
The Price of Selfishness:
Conjunctive Query Entailment for ALCSelf is 2EXPT IME-Hard

Bartosz Bednarczyk,1,2 Sebastian Rudolph1

1 Computational Logic Group, Technische Universität Dresden, Germany
2 Institute of Computer Science, University of Wrocław, Poland
{ bartosz bednarczyk, sebastian.rudolph }@tu-dresden.de

Abstract

In logic-based knowledge representation, query answering has
essentially replaced mere satisfiability checking as the infer-
encing problem of primary interest. For knowledge bases in
the basic description logic ALC, the computational complex-
ity of conjunctive query (CQ) answering is well known to be
EXPT IME-complete and hence not harder than satisfiability.
This does not change when the logic is extended by certain fea-
tures (such as counting or role hierarchies), whereas adding
others (inverses, nominals or transitivity together with role-
hierarchies) turns CQ answering exponentially harder.
We contribute to this line of results by showing the surpris-
ing fact that even extending ALC by just the Self operator –
which proved innocuous in many other contexts – increases
the complexity of CQ entailment to 2EXPT IME. As common
for this type of problem, our proof establishes a reduction from
alternating Turing machines running in exponential space, but
several novel ideas and encoding tricks are required to make
the approach work in that specific, restricted setting.

1 Introduction
Formal ontologies are of significant importance in artificial
intelligence, playing a central role in the Semantic Web,
ontology-based information integration, or peer-to-peer data
management. In such scenarios, an especially prominent role
is played by description logics (DLs) (Baader et al. 2017) – a
robust family of logical formalisms used to describe ontolo-
gies and serving as the logical underpinning of contemporary
standardised ontology languages. To put knowledge bases to
full use as core part of intelligent information systems, much
attention is being devoted to the area of ontology-based data-
access, with conjunctive queries (CQs) being employed as a
fundamental querying formalism (Ortiz and Simkus 2012).

In recent years, it has become apparent that various mod-
elling features of DLs affect the complexity of CQ answering
in a rather strong sense. Let us focus on the most popular
DL, ALC. It was first shown in (Lutz 2008) that CQ entail-
ment is exponentially harder than the consistency problem
for ALC extended with inverse roles (I). Shortly after, a
combination of transitivity and role-hierarchies (SH) was
shown as a culprit of higher worst-case complexity of rea-
soning (Eiter et al. 2009). Finally, also nominals (O) turned

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

out to be problematic (Ngo, Ortiz, and Simkus 2016). Nev-
ertheless, there are also more benign DL constructs regard-
ing the complexity of CQ entailment. Examples are count-
ing (Q) (Lutz 2008) (the complexity stays the same even
for expressive arithmetical constraints (Baader, Bednarczyk,
and Rudolph 2020)), role-hierarchies alone (H) (Eiter, Or-
tiz, and Simkus 2012) or even a tamed use of higher-arity
relations (Bednarczyk 2021a).

Our results. We study CQ entailment inALCSelf , an exten-
sion of ALC with the Self operator, i.e. a modelling feature
that allows us to specify the situation when an element is
related to itself by a binary relationship. Among other things,
this allows us to formalise the concept of a “narcissist”:

Narcissist v ∃loves .Self

or to express that no person is their own parent:

Person v ¬∃hasParent .Self.

The Self operator is supported by the OWL 2 Web Ontol-
ogy Language and the DL SROIQ (Horrocks, Kutz, and
Sattler 2006). Due to the simplicity of the Self operator (it
only refers to one element), it is easy to accommodate for
automata techniques (Calvanese, Eiter, and Ortiz 2009) or
consequence-based methods (Ortiz, Rudolph, and Simkus
2010) and thus, so far, there has been no real indication that
the added expressivity provided by Self may change any-
thing, complexity-wise. Arguably, this impression is further
corroborated by the observation that Self features in two pro-
files of OWL 2 (the EL and the RL profile), again without
harming tractability (Krötzsch, Rudolph, and Hitzler 2008).

In this work, however, we show a rather counter-intuitive
result, namely that CQ entailment for ALCSelf is exponen-
tially harder than for ALC. Hence, it places the seemingly
innocuous Self operator among the “malign” modelling
features, like (I), (SH) or (O). Moreover, this establishes
2EXPT IME-hardness of query entailment for the Z fam-
ily (a.k.a. ALCHbSelfreg) of DLs (Calvanese, Eiter, and Or-
tiz 2009), which until now remained open as well as the
2EXPT IME-hardness of querying the forward guarded frag-
ment (Bednarczyk 2021a) with equality.

Our proof goes via encoding of computation trees of alter-
nating Turing machines working in exponential space and
follows the general hardness-proof-scheme by Lutz 2008.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5495

However, to adjust the schema to ALCSelf , novel ideas are
required: the ability to speak about self-loops is exploited
to produce a single query that traverses trees in a root-to-
leaf manner and to simulate disjunction inside CQs, useful
to express that certain paths are repeated inside the tree.

For space reasons, we will argue model-theoretically while
refraining from presenting the axiomatisations in the main
paper (they follow mostly standard ideas), but they can be
found in our arXiV report (Bednarczyk and Rudolph 2021).

2 Preliminaries
We recall the basics on description logics (DLs) (Baader et al.
2017) and query answering (Ortiz and Simkus 2012).

DLs. We fix countably-infinite pairwise disjoint sets of in-
dividual names NI, concept names NC, and role names NR

and introduce the description logic ALCSelf . Starting from
NC and NR, the set C ofALCSelf concepts is built using the
following concept constructors: negation (¬C), conjunction
(C u D), existential restriction (∃r .C), the top concept (>),
and Self concepts (∃r .Self), with the grammar:

C,D ::= > | A | ¬C | C uD | ∃r .C | ∃r .Self,
where C,D ∈ C, A ∈ NC, and r ∈ NR. We often employ
disjunction C t D := ¬(¬C u ¬D), universal restrictions
∀r .C := ¬∃r .¬C, bottom⊥ := ¬>, and the less commonly
used “inline-implication” C→ D := ¬C tD.

Assertions are of the form C(a) or r(a,b) for a,b ∈ NI,
C ∈ C, and r ∈ NR. A general concept inclusion (GCI) has
the form C v D for concepts C,D ∈ C. We use C ≡ D as a
shorthand for the two GCIs C v D and D v C. A knowledge
base (KB)K = (A, T) is composed of a finite non-empty set
A (ABox) of assertions and a finite non-empty set T (TBox)
of GCIs. We call the elements of A ∪ T axioms.

Name Syntax Semantics
top concept > ∆I

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I×∆I

conc. negation ¬C ∆I \ CI

conc. intersection C uD CI ∩DI

exist. restriction ∃r .C {d | ∃e.(d, e) ∈ rI ∧ e ∈ CI}
Self concept ∃r .Self {d | (d, d) ∈ rI}

Table 1: Concepts and roles in ALCSelf .

Axiom α I |= α, if
C v D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
r(a,b) (aI ,bI) ∈ rI

Table 2: Axioms in ALCSelf .

The semantics of ALCSelf is defined via interpretations
I = (∆I , ·I) composed of a non-empty set ∆I called the
domain of I, and an interpretation function ·I mapping indi-
vidual names to elements of ∆I , concept names to subsets

of ∆I , and role names to subsets of ∆I × ∆I . This map-
ping is extended to concepts (see Table 1) and finally used to
define satisfaction of assertions and GCIs (see Table 2). We
say that an interpretation I satisfies a KB K = (A, T) (or
I is a model of K, written: I |= K) if it satisfies all axioms
ofA∪T . A KB is consistent (or satisfiable) if it has a model,
and inconsistent (or unsatisfiable) otherwise.
A homomorphism h : I → J is a concept-name and role-
name-preserving function that maps every element of ∆I to
some element from ∆J , i.e. we have that d ∈ AI implies
that h(d) ∈ AJ and (d, e) ∈ rI implies (h(d), h(e)) ∈ rJ

for all role/concept names r ∈ NR, A ∈ NC and d, e ∈ ∆I .

Queries. Boolean conjunctive queries (CQs) are conjunc-
tions of atoms of the form r(x , y) or A(z), where r is a
role name, A is a concept name, and x , y , z are variables
from a countably infinite set NV. Given a CQ q , we de-
note with |q | the number of its atoms, and with Var(q) the
set of all variables. Let I be an interpretation, q a CQ and
π : Var(q) → ∆I be a variable assignment. We write
I |=π r(x , y) if (π(x), π(y)) ∈ rI , and I |=π A(z) if
π(z) ∈ AI . We say that π is a match for I and q if I |=π α
holds for every atom α ∈ q , and that I satisfies q (denoted
with: I |= q) whenever I |=π q for some match π. The
definitions are lifted to KBs: q is entailed by a KB K (writ-
ten: K |= q) if every model I of K satisfies q . We stress
here that satisfaction of conjunctive queries is preserved by
homomorphisms, i.e. if I |= q and there is a homomorphism
from h : I → J then J |= q . When I |= K but I 6|= q ,
we call I a countermodel for K and q . The query entailment
problem asks if K |= q holds for an input KB K and a CQ q .

Whenever convenient, we employ the path syntax of CQs
to write queries in a concise way. By a path expression we
mean an expression of the form

(A0?; r1; A1?; r2; A2?; . . . ; An−1?; rn; An?)(x0, xn)

with all ri ∈ NR, Ai ∈ NC∪{>}, serving as a shorthand for
n∧
i=0

Ai(xi) ∧
n∧
i=1

ri(xi−1, xi).

Whenever Ai happens to be >, it will be removed from the
expression; this does not create ambiguities. Note that path
CQs are just syntactic sugar and should not be mistaken e.g.
with regular path queries.

2.1 Alternating Turing Machines
We next fix the notation of alternating Turing machines
over a binary alphabet {0,1} working in exponential space
(simply: ATMs). An ATM is defined as a tuple M =
(N, Q, Q∃, sI , sA, sR, T), where Q is a finite set of states (usu-
ally denoted with s); Q∃ ⊆ Q is a set of existential states;
sI , sA, sR ∈ Q are, respectively, pairwise different initial,
accepting, and rejecting states; we assume that sI ∈ (Q\Q∃).
T ⊆ (Q×{0,1})×({0,1}×Q×{−1,+1}) is the transition
relation; and the natural number N (encoded in unary) is a
parameter governing the size of the working tape. We call the
states from Q∀ := Q \ Q∃ universal. The size ofM, denoted
with |M|, is N + |Q|+ |Q∃|+ 3 + |T|.

5496

A configuration of M is a word wsw′ ∈ {0,1}∗Q{0,1}∗
with |ww′| = 2N. We call wsw′ (i) existential (resp. universal)
if s is existential (resp. universal), (ii) final if s is either sA
or sR (iii) non-final if it is not final (iv) accepting if s = sA.
Successor configurations are defined in terms of the tran-
sition relation T. For a, b, c, d ∈ {0,1} and v, v′, w, w′ ∈
{0,1}∗ with |v| = |w|, we let wbs′w′ be a quasi-successor
configuration of vsav′ whenever (s, a, b, s′,+1) ∈ T, and
we let ws′dbw′ be a quasi-successor configuration of vcsav′
whenever (s, a, b, s′,−1) ∈ T. If additionally we meet the re-
quirement w = v, w′ = v′, and c = d we speak of successor
configurations.1

Without loss of generality, we make the following addi-
tional assumptions about M: First, for each non-final (i.e.
non-accepting and non-rejecting) state s and every letter
a ∈ {0,1} the set T(s, a) := {(s, a, b, s′, d) ∈ T} contains
exactly two elements, denoted T1(s, a) and T2(s, a). Hence,
every configuration has exactly two successor configurations.
Second, for any (s, a, b, s′, d) ∈ T, if s is existential then
s′ is universal and vice versa. Third, the machine reaches
a final state no later than after 22

N

steps (for configuration
sequences). Fourth and last,M never attempts to move left
(resp. right) on the left-most (resp. right-most) tape cell.

A run ofM is a finite tree, with nodes labelled by config-
urations ofM, that satisfies all the conditions below:

• the root is labelled with the initial configuration sI0
2N ,

• each node labelled with a non-final existential configura-
tion wsw′ has a single child node which is labelled with
one of the successor configurations of wsw′,

• each node labelled with a non-final universal configura-
tion wsw′ has two child nodes which are labelled with the
two successor configurations (wrt. T1 and T2) of wsw′,

• no node labelled with a final configuration has successors.
Quasi-runs ofM are defined analogously by replacing the
notions of successors with quasi-successors. Note that every
run is also a quasi-run but not vice versa.
An ATM M is (quasi-)accepting if it has an accepting
(quasi)-run, i.e. one whose all leaves are labelled by ac-
cepting configurations. By (Chandra and Stockmeyer 1976)
the problem of checking if a given ATM is accepting
is 2EXPT IME-hard.

3 A High-Level Overview of the Encoding
Let M be an ATM. The core contribution of our paper is
to present a polynomial-time reduction that, givenM, con-
structs a pair (KM, qM) — composed of an ALCSelf knowl-
edge base and a conjunctive query — such that KM 6|= qM
iffM is accepting. Intuitively, the models of K will encode
accepting quasi-runs ofM, i.e. trees in which every node is a
meaningful configuration ofM, but the tape contents of con-
secutive configurations might not be in sync as they should.
The query qM will be responsible for detecting such errors.
Hence, the existence of a countermodel forKM and qM will
coincide with the existence of an accepting run ofM.

1In words, this corresponds to the common definition of suc-
cessor configurations, while for quasi-successor configurations, un-
touched tape cells may change arbitrarily during the transition.

Figure 1: The intended models of KM.

The depicted triangles are called the configuration trees
and encode configurations ofM. The information contained
in these configuration trees is “superimposed” on identical
configuration units: full binary trees of height N+1 decorated
with many self-loops2 that will provide the “navigational in-
frastructure” for the query qM to detect “tape mismatches”.
Every such tree has 2N nodes at its N-th level and each of
these nodes represents a single tape cell of a machine. The
(N+1)-th level of nodes will serve a technical purpose that
will be explained later. Lastly, the roots of configuration units
store all remaining necessary information required for encod-
ing: the current state ofM, the previous and the current head
position as well as the transition used to arrive at this node
from the previous configuration. Finally, the roots of config-
uration trees are interconnected by the role next indicating
that (r, r′) ∈ nextI holds iff the configuration represented
by r′ is a quasi-successor of the configuration of r.

4 Configuration Units
In our encoding, a vital role is played by n-configuration
units, which will later form the backbone of configura-
tion trees. Roughly speaking, each n-configuration unit is
a full binary tree of depth n, decorated with certain concepts,
roles, and self-loops. We introduce configuration units by
providing the formal definition, followed by a graphical de-
piction and an intuitive description. In order to represent con-
figuration units inside interpretations, we employ role names
from Runit as well as concept names from Cunit:

Runit := {`i, ri,next | 1 ≤ i ≤ n}
Cunit := {Lvl0,Lvli,L,R,Ad0

i ,Ad1
i | 1 ≤ i ≤ n}.

Definition 4.1 (configuration unit). Given a number n, an
n-configuration unit U is an interpretation (∆U , ·U) with

∆U = {0, 1}≤n := {w ∈ {0, 1}∗ | |w| ≤ n},
`Ui = {(w,w0) | |w| = i−1} ∪ {(w,w) | w ∈ ∆U},
rUi = {(w,w1) | |w| = i−1} ∪ {(w,w) | w ∈ ∆U},

nextU = {(w,w) | |w| = n},
LvlUi = {w ∈ ∆U | |w| = i},

LU \{ε} = {w0 ∈ ∆U} and RU = ∆U \ LU ,

(Adbi)
U = {w ∈ ∆U | |w| ≥ i and its i-th letter is b}.

2The concrete purpose of the abundant presence of self-loops
will only become clear later, starting from Corollary 4.4.

5497

Figure 2: A 2-configuration unit.

As one can see, the nodes in the tree are layered into levels ac-
cording to their distance from the root. Nodes at the i-th level
are members of the Lvli concept and their distance from the
root is equal to i. Next, each non-leaf node at the i-th level
has two children, the left one and the right one (satisfying,
respectively, the concepts L and R) and is connected to them
via the role `i and ri, respectively. All nodes are equipped
with `i- and ri-self-loops and all leaves are additionally en-
dowed with next-loops. With all nodes inside the tree, we
naturally associate their addresses, i.e. their “numbers” when
nodes from the i-th level are enumerated from left to right.
In order to encode the address of a given node at the i-th
level, we employ concepts Adb1,Adb2, . . . ,Adbi with “values”
b either 0 or 1, meaning that a node is in Adbj iff the j-th bit
of its address is equal to b. The most significant bit is Adb1.

It is routine to axiomatise n-configuration units (cf. tech-
nical report). The provided axiomatisation is made formally
precise by the following lemma:

Lemma 4.2. There is an ALCSelf -KB Knunit such that each
n-configuration unit is a model of Knunit. For any model I of
Knunit and any d ∈ LvlI0 there is an n-configuration unit U
and a homomorphism h from U into I with h(ε) = d.

At this point, we would like to give the reader some intu-
itions why units are decorated with different self-loops. First,
we show that their presence can be exploited to navigate top-
down through a given unit.

Lemma 4.3. Let U be an n-configuration unit. Then for all
w ∈ ∆U we have (ε, w) ∈ `1U ◦r1U ◦. . .◦`nU ◦rnU with “◦”
denoting the composition of relations, i.e. sU ◦tU := {(c,e) |
(c,d)∈ sU and (d,e)∈ tU for some d}.

Sketch. For simplicity we use sUi as an abbreviation of `1U ◦
r1
U ◦ . . . ◦ `iU ◦ riU . The proof is by induction, where the

assumption is that for all 1 ≤ i ≤ n we have that all words
w of length at most i satisfy (ε, w) ∈ sUi .

As a corollary of Lemma 4.3, we conclude that there is a
single CQ detecting root-leaf pairs in units.

Corollary 4.4. Let U be an n-configuration unit. There is a
single conjunctive query qrl with x0, x2n∈Var(qrl) such that
the set M = {(π(x0), π(x2n)) | U |=π qrl} is equal to the
set of root-leaf pairs from U , i.e. LvlU0 × LvlUn .

Proof. Take qrl := (Lvl0?; `1; r1; . . . ; `n; rn; Lvln?)(x0, x2n).
The correctness follows from Lemma 4.3.

5 From Units to Configuration Trees
In the next step, we enrich (N+1)-configuration
units with additional concepts, allowing the units to
represent a meaningful configuration of our ATM
M = (N, Q, Q∃, sI , sA, sR, T). To this end, we employ
a variety of new concept names from Cconf consisting
of HdHere,NoHdHere, Sts,HdPosbi ,HdLeta,Leta, 0, 1,
where s ∈ Q, b ∈ {0, 1}, i ∈ {1, . . . , N}, a ∈ {0,1}.

Figure 3: A configuration tree.

Before turning to a formal definition we first describe how
configurations are structurally represented in models. Recall
that a configuration of M is a word wsw′ with |ww′| = 2N

(called tape) and s ∈ Q. In our encoding, this configuration
will be represented by an (N+1)-configuration unit C deco-
rated by concepts from Cconf. The interpretation C stores the
state s, by associating the state concept Sts to its root. The
tape content ww′ is represented by the internal nodes of C:
the i-th letter of ww′ (i.e. the content of the ATM’s i-th tape
cell) is represented by the i-th node (according to their binary
addresses) at the N-th level. In case this letter is 0, the corre-
sponding node will be assigned the concept Let0, while 1 is
represented by Let1. Yet, for reasons that will become clear
only later, the tape cells’ content is additionally represented
in another way: if it is 0, then we label the i-th node’s left
child with 0 and its right child with 1. The reverse situation
is implemented when node represents the letter 1. Finally,
there is a unique tape cell that is visited by the head ofM
and the node corresponding to this cell is explicitly marked
by the concept HdHere while all other “tape cell nodes” are
marked by NoHdHere. In order to implement this marking
correctly, the head’s position’s address needs to be explicitly
recorded. Consequently, C’s root node stores this address (bi-
narily encoded using the HdPosbi concepts) and from there,
these concept assignments are broadcast to and stored in all
tape cell nodes on the N-th level. Similarly, we decorate C’s
root with the concept HdLeta meaning that the current letter
scanned by the head is a.

After this informal description and depiction, the formal
definition of configuration trees should be plausible.
Definition 5.1 (configuration tree). A configuration tree C
of M is an interpretation C = (∆C , ·C) such that C is an
(N+1)-configuration unit additionally satisfying:

5498

• There exists a unique state s ∈ Q such that (Sts)
C = {ε}

and (Sts′)
C = ∅ for all s′ 6= s.

• (LvlN+1)C = 0C ∪ 1C and 0C ∩ 1C = ∅.
• (Let0)C = {w | w0 ∈ 0C , w1 ∈ 1C}, (Let1)C = {w |
w0 ∈ 1C , w1 ∈ 0C}, and (Let0)C ∪ (Let1)C = LvlCN .

• There is a unique word whead of length N witnessing
HdHereC={whead} and NoHdHereC=LvlCN \ {whead}.

• For 1 ≤ i ≤ N and b ∈ {0, 1} s.t. whead ∈ (Adbi)
C we put

(HdPosbi)
C = LvlC0∪LvlCN and (HdPos1−bi)C = ∅.

• HdLetCa = {ε} and HdLetC1−a = ∅, where a is the
unique letter from {0,1} such that whead ∈ LetCa .

The axiomatisation Kconf of configuration trees can be
found in the technical report, together with the proof of:

Lemma 5.2. Any configuration tree C is a model of Kconf.
For any I |= Kconf and d ∈ LvlI0 there is a configuration
tree C and a homomorphism h from C into I with h(ε) = d.

6 Enriching Configuration Trees
Recall that the purpose of configuration trees is to place them
inside a model that describes the run of the Turing machine
M. In particular, this will require to describe the progression
of one configuration to another. In order to prepare for that,
we next introduce an extended version of configuration trees
that are enriched by additional information pertaining to
their predecessor configuration in a run. To this end, we use
new concept names from Cenr := {PTrnst, Init,PHdHere,

NoPHdHere,PHdAbv,NoPHdAbv,PHdPosbi ,PHdLeta},
with t ∈ T, 1 ≤ i ≤ N, b ∈ {0, 1}, and a ∈ {0,1}. We use
Cptr to denote the set {Init,PTrnst | t ∈ T}.

The concept PTrnst, assigned to the root, indicates the
transition, through which the configuration has been reached
from the previous configuration, while Init is used as its
replacement for the initial configuration. In addition, con-
cepts PHdPosbi and PHdLeta are attached to the root in or-
der to — in a way very similar to HdPosbi and HdLeta —
indicate the previous configuration’s head position as well
as the letter stored in that position on the current config-
uration’s tape. For the sake of our encoding we also em-
ploy the concepts PHdHere,NoPHdHere that play the role
analogous to the HdHere and NoHdHere concept from
configuration-trees. For technical reasons, we also introduce
the concepts PHdAbv and NoPHdAbv that will label nodes
on the (N+1)-th level iff their parent is labelled with the cor-
responding concept from {PHdHere,NoPHdHere}.
Definition 6.1 (enriched configuration tree). An enriched
configuration tree E ofM is an interpretation E = (∆E , ·E)
such that E is a configuration tree additionally satisfying the
following conditions on concepts from Cenr:

• There is exactly one concept C ∈ Cptr for which CE =
{ε} and for all C′ ∈ Cptr \ {C} we have (C′)E = ∅.

• PTrnsE(s,a,b,s′,d) = {ε} implies (Sts′)
E = {ε} for all

transitions (s, a, b, s′, d) ∈ T.
• PHdHereE={wphd} and NoPHdHereE=LvlEN \ {wphd}

for the N-digit binary word wphd encoding

– the number obtained as whead − d (see: Definition 5.1)
whenever PTrnsE(s,a,b,s′,d) = {ε}, or

– the number 0 in case InitE = {ε}.
• PHdAbvE = {w0, w1 | w ∈ PHdHereE} and

NoPHdAbvE = LvlEN+1 \ PHdAbvE .
• (PHdPosbi)

E = LvlE0∪LvlEN and (PHdPos1−bi)E = ∅
for all 1 ≤ i ≤ N and 0 ≤ b ≤ 1 with wphd ∈ (Adbi)

E .
• PHdLetEa = {ε} and PHdLetE1−a = ∅, where a is the

unique letter from {0,1} such that wphd ∈ LetEa .
• InitE={ε} implies ε ∈ LE , StEsI ={ε}, LetE0 = LvlEN , and

HdPos0i = PHdPos0i = LvlE0 ∪ LvlEN for all 1 ≤ i ≤ N.

The corresponding axiomatisation Kenr as well as the proof
of the following lemma can be found in the technical report.

Lemma 6.2. Any enriched configuration tree of E is a model
of Kenr. For any model I of Kenr and any d ∈ LvlI0 , there
is an enriched configuration tree E and a homomorphism h
from E into I with h(ε) = d.

7 Describing Accepting Quasi-Runs
Recall that a quasi-run R ofM is simply a tree labelled with
configurations ofMwhere the root is labelled with the initial
configuration sI0

2N . Each node representing an existential
configuration has one child labelled with a quasi-successor
configuration, while each node representing a universal con-
figuration has two children labelled by quasi-successor con-
figurations obtained via different transitions.

In order to represent an accepting quasi-run by a model, we
employ the notion of a quasi-computation treeQ, a structure
intuitively defined from some R as follows: replace every
node ofR by its corresponding configuration tree, adequately
enriched with information about its generating transition and
the predecessor configuration. The roots of these enriched
configuration trees are linked via the next role to express the
quasi-succession relation of R. The roots of enriched config-
uration trees representing universal configurations are chosen
to be labelled with L, their left next-child with L and their
right next-child with R (both corresponding to existential
configurations). As expected, the Init concept decorates the
root of the distinguished enriched configuration tree that rep-
resents R’s initial configuration. As our attention is restricted
to accepting quasi-runs R, we require that no enriched con-
figuration tree occurring in Q carries a rejecting state. We
now give a formal definition of such a structure Q.

Definition 7.1 (quasi-computation tree). A quasi-computa-
tion tree Q ofM is an interpretation Q = (∆Q, ·Q) satisfy-
ing the following properties:

• ∆Q := T×{0, 1}≤N+1, where T is3 a prefix-closed subset
of {10, 00}∗ · {ε, 0, 1} with w1 ∈ T implying w0 ∈ T.

• For every w ∈ T, the substructure ofQ induced by {w}×
{0, 1}≤N+1 is isomorphic to an enriched configuration
tree ofM via the isomorphism (w, w) 7→ w.

• (ε,w) ∈ RQ if w ends with 1, otherwise (ε,w) ∈ LQ.

3T is just a binary tree in which nodes at the i-th level have
exactly 2 children if i is even and exactly one child otherwise.

5499

• For any w 6= w′ and arbitrary w,w′ ∈ {0, 1}≤N+1 holds
((w, w), (w′, w′)) /∈ sQ for any s ∈ Runit \ {next}.

• nextQ \ {(d, d) | ∆Q×∆Q} = {((w, ε), (wb, ε)) |
wb,w ∈ T, b ∈ {0, 1}}.

• InitQ = {(ε, ε)}.
• For any w0 ∈ T with (w, ε) ∈ StQs and (w, ε) ∈ LetQa

– if w1 ∈ T then (w0, ε) ∈ PTrnsQT1(s,a) and (w1, ε) ∈
PTrnsQT2(s,a),

– if w1 /∈ T then (w0, ε) ∈ PTrnsQT1(s,a) or (w0, ε) ∈
PTrnsQT2(s,a).

• If (w, w) ∈ HdHereQ and wb ∈ T then (wb, w) ∈
PHdHereQ.

• StQsR = ∅ as well as (w, ε) ∈ StQsA iff w∈T and w0 6∈T.

Let TM be the set of all GCIs presented so far (plus the
additional ones used to axiomatise quasi-computations) and
let AM be an ABox composed of a single axiom Init(a) for
a fresh individual name a. Put KM := (AM, TM).

Lemma 7.2. Any accepting quasi-computation treeQ ofM
is a model of KM. For any model I of KM there exists an
accepting quasi-computation tree Q and a homomorphism
h : Q → I with h(ε, ε) = aI .

8 Detecting Faulty Runs with a Single CQ
We finally have reached the point where querying comes
into play. Our last goal is to design one single conjunc-
tive query that detects “faulty configuration progressions” in
quasi-computation trees, meaning that it matches a pair of
two positions in consecutive configuration trees representing
the same cell and being untouched by the head of M yet
storing different letters. Note that the lack of such cells in a
quasi-computation tree means that any two consecutive con-
figuration trees represent not only quasi-successor configura-
tion but actually proper successors and hence the structure as
such even represents a “proper” run. We start by formalising
our requirements to such a query:

Lemma 8.1. There exists a CQ qM of size polynomial in N
with two distinguished variables x , y such that for all quasi-
computation trees Q we have Q |=π qM iff there exists a
word w, a letter b and a word w of length N+1 such that:

• π(x) = (w, w), π(y) = (wb, w),
• π(y) ∈ NoPHdAbvQ,
• π(x) ∈ 0Q and π(y) ∈ 1Q.

Note the asymmetry in the 3rd bullet point above – we
ignore the reverse constellation. Yet, due to our encoding if
the reverse situation occurs then so does the original one.
Hence, every mismatch in a sense causes two inconsistencies
from the point of N+1-level nodes. This solves the mystery
of introducing level N+1 in our configuration trees and the
particular encoding of tape symbols: it is crucial for catching
faulty progressions by using one single CQ. Before prov-
ing Lemma 8.1 we show how it implies our main theorem:

Theorem 8.2. Conjunctive query entailment over ALCSelf
knowledge bases is 2EXPT IME-hard.

Proof. It suffices to show that CQ non-entailment over
ALCSelf KBs is 2EXPT IME-hard. Take KM as defined
in Section 7 and qM as given by Lemma 8.1. We claim
that KM 6|= qM iff M is accepting. The “if” direction
is easy: we take an accepting run of M and turn it into
quasi-computation tree Q. By Lemma 7.2 we conclude that
Q |= KM. We also have that Q 6|= q due to the fact that
any two consecutive configuration trees represent proper suc-
cessor configurations. For the second direction it suffices to
show that ifM is not accepting then KM |= qM. Indeed,
assume thatM is not accepting and let I be a model of KM.
By Lemma 7.2 there is a quasi-computation tree Q and a
homomorphism h : Q → I with h(ε, ε) = aI . But this
quasi-computation tree must represent a “faulty” run – in the
opposite case it would correspond to an accepting run ofM,
which does not exist by assumption. Hence there must be a
match of qM to Q. As query matches are preserved under
homomorphisms, we conclude I |= qM. Thus all models I
ofKM have matches of qM, which impliesKM |= qM.

In the forthcoming query definitions, we employ a con-
venient naming scheme. By writing q [x , y] we indicate that
the variables x , y ∈ Var(q) are global (i.e. the same across
(sub)queries that we might join together) while its other vari-
ables are local (i.e. pairwise different from any variables
occurring in other queries — this can always be enforced by
renaming). Going back to the query, we proceed as follows.
We first prepare a query qmain[x , y] with two global distin-
guished variables x , y that relates any two domain elements
whenever they are leaf nodes of consecutive computation
trees. Then qmain[x , y] is combined with queries q iadr[x , y] for
all 1 ≤ i ≤ N+1 with the intended meaning that x and y
have the same i-th bit of their addresses. Additionally, our
final query will require that x be mapped to a node satisfying
0 and y to a node satisfying 1 and NoPHdHere.

To construct qmain[x , y] we essentially employ Lemma 4.3.

Lemma 8.3. There exists a CQ qmain[x , y] such that for any
quasi-computation tree Q the set Mqmain := {(π(x), π(y)) |
Q |=π qmain} is composed precisely of any pair of leaves of
two consecutive configuration trees ofQ. Formally:Mqmain ={

((w, w),(wb, v)) ∈ ∆Q | |w|= |v|= N+1, b∈{0, 1}
}

.

Figure 4: The main query.

Proof. It suffices to take qmain := qrl[xr, x] ∧ next(xr, yr) ∧
qrl[yr, y]. LetQ |=π qmain. ThatMqmain is a superset of the set
above follows from the fact that quasi-computation trees are
computation units and hence, containment follows by Corol-
lary 4.4. We now focus on the other direction. Note that by
the 5th item of Definition 7.1 we know that π(xr) and π(yr)
must be two distinct roots of enriched configuration trees
Exr , Eyr

. By the 4th item of Definition 7.1 we know that the

5500

interpretation of the rs and `s is restricted to pairs of domain
elements located inside the same enriched configuration tree
(and by their definition to configuration trees and by their
definition to configuration units). Since qrl only employs the
roles `i, ri and the concepts Lvl0,LvlN+1 we conclude that
qrl has exactly the same set of matches in Exr as in its un-
derlying unit. Hence, by Corollary 4.4 we know that x (resp.
y) is indeed mapped to a leaf of Exr (resp. to a leaf of Eyr

),
which finishes the proof.

The next part of our query construction focuses on sub-
queries q iadr[x , y] that are meant to relate leaves having equal
i-th bits of addresses. In order to construct it we combine
together several smaller queries, written in path syntax below.
• We let q↓[x , y] := (`1; r1; . . . ; `N+1; rN+1)(x , y) define

the top-down query. It intuitively traverses an enriched
configuration tree in a top-down manner. Note that
q↓[x , y] is actually the major sub-query of qrl[x , y].

• The `i-top-down query q`i↓[x , y] is similar to q↓[x , y], but
with the `i; ri part replaced by just `i. The intended be-
havior is that again a tree is traversed from root to leaves,
but this time, an `i edge must be crossed when going
from the (i−1)-th to the i-th level. The ri-top-down query
qri↓[x , y] is defined by replacing `i; ri in q↓[x , y] with ri.
An important ingredient in the construction is the query

q i-th bit
=0 [x , y] defined as follows:

LvlN+1(x)∧q`i↓[x ′,x]∧next(x ′,y ′)∧q`i↓[y ′,y]∧LvlN+1(y).

In total analogy, we define q i-th bit
=1 [x , y] by using qri↓ instead

of q`i↓. Any match π of the query q i-th bit
=b [x , y] instantiates

the variables x and y in a quasi-computation tree Q accord-
ing to one of the following two scenarios: either π(x) = π(y)
or π(x) and π(y) are leaves in two consecutive enriched con-
figuration trees inside the quasi-computation tree and both
of these leaves have their i-th address bit set to b.
Lemma 8.4. Let Q be a quasi-computation tree and let
Mqi-th bit

=b
={(π(x),π(y)) | Q |=π q i-th bit

=b } for b∈{0,1}. Then
Mqi-th bit

=b
is equal to the union of M b

1 := {((w, w), (w, w))}
and M b

2 := {((w, ubv), (wb, u′bv′)) | |u|=|u′|=i−1}.

Proof. We show the statement for b = 0, the case for b = 1
then follows by symmetry. First we show M0

1 ⊆ Mqi-th bit
=0

.
This is easy: for any leaf d = (w, w) we map all variables
of q i-th bit

=0 [x , y] into d; this is a match due to the presence of
all the self-loops at the leaves. To show M0

2 ⊆ Mqi-th bit
=0

we
take any d = (w, w) and e = (wb, v). Let π be a variable
assignment that maps x to d, y to e, x ′ to (w, ε), y ′ to (wb, ε).
The variables of q`i↓[x ′, x] are mapped to (w, wj), where wj
is the prefix ofw of length j following the path from (w, ε) to
(w, w) level-by-level. We stress that ((w, wi−1), (w, wi)) ∈
`Qi holds, which is crucial for the construction to work and
that every (w, wj) node has all `- and r -loops. The variables
of q`i↓[y

′, y] are mapped analogously. After noticing that
d, e ∈ LvlQN+1 and that (π(x ′), π(y ′)) ∈ nextQ holds, we
conclude that π is clearly a match of q i-th bit

=0 [x , y] to Q.
Now we focus on showing that Mqi-th bit

=0 [x ,y] ⊆M0
1 ∪M0

2 .
Take any match π and note that x , y must be mapped to
leaves. For π(x ′) and π(y ′) we consider the two cases:

1. π(x ′) = π(y ′). As the roots do not have next-loops,
π(x ′) must be a leaf. This implies that all variables of
q`i↓[x

′, x] map into a single domain element (otherwise
we would not reach a leaf after traversing such path). Ar-
guing similarly we infer that all variables of q`i↓[y ′, y] are
mapped to the same element. Thus π(x) = π(y) holds.

2. π(x ′) 6= π(y ′). Since all incoming next roles from leaves
are self-loops, we conclude that π(x ′) is the root of some
enriched quasi-computation tree and π(y ′) is the root of
some corresponding quasi-successor in Q (by the defini-
tion of nextQ). By the satisfaction of q`i↓[x ′, x] there is a
sequence of domain elements contributing to a path from
π(x ′) to π(x) witnessing its satisfaction. Moreover, note
that since the subquery q`i↓[x

′, x] leads from the root to a
leaf it implies that we necessarily cross the `i role at the
i−1-th level, meaning that the i-th bit of the address of
π(x) is equal to 0. Thus we infer that π(x) ∈ (Ad0

i)
Q.

Analogously, we infer π(y) ∈ (Ad0
i)
Q.

The query q iadr[x , y] pairing leaves in consecutive enriched
conf. trees with coinciding i-th address bit is defined as:

q iadr[x , y] := qmain[x, y] ∧ q i-th bit
=0 [x , z] ∧ q i-th bit

=1 [z , y]

Lemma 8.5. For any quasi-computation tree Q we have
that Mqi

adr
= {(π(x), π(y)) | Q |=π q iadr[x , y]} is composed

precisely of the leaf pairs in two consecutive enriched config-
uration trees of Q having equal i-th bit of address, formally:
Mqi

adr
= Mqmain ∩

((
Ad0

i

Q×Ad0
i

Q) ∪ (Ad1
i

Q×Ad1
i

Q))
.

Sketch. By employing the definition of the query, Lemma 8.4
and relational calculus.

We are finally ready to present our query by means of
which we can conclude with the proof of Lemma 8.1.

qM :=
∧N+1
i=1 q

i
adr[x , y] ∧NoPHdAbv(y) ∧ 0(x) ∧ 1(y)

Proof of Lemma 8.1. Let qM as defined above and observe
that its size is clearly polynomial in N. Note that qM satisfies
our requirements: The 1st item follows from two lemmas:
the fact that x and y are mapped to leaves of two consecutive
enriched configuration trees follows from Lemma 8.3 and the
fact that x and y are mapped to nodes having equal addresses
follows from Lemma 8.5 applied for every 1 ≤ i ≤ N+1.
The 2nd and the 3rd points hold since we supplemented our
query with NoPHdAbv(y) ∧ 0(x) ∧ 1(y).

9 Conclusions
Conjunctive query entailment for ALCSelf is, in fact
2EXPT IME-complete, where membership follows from
much stronger logics (Calvanese, Eiter, and Ortiz 2009).
Hardness, shown in this paper, came as a quite surprise to us
(in fact, we spent quite some time trying to prove EXPT IME-
membership, see: (Bednarczyk 2021b)). The key insight of
our proof (and maybe the take-home message from this pa-
per) is that the presence of Self allows us to mimic case
distinction over paths (and hence the handling of disjunctive
information) through concatenation, by providing the oppor-
tunity for one of the two disjuncts to idle by “circling in
place”.

5501

Acknowledgements
This work was supported by the ERC through the Consolida-
tor Grant No. 771779.

References
Baader, F.; Bednarczyk, B.; and Rudolph, S. 2020. Satis-
fiability and Query Answering in Description Logics with
Global and Local Cardinality Constraints. In Giacomo, G. D.;
Catalá, A.; Dilkina, B.; Milano, M.; Barro, S.; Bugarı́n, A.;
and Lang, J., eds., ECAI 2020 - 24th European Conference
on Artificial Intelligence, 29 August-8 September 2020, San-
tiago de Compostela, Spain, August 29 - September 8, 2020,
volume 325, 616–623. IOS Press.
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press. ISBN 978-0-521-69542-8.
Bednarczyk, B. 2021a. Exploiting Forwardness: Satisfiabil-
ity and Query-Entailment in Forward Guarded Fragment. In
Faber, W.; Friedrich, G.; Gebser, M.; and Morak, M., eds.,
Logics in Artificial Intelligence - 17th European Conference,
JELIA 2021, Virtual Event, May 17-20, 2021, Proceedings,
volume 12678 of Lecture Notes in Computer Science, 179–
193. Springer.
Bednarczyk, B. 2021b. Lutz’s Spoiler Technique Revisited:
A Unified Approach to Worst-Case Optimal Entailment of
Unions of Conjunctive Queries in Locally-Forward Descrip-
tion Logics. CoRR, abs/2108.05680.
Bednarczyk, B.; and Rudolph, S. 2021. The Price of
Selfishness: Conjunctive Query Entailment for ALCSelf is
2ExpTime-hard. CoRR, abs/2106.15150.
Calvanese, D.; Eiter, T.; and Ortiz, M. 2009. Regular
Path Queries in Expressive Description Logics with Nom-
inals. In Boutilier, C., ed., IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, 714–720.
Chandra, A. K.; and Stockmeyer, L. J. 1976. Alternation.
In 17th Annual Symposium on Foundations of Computer
Science, Houston, Texas, USA, 25-27 October 1976, 98–108.
IEEE Computer Society.
Eiter, T.; Lutz, C.; Ortiz, M.; and Simkus, M. 2009. Query
Answering in Description Logics with Transitive Roles.
In Boutilier, C., ed., IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, 759–764.
Eiter, T.; Ortiz, M.; and Simkus, M. 2012. Conjunctive query
answering in the description logic SH using knots. J. Comput.
Syst. Sci., 78(1): 47–85.
Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The Even More
Irresistible SROIQ. In Doherty, P.; Mylopoulos, J.; and
Welty, C. A., eds., Proceedings, Tenth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, Lake District of the United Kingdom, June 2-5, 2006,
57–67. AAAI Press.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2008. ELP:
Tractable Rules for OWL 2. In Sheth, A. P.; Staab, S.;
Dean, M.; Paolucci, M.; Maynard, D.; Finin, T. W.; and

Thirunarayan, K., eds., The Semantic Web - ISWC 2008,
7th International Semantic Web Conference, ISWC 2008,
Karlsruhe, Germany, October 26-30, 2008. Proceedings, vol-
ume 5318 of Lecture Notes in Computer Science, 649–664.
Springer.
Lutz, C. 2008. The Complexity of Conjunctive Query An-
swering in Expressive Description Logics. In Armando, A.;
Baumgartner, P.; and Dowek, G., eds., Automated Reason-
ing, 4th International Joint Conference, IJCAR 2008, Sydney,
Australia, August 12-15, 2008, Proceedings, volume 5195 of
Lecture Notes in Computer Science, 179–193. Springer.
Ngo, N.; Ortiz, M.; and Simkus, M. 2016. Closed Predicates
in Description Logics: Results on Combined Complexity. In
Baral, C.; Delgrande, J. P.; and Wolter, F., eds., Principles of
Knowledge Representation and Reasoning: Proceedings of
the Fifteenth International Conference, KR 2016, Cape Town,
South Africa, April 25-29, 2016, 237–246. AAAI Press.
Ortiz, M.; Rudolph, S.; and Simkus, M. 2010. Worst-Case
Optimal Reasoning for the Horn-DL Fragments of OWL 1
and 2. In Lin, F.; Sattler, U.; and Truszczynski, M., eds.,
Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Twelfth International Conference, KR 2010,
Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press.
Ortiz, M.; and Simkus, M. 2012. Reasoning and Query
Answering in Description Logics. In Eiter, T.; and Kren-
nwallner, T., eds., Reasoning Web. Semantic Technologies
for Advanced Query Answering - 8th International Summer
School 2012, Vienna, Austria, September 3-8, 2012. Proceed-
ings, volume 7487 of Lecture Notes in Computer Science,
1–53. Springer.

5502

