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Abstract

For a monocular camera-based navigation system, if we could
effectively explore scene geometric cues from RGB images,
the geometry information will significantly facilitate the ef-
ficiency of the navigation system. Motivated by this, we
propose a highly efficient point-goal navigation framework,
dubbed Geo-Nav. In a nutshell, Geo-Nav consists of two
parts: a visual perception part and a navigation part. In the
visual perception part, we firstly propose a Self-supervised
Depth Estimation network (SDE) specially tailored for the
monocular camera-based navigation agent. SDE learns a
mapping from an RGB input image to its corresponding depth
image by exploring scene geometric constraints in a self-
consistency manner. Then, in order to achieve a representa-
tive visual representation from the RGB inputs and learned
depth images, we propose a Cross-modality Pyramid Fusion
module (CPF). Concretely, CPF computes a patch-wise cross-
modality correlation between different modal features and ex-
ploits the correlation to fuse and enhance features at each
scale. Thanks to the patch-wise nature of CPF, we can fuse
feature maps at high resolution, allowing the visual network
to perceive more image details. In the navigation part, the
extracted visual representations are fed to a navigation pol-
icy network to learn how to map the visual representations to
agent actions effectively. Extensive experiments on the Gib-
son benchmark demonstrate that Geo-Nav outperforms the
state-of-the-art in terms of efficiency and effectiveness.

Introduction
Point-goal visual navigation aims to instruct an agent to
move towards a target position based on RGB observations
and directional indications. Apart from the indications, fully
understanding scene geometry plays a critical role in nav-
igation action reasoning. Particularly, sensing scene geom-
etry significantly facilitates the efficiency of the navigation
system, such as avoiding obstacles.

Recent works validate the importance of depth infor-
mation in visual navigation. For example, previous meth-
ods (Chen et al. 2019; Wijmans et al. 2020) employ RGB-
D images to learn expressive visual representations. Some
navigation systems (Gordon et al. 2019; Sax et al. 2018)
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Figure 1: Illustration of Geo-Nav framework. An agent pre-
dicts monocular depth by Self-supervised Depth Estimation
network (SDE). The agent applies Cross-modality Pyramid
Fusion module (CPF) to merge features from the RGB im-
age and estimated depth map into an informative visual rep-
resentation. Then, the agent produces a navigation policy
and selects an action, e.g., TurnLeft. The red point rep-
resents the target position, and visited nodes are highlighted
by blue points in one episode.

.

pre-train agents with auxiliary tasks, e.g., depth prediction,
to exploit geometric information. However, such navigation
systems may suffer from severe performance degradation
when depth information is not available. Unlike previous
works that require ground-truth depth, we develop a monoc-
ular camera-based navigation framework named Geo-Nav,
which can efficiently explore scene geometric cues without
relying on ground-truth depth information.

Geo-Nav consists of two parts: a visual perception part
and a navigation part. In the visual perception part, we
firstly introduce a Self-supervised Depth Estimation net-
work (SDE) to comprehend scene geometric structure from
RGB observations by estimating dense depth maps of
scenes. To be specific, SDE learns to map monocular RGB
images to depth maps from the visual observation differ-
ences between consecutive frames. We adopt an encoder-
decoder architecture to estimate scene depth by satisfying
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the geometric constraints between consecutive frames and
enforcing estimated depth scales to be consistent. As we aim
to leverage the inherent geometric information to learn depth
maps during navigation, pure-rotation image pairs are not
suitable for SDE to learn the depth. Therefore, we sample
pure-translation movements from historical trajectories and
then train SDE with the sampled image pairs.

In order to generate expressive visual representations
from RGB and depth images for the navigation policy net-
work, we design a Cross-modality Pyramid Fusion module
(CPF). Specifically, we employ a ResNet18 (He et al. 2016)
to extract image contextual cues from RGB observations and
an encoder network to extract scene geometry from esti-
mated depth maps. Recall that the scene geometry and image
contextual information are two distinct modalities. Thus, it
is less effective to apply simple late-fusion methods, such as
fusion by addition. To tackle this issue, CPF is designed to
fuse representations of RGB and depth hierarchically. Con-
cretely, CPF first computes a patch-wise cross-modality cor-
relation between these two modal features and then fuses
these features based on the correlation at multiple scales sep-
arately. The embedding patches can be viewed as the same
way as tokens in a natural language processing (NLP) appli-
cation (Vaswani et al. 2017). CPF attends the depth embed-
ding tokens to RGB features with the corresponding posi-
tional embeddings to construct the patch-wise relationships
between two modalities. Furthermore, since CPF measures
correlation in a patch-wise manner, CPF can be applied to
the high-resolution feature maps and preserves rich spatial
details. In this way, we obtain more informative visual rep-
resentations.

In the navigation part, agents embed directional signals,
previous actions and visual representations into the naviga-
tion policy network. We adopt a Long Short-Term Memory
network (LSTM) to generate navigation actions. To speed up
the training procedure of the navigation network, we warm
up the navigation policy network via imitation learning (IL)
with expert demonstrations. Then, we adopt the Proximal
Policy Optimization (PPO) paradigm (Schulman et al. 2017)
to learn a general navigation policy. Experiments demon-
strate that Geo-Nav outperforms the state-of-the-art meth-
ods in the widely-used Gibson benchmark (Xia et al. 2018).
Noticeably, the entire network is trained 6× faster than DD-
PPO (Wijmans et al. 2020) when achieving similar perfor-
mance. This also indicates that Geo-Nav effectively exploits
geometric cues and thus improves training efficiency.

Overall, our contributions are summarized as follows:

• We propose a scene-geometry driven point-goal RGB
image based visual navigation framework, dubbed as
Geo-Nav. It is designed to integrate image cues and scene
geometry explored from the consecutive frames into an
expressive representation.

• We introduce a scale-consistent Self-supervised Depth
Estimation network (SDE) specially tailored for visual
navigation. To the best of our knowledge, Geo-Nav is
the first attempt to exploit self-supervised depth from a
monocular RGB camera in point-goal navigation tasks.

• We develop a Cross-modality Pyramid Fusion module

(CPF) to associate scene geometry with image contents,
thus significantly alleviating depth scale ambiguity and
enhancing visual feature representations.

• Extensive experiments demonstrate that Geo-Nav outper-
forms the state-of-the-art methods on the Gibson bench-
mark (Xia et al. 2018) in terms of efficiency and effec-
tiveness. Moreover, due to our effective exploitation of
scene geometry, Geo-Nav also achieves better training
efficiency than the state-of-the-art.

Related Work
Recent reinforcement learning-based navigation works
mainly focus on steering an agent to target locations in un-
known environments, while traditional methods construct
maps of environments to find the shortest path for naviga-
tion. Here, we briefly review the most relevant literature.

SLAM-based navigation methods (Cadena et al. 2016;
Durrant-Whyte and Bailey 2006; Garcia-Fidalgo and Or-
tiz 2015) generally consist of three steps: building a map,
localizing the agent in the map, and designing an optimal
path based on the map. Prevalent SLAM systems (Davison
et al. 2007; Klein and Murray 2007; Mur-Artal, Montiel,
and Tardos 2015) are based on hand-crafted or learned fea-
tures (Tian et al. 2019; Yu et al. 2019, 2020; Li et al. 2020,
2021). However, traditional feature-based SLAM might fail
when a scene is textureless and may suffer drifting problems.

Reinforcement Learning (RL) based methods employ ex-
pressive representations and effective policies to maximize
the cumulative reward. The pioneering work (Zhu et al.
2017) proposes a target-driven based navigation model and
a new simulated environment for obtaining enough training
samples. Following works (Gordon et al. 2019; Savva et al.
2019) exploit an end-to-end reinforcement learning pipeline
with an RGB-D camera, and they demonstrate an RGB-D
camera is more effective than a monocular RGB camera.
Gupta et al. (2017) construct a joint differentiable mapper
and planner for mimicking the classical SLAM, but their
approach requires depth information to obtain the optimal
actions for an agent.

Shen et al. (2019) leverage 25 diverse vision tasks (e.g.,
supervised depth predictions) to improve the robustness of
navigation policy. Recent works (Du, Yu, and Zheng 2020,
2021; Tang et al. 2021) validate that efficient exploration
policies facilitate downstream navigation training. In par-
ticular, Chaplot et al. (2020a) require ground-truth depth
as supervision signals, while Chaplot et al. (2020b) need a
topological map of the environment in advance for training.
However, these types of information are not available to real-
istic agents during training. Note that most methods rely on
depth sensors or prerequisite depth maps, while Geo-Nav is
designed to learn scene depth directly from the historical tra-
jectories without requiring ground-truth depth information.

Meanwhile, several works (Gordon et al. 2019; Ye et al.
2020; Zhu et al. 2020) leverage self-supervised auxiliary
tasks, such as predicting next frames or next actions. How-
ever, those methods do not explicitly exploit scene geometric
information for navigation. Although some works (Wagstaff
and Kelly 2021; Zhou et al. 2017; Godard et al. 2019; Bian
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Figure 2: Overview of Geo-Nav framework. Geo-Nav involves two parts: (i) visual perception encoder and (ii) a standard
policy network. In the visual perception encoder, We employ two branches to extract the features. SDE infers depth from the
RGB observations. Meanwhile, CPF computes patch-wise attention maps between RGB representations and depth features and
then aggregates weighted features at different scales. Then, the policy network encodes the informative visual representations,
directional signals and previous actions into the policy network.

et al. 2019; Godard, Mac Aodha, and Brostow 2017; Zhan
et al. 2018; Shi, Li, and Yu 2021) propose self-supervised
depth estimation methods, directly using these methods in
navigation will suffer depth scale ambiguity and lead to in-
ferior navigation performance. Unlike the work of Wagstaff
and Kelly (2021) that adopts scale consistency in one direc-
tion, we constrain the scale consistency in two directions,
which helps Geo-Nav to produce highly scale-consistent
depth estimation.

Proposed Method
Our navigation framework Geo-Nav is composed of a vi-
sual perception part and a navigation part. In the visual per-
ception part, we introduce a scale-consistent Self-supervised
Depth Estimation network (SDE) to explore scene geometric
information and then propose a Cross-modality Pyramid Fu-
sion module (CPF) to integrate the estimated depth and im-
age contextual cues into expressive visual representations.
The goal of the navigation part is to learn an effective and
efficient navigation strategy based on visual representations.

Task Definition
The objective of monocular camera-based point-goal navi-
gation is to steer an agent towards a target point with RGB
observations and coarse directional indications. To be spe-
cific, at the timestamp t, an agent obtains an RGB observa-
tion Ot from its monocular camera. Meanwhile, the agent
receives a directional indication It, comprising the distance
dt and orientation ot pointing to the end node ne (i.e. target).

The agent extracts visual representations and learns to ap-

proximate an optimal navigation policy π(at|Ot, It, ht−1),
where ht−1 stands for the previous hidden state, and at rep-
resents the distribution of actions. Then, the agent selects
the action with the highest probability for navigation. The
action space is composed of 4 distinct candidates, including
MoveForward, TurnLeft, TurnRight and Stop.
More specifically, the forward step size is 0.25 meters, and
the angle of TurnLeft/TurnRight is 10◦.

With maximum steps (e.g., 500 steps), an episode is re-
garded as a success when the position of the agent is within
0.2 meters of the target node ne. Otherwise, it will be con-
sidered a failure episode.

Scale-consistent Self-supervised Depth Estimation

To infer depth information only from RGB observations,
we introduce a Self-supervised Depth Estimation network
(SDE), as illustrated in Figure 3, into the Geo-Nav frame-
work. We first train SDE with image pairs from agents’
trajectories. Specifically, SDE estimates both depth maps
(Dt, Dt′ ) and pose Pt→t′ between two consecutive images
(Ot, Ot′ ). Given Dt, Pt→t′ and the camera intrinsic matrix
K, we calculate the projection function (Zhou et al. 2017) to
transform the pixel coordinates between images. Following
Jaderberg et al. (2015), we warp the source image Ot′ to the
target image Ot′→t based on the projection function. Here,
we utilize three self-supervised losses in training.

Using the brightness constancy priors (Bruhn, Weickert,
and Schnörr 2005), we introduce the photometric loss to
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minimize the differences betweenOt andOt′→t, as follows:

Lp =
1

|V|
∑
V
‖ Ot −Ot′→t‖1 , (1)

where V indicates the set of overlapped pixels between Ot′

and Ot, and |V| is the total number of pixels. Moreover, to
eliminate the effects of illumination changes, we adopt the
structural similarity index measure (SSIM) loss. We add the
SSIM loss to Eq. (1) and measure the similarity between the
target image and the warped one. Following this, the photo-
metric loss is formulated as:

L′p = (1− λ)Lp +
λ

2
(1− SSIM(Ot, Ot′→t)), (2)

where λ is a trade-off weight. We set λ = 0.85 for all the
experiments.

Since rendered images may contain low-texture regions,
the photometric loss is not effective in these regions. We
leverage an edge-aware smoothness loss to generate smooth
depth, expressed as:

Ls = |∇xD
∗
t |e−|∇xOt| + |∇yD

∗
t |e−|∇yOt|, (3)

where ∇ represents the first-order derivative along spatial
directions (Rother, Kolmogorov, and Blake 2004), and D∗t
is the normalized inverse depth.

As stated in Godard et al. (2019), self-supervised monoc-
ular depth estimation often suffers scale ambiguity. Training
such image pairs cannot guarantee that the output depth is
scale-consistent. In the navigation task, the unstable depth
estimation could mislead the policy, causing navigation fail-
ure. To obtain scale-consistent predictions over the entire se-
quences, we employ a bidirectional geometry consistency
regularization, defined as:

LGC =
|Dt→t′ −Dt′ |

Dt′
+
|Dt′→t −Dt|

Dt
, (4)

where Dt→t′ represents a warped depth map from the pre-
dicted depth map Dt. Consequently, the overall objective
function is formulated as below:

LSDE = λ1L′p + λ2Ls + λ3LGC , (5)

where λ1, λ2, λ3 stand for the trade-off weights. We empir-
ically set λ1 = 1, λ2 = 0.1 and λ3 = 0.5 to achieve good
quality of depth maps. Thanks to the scale consistency regu-
larization, we can obtain scale-consistent depth predictions,
thus improving the navigation efficiency.

Cross-modality Pyramid Fusion
We design a Cross-modality Pyramid Fusion module (CPF)
to integrate the features of RGB images and depth, as
shown in Figure 4. CPF has two main components: a cross-
modality attention module (CA) and a multi-scale fusion
strategy (MSF). The goal of CA is to explore correlations
between depth and RGB representations.

In order to leverage image details at high resolution, we
adopt a patch-wise attention mechanism when fusing both
modalities. Specifically, we split features from both modal-
ities into a sequence of patches with a patch size of 16×16
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Figure 3: Illustration of Self-supervised Depth Estimation
network (SDE).

pixels, and thus the feature dimension of each patch is
16×16×C, where C is the number of channels.

Then, a linear embedding layer is applied to these fea-
tures, projecting the outputs into the target dimension (i.e.,
1024). Meanwhile, we use learnable positional embedding
to represent the relative positions of the patches. We add
learnable positional embedding Epos to the corresponding
flattened patches. Those modified patches are then passed to
CA. CA then fuses the RGB and depth information effec-
tively in a memory-efficient way benefiting from the patch-
wise nature of CA.

Considering RGB images contain detailed texture and
depth images mainly contain coarse structure information,
the depth embedding tokens are transformed into a query
matrix Q, and the image embedding tokens are transformed
into a key matrix K and a value matrix V . Then, agents
compute the similarity between the key matrix K and the
query matrix V to explore the patch-wise relationship across
multiple modalities. Meanwhile, we utilize the multi-head
architecture (Vaswani et al. 2017) to extract expressive in-
formation from different representation subspaces. The ag-
gregated feature is then computed as a weighted sum of the
values. Aggregated features are passed to feed-forward net-
works, which are formulated by linear transformations. The
attention mechanism is represented as:

Q = [E1
p ;E2

p ; ...;EN
p ] + Epos, (6)

K,V = [Ẽ1
p ; Ẽ2

p ; ...; ẼN
p ] + Epos, (7)

Attention(Q,K, V ) = softmax(
QKT√
d′k

)V, (8)

where Epos is the positional embedding, and d′k represents a
scaling factor.Ei

p and Ẽi
p stand for the i-th depth embedding

patch and RGB feature patch.
Furthermore, CPF allows multiple CAs at different scales

to achieve expressive representations. Specifically, both
RGB and depth feature extractors are divided into four
stages with strides of {2, 4, 8, 16}. At each stage, we com-
pute the patch-wise attention map and feed the weighted sum
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Figure 4: Illustration of Cross-modality Attention (CA).
Both embedding tokens share the position embeddings.
Here, we adopt the multi-head cross-modality attention.

of features into the next layer. The inputs and outputs of CA
at each scale are connected by a skip connection and fol-
lowed by a layer normalization, as seen in Figure 2. Since
the outputs from CA do not match the shape of the previous
2D features, we provide a reshape layer to change the fused
feature shape.

Navigation Policy Network
To demonstrate the expressiveness of visual representations,
we only adopt standard PPO (Schulman et al. 2017) archi-
tecture for navigation policy learning. The policy network
consists of a Long short-term memory network (LSTM),
policy head and value head. Both heads are composed of
the fully-connected layers and learn the mapping from hid-
den states to action distributions and values. The input of
the policy network is the concatenation of visual represen-
tations, previous action embeddings, directional instruction
embeddings and the previous hidden states.

We adopt Proximal Policy Optimization (PPO) tech-
nique (Schulman et al. 2017) to approximate the optimal
navigation policy. The policy network produces two outputs,
i.e., policy and values. We sample the action from the pre-
dicted policy with the highest probability, as seen in Fig-
ure 2. Therefore, the agent switches to the next state and
moves towards the target position.

Training Details
We first train SDE on the training data sampled from the
Gibson (Xia et al. 2018) environment. To avoid noise from
pure-rotation movements (Bian et al. 2020), we only collect
the pure-translation movements from the environment. As
suggested by Bian et al. (2020), the step size of the agent
is set to 0.05m to ensure the similarities among consecutive
images. We sample 1K image triplets for each scene, and
there are in total 180K triplets for SDE training. We jointly
train the depth net and the pose net, as shown in Figure 3.
During inference, the pure-rotation movements will not af-
fect the performance of SDE because SDE estimates depth
from a single RGB image.

After training SDE, we optimize the navigation network,
including the policy network and visual perception encoder.
We employ two branches to extract features from RGB im-
ages and depth maps, respectively. The backbone in the

6x	faster
+6.5%	SPL

Figure 5: Top: SPL on the Validation set of Gibson within
100 million steps. Bottom: SPL vs. GPU training time. We
observe that Geo-Nav uses 6× fewer steps (i.e., 6× faster
to be trained) than DD-PPO (Wijmans et al. 2020) when
achieving similar performance.

RGB branch is a ResNet18 initialized with the weights of
the trained SDE encoder. In training the policy network, we
freeze the parameters of the image branches.We first warm
up the agent via imitation learning (IL), where optimal navi-
gation actions are provided to the navigation policy network
as supervision. The agent learns the optimal action a∗t at
each step, formulated as LIL =

∑
t−a∗t log(pt(at)), where

a∗t is the one-hot encoding of an optimal action. pt is the
distribution of action space at time step t.

Furthermore, we fine-tune the agent by a standard PPO
algorithm (Schulman et al. 2017) to enhance the generaliza-
tion of navigation policy. The reward function used to opti-
mize the navigation network is defined as:

rt =

{
θ + dt−1 − dt + λt, if reach the goal,
dt−1 − dt + λt, otherwise,

(9)

where dt is the geodesic distance to the target point at times-
tamp t, θ is a constant reward which will be activated when
the agent reaches the target goal, and λt is a time penalty.

Experiments
Dataset
We train and evaluate agents on the platform Habitat (Savva
et al. 2019), which provides agents with photo-realistic im-
ages through virtual simulations. All the experiments are
conducted on the Gibson dataset (Xia et al. 2018). Gibson
contains real-world indoor scenarios, including 5 million
episodes in 72 indoor environments for training and 994
episodes in 14 unseen environments for evaluation. Each
episode involves a starting position, a target position and the
geodesic distance between the starting and target positions.
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Method SPL (%) ↑ Success (%) ↑
Random 2.1±0.01 3.9±0.34

SplitNet (Gordon et al. 2019) 70.9±0.36 86.8±0.97

Mid-Level (Sax et al. 2018) 78.9±2.01 91.7±0.23

DD-PPO (Wijmans et al. 2020) 79.2±0.22 92.1±0.25

DD-PPO£ (Wijmans et al. 2020) 82.7±0.18 89.6±0.06

Geo-Nav 84.7±0.15 93.5±0.30

Table 1: Navigation performance of the state-of-the-art and
Geo-Nav.

Evaluation Metrics
Following Anderson et al. (2018), we employ Success
weighted by Path Length (SPL) as one of evaluation met-
rics to measure the policy efficiency of the navigation frame-
work. SPL is utilized to measure the deviation between the
navigation path and the shortest one, formulated as SPL =
1
N

∑N
i=1 Si

li
max(pi,li)

, where Si represents a binary success
indicator for episode i, pi is the path length of the agent, and
li is the shortest distance from the starting position to the tar-
get point. Meanwhile, we employ the success rate (Success)
as another evaluation metric to demonstrate the effective-
ness of a navigation system. The success rate is computed
by 1

N ΣN
1 Si.

Experimental Details
During training SDE, we employ the Adam optimizer
(Kingma and Ba 2014) with the batch size of 12 and a learn-
ing rate of 10−5. Once SDE has been trained, it is fixed
and only outputs depth maps. Then, we warm up the depth
branch in the visual perception encoder and policy network
via IL. We utilize Adam optimizer with a learning rate of
2.5 × 10−4 to train the proposed agent within 10 million
steps. Finally, we fine-tune the agent and employ a lower
learning rate of 10−4 for RL. To maintain navigation per-
formance, we freeze the weights of the visual perception
network during training IL and RL. Additionally, we train
Geo-Nav with 100 million training steps on 1 Nvidia V100
GPU for seven days.

Compared Methods
Baseline (Res18-Baseline). Baseline extracts fixed RGB
features through a pre-trained ResNet18 and trains the pol-
icy network based on the features for navigation.
Random policy (Random). The random policy chooses an
action randomly from a uniform distribution.
SplitNet (Gordon et al. 2019). SplitNet adopts a multi-
stage training strategy based on RGB images and other en-
vironment information (e.g., depth).
Mid-Level (Sax et al. 2018). Mid-Level adopts a deeper
ResNet50 backbone and also introduces a set of auxiliary
tasks to improve visual representations. We train Mid-Level
with the proposed max-coverage feature set.
DD-PPO (Wijmans et al. 2020). DD-PPO employs a much
deeper visual encoder, i.e., SE-ResNeXt101, and spends 180

Method SPL (%) ↑ Success (%) ↑
Blind 72.5±0.04 86.8±0.15

Res18-Baseline 79.4±0.12 87.8±1.68
Res18-Baseline ‡ 71.4±0.18 82.3±0.56

Res18-Baseline w/ SDE 80.0±0.07 91.4±0.06

Geo-Nav u 85.2±0.15 94.7±0.13
Geo-Nav - 84.6±0.05 94.0±0.16

Geo-Nav ‡ 78.2±0.68 88.9±0.21
Geo-Nav w/o LGC 68.9±0.04 85.3±0.32

Geo-Nav 84.7±0.15 93.5±0.30

Table 2: The impacts of SDE on navigation performance.
‡ represents utilizing ImageNet pre-trained weights instead
of proposed SDE pre-trained weights for image feature ex-
tractor. u indicates adopting ground-truth depth instead of
the estimated depth map. - stands for changing the self-
supervised depth estimation method to supervised depth es-
timation method (Bhat, Alhashim, and Wonka 2020).

Method Error↓ Accuracy↑
AbsRel RMS RMSlog < 1.25 < 1.252 < 1.253

SDE 0.134 0.643 0.062 0.810 0.932 0.974
SDE w/o LGC 3.195 5.165 0.502 0.205 0.341 0.430

Table 3: Depth estimation performance of SDE.

GPU-days1 on training. Due to the fact that the RGB-based
DD-PPO utilizes additional data from Matterport3D (Chang
et al. 2017), we train DD-PPO with only the Gibson dataset
and evaluate the model that has been trained with 100 mil-
lion steps for fair comparisons.

Navigation Results
Comparison with State-of-the-art. As indicated in Table 1,
Geo-Nav outperforms state-of-the-art methods (e.g., Split-
Net (Gordon et al. 2019), Mid-Level (Sax et al. 2018) and
DD-PPO (Wijmans et al. 2020)) by a large margin on both
SPL and success rate respectively. Both SplitNet and Mid-
Level encode the image cues and ground-truth depth infor-
mation implicitly by leveraging auxiliary tasks (e.g., super-
vised depth estimation). Here, SplitNet also applies the same
warm-up routine as Geo-Nav. In contrast, Geo-Nav infers
scale-consistent depth maps from consecutive RGB images
via SDE. Benefiting from SDE and CPF, Geo-Nav achieves
explicit scene geometric information for navigation and thus
improves navigation performance.

For fair comparisons, we train the original DD-PPO with
only the Gibson dataset and 100 million training steps. We
observe that Geo-Nav achieves SPL of 84.7%, while DD-
PPO achieves SPL of 79.2% within the same training steps.
The results imply that Geo-Nav is more training-efficient by
fully exploring geometric cues. Since the original DD-PPO
employs a much deeper backbone SE-ResNext101, we re-
place it with the backbone ResNet18, marked as DD-PPO£.

1A single V100 GPU runs 180 days to complete a task.
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Method SPL (%) ↑ Success (%) ↑
Res18-Baseline 79.4±0.12 87.8±1.68

Res18-Baseline w/ SDE 80.0±0.07 91.4±0.06

Geo-Nav w/o MSF 82.9±0.18 92.0±0.23

Geo-Nav w/o MSF § 80.9±0.11 90.8±0.06

Geo-Nav w/o CA 81.5±0.12 91.8±0.15

Geo-Nav † 82.4±0.06 91.1±0.15

Geo-Nav 84.7±0.15 93.5±0.30

Table 4: The impacts of different fusion mechanisms, includ-
ing the multi-scale fusion (MSF) and cross-modality atten-
tion (CA). § represents a vanilla single-scale self-attention.
† stands for opposite asymmetric design of attention.

Meanwhile, we warm up DD-PPO£ via IL to make a fair
comparison. As seen in Table 1, Geo-Nav achieves better
performance than DD-PPO£ on both the SPL and Success.

Furthermore, we validate that Geo-Nav is more training-
efficient than other methods. In Figure 5, the top figure
shows Geo-Nav achieves the best SPL of 85% and obvious
performance gain during the training procedure. The bottom
figure demonstrates Geo-Nav achieves the SPL of 83.6% us-
ing only four GPU-days, while DD-PPO requires 27 GPU-
days with the SPL of 82.5%2. Thus, training Geo-Nav is 6
× faster than DD-PPO with similar performance.

Ablation Study
Impacts of SDE. To analyze the importance of SDE, we
compare Res18-Baseline w/ SDE with Res18-Baseline in
Table 2. Res18-Baseline w/ SDE fuses image features and
depth features by addition. The comparison suggests that
SDE improves the effectiveness of agents by introducing
geometric cues. We also compare with a Blind model to
demonstrate the impact of depth maps. The Blind model
only extracts the descriptors from the depth branch and ig-
nores the image contextual information. The result indicates
that scene geometric information is very important in nav-
igation. Furthermore, to demonstrate the importance of the
scale-consistency regularization in SDE, we remove the reg-
ularization during training, marked as Geo-Nav w/o LGC .
As indicated in Table 2, Geo-Nav attains better performance
due to more consistent depth predictions. Moreover, we re-
port the performance of SDE w/o LGC , which excludes the
scale-consistency regularization, in Table 3. We observe that
SDE w/oLGC produces inconsistent depth maps, which hin-
der an agent in producing correct behaviors.
Impacts of CPF. To analyze the impacts of CA and MSF,
we compare the ablated versions of our method in Table 4.
We replace CA with the addition operation to evaluate the
enhancement of MSF on Res18-Baseline. As shown in Ta-
ble 4, MSF improves the agent slightly. By comparing Geo-
Nav w/o MSF with Res18-Baseline w/ SDE, we observe
that the cross-modality attention module leads to major im-
provements on SPL. Meanwhile, Geo-Nav achieves signifi-

2Both are trained on V100

cant performance gain by coupling MSF and CA modules.
This indicates that the whole fusion mechanism plays a crit-
ical role in incorporating different modalities. By replacing
CA with a single-scale vanilla self-attention module, there is
only a minor improvement over the baseline.
Impacts of pre-trained model. As seen in Table 2, com-
pared with Geo-Nav ‡, Geo-Nav achieves better perfor-
mance. Geo-Nav ‡ utilizes ImageNet pre-trained weights
for feature extractor. Hence, the improvements mainly come
from more suitable visual representations extracted by SDE.
Impacts of source of scene geometry. As seen in Table 2,
Geo-Nav u utilizes ground-truth depth as inputs in the depth
branch. Geo-Nav - adopts the supervised depth prediction in
the same way. Compared with Geo-Nav, Geo-Nav u only
achieves slight improvements, and Geo-Nav - is slightly in-
ferior to Geo-Nav. The results indicate that once depth qual-
ity is acceptable for navigation tasks, depth does not affect
the final navigation severely.
Impacts of asymmetric design of attention. In Table 4, we
exchange the roles of RGB and depth branches in generating
key, value and query, denoted by Geo-Nav†. Specifically, the
key and value are generated from depth embeddings, while
the query is generated from RGB embeddings. In this case,
Geo-Nav† attains inferior performance compared with Geo-
Nav. Therefore, the choice of the asymmetric attention struc-
ture affects the feature representation.

RL-based Self-Supervised Learning
Some works (Ye et al. 2020; Pathak et al. 2017) employ Re-
inforcement Learning based Self-Supervised Learning (RL-
SSL) to improve navigation efficiency, while Geo-Nav fo-
cuses on exploring scene geometry using vision-based self-
supervised learning for navigation. For example, given the
previous and current observations, st−1 and st, Inverse dy-
namics model (IDM) (Ye et al. 2020) firstly obtains the cor-
responding feature embeddings φ(st−1) and φ(st) from the
feature extractor. Then, IDM predicts an action ât from the
features φ(st−1) and φ(st) via a MLP layer and compute the
cross entropy between ât and the current action at to obtain
expressive representations. Compared with Geo-Nav, Geo-
Nav with IDM achieves better performance with the SPL of
85.7% and Success of 95%. Therefore, we observe that in-
corporating RL-SSL methods lead to better efficiency.

Conclusion
In this paper, we propose a scene-geometry driven point-
goal navigation framework, dubbed Geo-Nav. Thanks to the
scale-consistent self-supervised depth estimation network,
Geo-Nav achieves superior visual perception ability. To the
best of our knowledge, Geo-Nav is the first attempt to ex-
plore scene geometry from historical images of a monocular
RGB camera in navigation tasks. Furthermore, the Cross-
Modality Pyramid Fusion module (CPF) integrates the RGB
images and depth information in a patch-wise fashion, and
thus it can achieve more expressive visual representations.
Extensive experiments demonstrate that Geo-Nav outper-
forms the state-of-the-art.
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