using 1M environment steps, and for
our model-based algorithms, we train using 100K steps for
HalfCheetah and 200K steps for Car-Racing. An episode in
both environments is 1000 steps. We report results on Car-
Racing at 200k since it is more challenging to learn the dy-
namics of a visual environment; both model-free and model-
based methods take more steps to converge in Car-Racing.
As in gridworld, we report the training curves of the return,
cost, and cumulative episodic violations; they are included
in the Appendix. In the main text, we report a numerical
“snapshot” version of these curves at the end of training (av-
erage over last 10 episodes); for model-free baselines, we
also report these metrics after 100K/200K steps to have a
head-to-head comparison against CAP. We include all hy-
perparameters and implementation details in the Appendix.

Baseline Comparisons Results The results are shown in
Table 1. While the most competitive algorithm FOCOPS
matches CAP’s return and cost with 1 million environmen-
tal steps in both environments, CAP requires about 5-10×
fewer steps, demonstrating its sample efficiency. Further-
more, the relative performance of CAP at 100K/200K steps
is significantly better than all model-free algorithms, which
have not learned a good policy by that point. This has di-
rect implication for safety. On the Car-Racing environment,
because model-free methods learn much slower, they also
spend more training episodes violating the constraint. On
HalfCheetah, all methods achieve 0 cumulative episodic vi-
olations with 100K steps, but this is because in HalfCheetah
the algorithm will not violate the speed constraint initially
because it has not learned the running behavior yet.

It is particularly illuminating to observe the cumulative
episodic violations at the end of each method’s training: we
see that CAP violates the speed constraint in HalfCheetah
for fewer than 2 episodes out of its 100 training episodes,
while all baselines violate this constraint at much higher
rates and volumes. This confirms that these model-free
methods struggle to ensure safety during training regard-

less of the safety of their final policy, while CAP is able to
minimize violations throughout training. On the more chal-
lenging image-based Car-Racing environment, CAP cannot
avoid training violations entirely, but manages to signifi-
cantly reduce them compared to the baselines. These com-
parisons provide strong evidence for Q3 and Q4.

CAP Ablations Results The training curves of CAP as
well as its ablations are illustrated in Figure 3. Consistent
with our findings in gridworld, setting κ to a fixed value is
rarely desirable. Setting it too low often leads to solutions
that fail to satisfy constraint, suggested by the high training
cost and violations of CAP (κ = 0.0, 0.1) in both environ-
ments; setting it too high often precludes reward learning
in the first place, evidenced by the training curves of CAP
(κ = 10.0) in both environments. Furthermore, since the
cost limit is 0 on Car-Racing, exploration will always violate
the constraint initially. Hence, we can additionally measure
the safe exploration of a method by its slope on the violation
curve: the lower the slope, the fewer violations a method in-
curs as training goes on. There, we see that CAP has the flat-
test violation slope out of all variants that learn policies with
non-trivial driving behavior, answering Q2 affirmatively.

6 Conclusion
We have presented CAP, a general model-based safe rein-
forcement learning framework. We have derived a linear
programming formulation and proven that we can guarantee
safety by using a conservative penalty; this penalty is then
made adaptive based on environmental feedback to make
it practically useful. We have validated our theoretical re-
sults in a tabular gridworld environment and demonstrated
that CAP can be easily extended to high-dimensional visual
environments through appropriate choices of optimizer and
transition models. In future work, we aim to extend CAP to
the offline and risk-sensitive settings (Yu et al. 2020; Ma, Ja-
yaraman, and Bastani 2021). Overall, we believe that CAP
opens many future directions in making MBRL practically
useful for safe RL.
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