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Abstract

While Answer-Set Programming (ASP) is a prominent ap-
proach to declarative problem solving, optimisation problems
can still be a challenge for it. Large-Neighbourhood Search
(LNS) is a metaheuristic for optimisation where parts of a
solution are alternately destroyed and reconstructed that has
high but untapped potential for ASP solving. We present a
framework for LNS optimisation in answer-set solving in
which neighbourhoods can be specified either declaratively as
part of the ASP encoding or automatically generated by code.
To effectively explore different neighbourhoods, we focus on
multi-shot solving as it allows to avoid program regrounding.
We illustrate the framework on different optimisation prob-
lems some of which are notoriously difficult, including shift
planning and a parallel machine scheduling problem from
semi-conductor production, which demonstrate the effective-
ness of the LNS approach.

Introduction

Efficient solver technology and a simple modelling language
have put Answer-Set Programming (ASP) (Lifschitz 2019)
at the forefront of approaches to declarative problem solving
with a growing number of applications in academia and indus-
try. Many practical applications require optimisation of some
objective function. This often is a challenge as making ASP
encodings scale and perform well for the problem instances
encountered can be tricky. While the performance of ASP
can be improved by various means like manual or automatic
tuning of solver parameters (Hoos, Lindauer, and Schaub
2014), adding domain-specific heuristics (Dodaro et al. 2016;
Gebser et al. 2013), or manual code rewriting for exploiting
symmetries or achieving a smaller program grounding, these
approaches might often need considerable time or expertise.

Large Neighbourhood Search (LNS) (Shaw 1998; Pisinger
and Ropke 2010) is a metaheuristic that proceeds in iter-
ations by successively destroying and reconstructing parts
of a given solution with the goal to obtain better values for
an objective function. For the reconstruction part, complete
solvers can be used, and it is in fact common to effectively
combine LNS with, e.g., MIP (Danna, Rothberg, and Pape
2005; Rothberg 2007) and CP (Shaw 1998; Perron, Shaw,
and Furnon 2004; Berthold et al. 2011; Bjordal et al. 2020).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5616

For ASP however, to the best of our knowledge this potential
is by and largely untapped. Recent work (Geibinger, Mis-
chek, and Musliu 2021) touched LNS using it with the solver
clingcon for a solution of a specific problem. However, a
principled and systematic use of LNS in ASP is unexplored.
This is of particular interest, as ASP is offering problem-
solving capacities beyond other solving paradigms such as
MIP and CP (Dantsin et al. 2001; Leone et al. 2006).

Our main contribution is a framework for LNS optimisa-
tion for answer-set solving. To effectively explore different
neighbourhoods, we build on the recent solver features of
multi-shot solving and solving under assumptions (Gebser
et al. 2019). Multi-shot solving allows us to embed ASP in a
more complex workflow that involves tight control over the
solver’s grounding and solving process. Learned heuristics
and constraints can be kept between solver calls and repeated
program grounding is effectively avoided. Solving under as-
sumptions is a mechanism by which we can temporally fix
parts of a solution between solver calls. While the underlying
ideas are generic, we present our framework for the solvers
clingo and its extension c1lingo-dl for difference logic,
as well as clingcon for ASP with integer constraints from
the Potassco family.'

We introduce two principled ways of using LNS with ASP.
e First, we present a system that can be used out of the box
with all the supported ASP solvers. Different neighbourhoods
can be seamlessly specified in a declarative way as part of
the ASP encoding itself. To this end, dedicated predicates are
used (no language extension is needed). If no neighbourhood
is specified, an automatically generated random neighbour-
hood is the default. Already the latter turns out to be quite
effective for many problems. We demonstrate this solver and
its effectiveness for different optimisation problems. In par-
ticular, we use the well-known problems Social Golfer and
Travelling Salesperson Problem, as well as generating small-
est sets of clues for Sudoku. Furthermore, we consider an
optimisation variant of the Strategic Companies problem and
Shift Design (Abseher et al. 2016) as a real-world inspired
benchmark. Throughout, LNS with ASP yields improved
bounds compared to plain ASP with no or little extra effort.
e The second way to use LNS with ASP in our framework
is by instantiating an abstract Python class that realises the

"https://potassco.org/.



basic LNS loop for a solver. This can be the preferred way
for more specialised ASP applications where neighbourhood
definitions are easier to specify in an imperative language or
when obtaining an initial solution from a construction heuris-
tic instead of the ASP solver is beneficial. As an advanced
showcase, we use a challenging parallel machine schedul-
ing problem from industry (Eiter et al. 2021), where we can
leverage the capabilities of c1ingo—-dl and improve the
state-of-the-art for this problem by using LNS with an effi-
cient construction heuristic to start the search.

We proceed as follows. First, we present the background on
ASP optimisation. Then, we describe our framework for LNS
with ASP. Afterwards, we show how to tackle different opti-
misation problems with LNS and c1ingo and also present
more advanced applications with clingo and clingo-dl.
Before we conclude, we discuss related work in the penulti-
mate section.

Background

Answer-Set Programming (ASP) (Lifschitz 2019; Gebser
et al. 2012; Brewka, Eiter, and Truszczyniski 2011) provides
a declarative modelling language with rules of the form
Head : — Body (intuitively, Head is true if Body is true) that
allows for a succinct representation of search and optimisa-
tion problems, for which solutions can be computed using
dedicated ASP solvers. Problems are encoded in programs,
i.e., finite sets of rules, whose answer sets (which are spe-
cial models) yield the solutions of a problem. The latter can
be computed using an answer-set solver, which commonly
eliminates variables in rules in a preprocessing step called
grounding (replacement by constant symbols) and then eval-
uates this ground (propositional) representation. We focus in
this work on the multi-shot solver c11ingo and its extensions
for theories (Gebser et al. 2019, 2016; Banbara et al. 2017,
Janhunen et al. 2017). For a thorough introduction to the
modelling language, we refer to the respective user guide.”

As an example for optimisation with c1ingo, consider
the Social Golfer Problem (SGP): the task is to schedule
g X p golfers in g groups of p players for w weeks such that
no two golfers play in the same group more than once. An
instance of the SGP is denoted by the triple g-p-w. We want
to minimise the number of players that meet more than once.

An ASP encoding for SGP in the modelling language of
clingo is given in Listing 1. A problem instance g-p-w
is defined in lines 1-3, where we use consecutive numbers
to denote the players, groups, and weeks, respectively. The
search space of feasible schedules is defined by rules 5 and
6: The former states (reading from right to left) that, for any
player P and for any week W, the number of groups player P
is assigned to in week W is one. In other words: every player
plays in every week in precisely one group. Rule 6 ensures
that the size of any group in any week is precisely p. Rule 8
derives meets (P1,P2,W) if P1 and P2 meet in group G
in week W. Line 9 is a weak (soft) constraint to give a penalty
of 1 for any player P1 who meets another player P2 more
than once. The last line is a solver directive to output only
atoms over predicate plays/ 3.

*https://github.com/potassco/guide/releases/.
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Theory solving is a feature of c1ingo that allows extend-
ing the formalism by external theories like integer constraints
in the style of SMT (Gebser et al. 2016). Using integer con-
straints can help immensely to avoid a large ground program
as the integer constants no longer directly contribute to its
size. The solver clingo-dl extends clingo by differ-
ence constraints which are expressions of form v — v < d,
where u and v are integer variables and d is an integer con-
stant. They can be used in an encoding in the form of theory
atoms &diff{u-v}<=-d. In contrast to systems of unre-
stricted integer constraints, systems of difference constraints
are solvable in polynomial time.

A number of recent ASP applications feature difference
constraints for problems that involve timing constraints (Eiter
et al. 2021; El-Kholany and Gebser 2020; Francescutto,
Schekotihin, and El-Kholany 2021; Abels et al. 2019). For
unrestricted integer constraints, c1ingcon (Banbara et al.
2017) or other constraint ASP systems (Balduccini and Lier-
ler 2017; Lierler 2014) can be used.

The solver c1ingo supports hierarchical optimisation cri-
teria and uses a range of model-guided methods (Gebser et al.
2011) as well as core-guided techniques (Andres et al. 2012)
that work by identifying and relaxing sets of unsatisfiable
weak constraints until a solution is found. While c1ingcon
also supports optimisation statements for integer variables,
this is not the case for clingo—-dl, where only minimi-
sation of a single integer variable is directly supported by
iteratively adding a constraint to enforce a smaller value on
the integer variable.

An LNS Framework for ASP

Large-Neighbourhood Search (LNS) (Shaw 1998; Pisinger
and Ropke 2010) aims at gradually improving a solution by
alternating a destroy and a recreate phase. The pseudo-code
of a simple LNS procedure is given in Alg. 1. It starts with
an initial solution. The operator relaz(-) takes a solution and
destroys parts of it by, for example, unassigning a specified
percentage of all decision variables. The function search(-)
takes a partial solution and tries to restore it to obtain an
improved complete solution. This can be realised using any
complete search method. The algorithm proceeds until a stop
criterion, e.g. a global time limit, is met. LNS cannot show
optimality of solutions in general, but this is often infeasible
in practical optimisation settings anyway.

We use the ASP solvers clingo, clingo-dl, and
clingcon to implement search(-). All of them support
multi-shot solving (Gebser et al. 2019) which aids to imple-
ment the LNS heuristic efficiently. Multi-shot solving allows
us to ground an encoding only once and then explore neigh-
bourhoods in subsequent solver calls with potentially further
constraints added to enforce better solutions. Besides avoid-
ing the overhead of repeated grounding, we can keep learned
heuristics and constraints.

To realise the relaz(-) operator, we use solving under as-
sumptions (Gebser et al. 2019): assumptions temporarily fix
truth values of atoms in a solver call. Between solver calls, we
fix all atoms that are part of the solution that is not relaxed.



Listing 1: Encoding for the Social Golfer Problem.

meets (P1,P2,W)

:~ #count { W : meets(P1l,P2,W) } > 1,

— OO0 00NN AW~

—_—

#show plays/3.

player (l..gxp).

group(l..g) .

week (1..w) .

{ plays(P,W,G) : group(G) } =1 :- player(P),
{ plays(P,W,G) : player(P) } = p :— week(W),

:— plays(P1l,W,G), plays(P2,W,G),
player (Pl), player(P2),

week (W) .
group (G) .

Pl < P2.

Pl < P2. [1,P1]

Algorithm 1: LNS optimisation for a minimisation problem

1: s* < feasible solution
2: repeat

3: 8 « search(relax(s*))
4: Ac + cost(s*) — cost(s')
5. if Ac > 0 then

6: s* ¢

7.  endif

8: until stop criterion met

9: return s*

Defining the Neighbourhood

The LNS neighbourhood defines which parts of a solution
are kept and which are destroyed in each iteration. Its struc-
ture is usually problem specific but generic ones can also be
effective. A good neighbourhood is large enough to contain a
better solution but sufficiently small for the solver to actually
find one. In our framework, it can be defined either in a purely
declarative way, as part of the encoding and orthogonal to the
problem specification, or by using a Python plugin.

As an example, consider the Social Golfer Problem from
the previous section. There, a solution is a weekly schedule
that defines which golfer plays in which group; consider a
solution for the 3-3-3 instance:

Week 1 Week 2 Week 3
Group 1 (1,2,3) (1,4,7) (1,5,7)
Group2 (4,5,6) (2,5,8) (2,6,8)
Group3 (7,8,9) (3,6,9) (3,4,9)

This schedule can be further optimised as some players meet
more than once, e.g., 1 and 7 meet in both week two and three.
A potential neighbourhood could be to unassign random
positions in the above schedule. Another one could be to
destroy entire groups or even weeks.

Declarative neighbourhoods. To define a neighbour-
hood in ASP, we introduce two dedicated predicates
_Ins_select/land_lns_fix/2:

e _1Ins_select/1 is aunary predicate to define a set .S of
terms. In the LNS loop, a random sample is taken from the
terms identified by this select predicate.

e _1Ins_fix/2 isused to define a mapping from S to atoms
that should be fixed with assumptions between solver calls.
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The first argument is the atom to fix and the second is the
corresponding term from S.

We illustrate this for different neighbourhood candidates
for the Social Golfer Problem.

(pos) If we want to fix random positions of the schedule and
therefore relax the rest, we can use:

_Ilns_select ((P,W,G)) :—- plays(P,W,G).

_lns_fix(plays(P,W,G), (P,W,G))
_lns_select ((P,W,G)).

The selection is made on positions of the schedule, and atoms
over plays/3 are fixed if they match the selected position.

(week) We can fix entire weeks of the schedule:

_Ins_select (W) :— week (W).
_Ins_fix(plays(P,W,G),W)
_Ins_select (W), plays(P,W,G).

(group) Similarly, we can fix random groups as follows:

_lns_select ((W,G)) :— week (W), ) .
_lns_fix(plays(P,W,G), (W,G))

_lns_select((W,G)), plays(P,W,G).

group (G

(group-p) We may fix all groups containing a selected player:
_Ins_select (P) :— player(P).

_Ilns_fix(plays(P,W,G),P)
_Ins_select (P),plays(P,W,G),plays(P1,W,G).

Python plugins. An alternative to the declarative specifi-
cation is to define the neighbourhood in Python code. This
is in particular valuable if a definition by rules would be
cumbersome or not efficient. For example, assume we want
to alternate between different neighbourhoods in the Social
Golfer example and pick each with a specified probability.
Our solver c1ingo—-1ns, which is described next, provides
an easy way to plug in any neighbourhood definition.

The Solver clingo-Ins

Our Python implementation of LNS with ASP in the loop, the
solver clingo-1ns, is publicly available.? Input files for
ASP encodings and parameters are set via the command line,
——help gives an overview. Solver options include the solver
type (clingo, clingo-dl, or clingcon), a global time
limit, a time limit for search within a particular neighbour-
hood, the size of the neighbourhood, and command line argu-
ments to be passed to the solvers. Based on our experience,

*http://www.kr.tuwien.ac.at/research/projects/bai/aaai22.zip.



Algorithm 2: LNS with multi-shot solving and assumptions

Input: ASP program P and input facts 1
Parameter: global timeout ¢, neighbourhood timeout ¢*

c < initialise clingo based solver
c.ground(PUI)
s « getInitial Solution(P U )
c.addBound(cost(s) — 1)
repeat
s« c.solve(t*, get Move Assumptions(s, I))
if SAT then
s=4¢
c.addBound(cost(s) — 1)
end if
: until time passed > ¢
: return s

A o

_— =
N2

the arguments that work well for an ASP solver carry grace-
fully over to the use within LNS. The solver supports min-
imisation and maximisation of hierarchical objective func-
tions as well as minimisation of a single integer variable in
clingo-dl mode.

Like we have already mentioned above, our implementa-
tion relies on multi-shot solving and solving under assump-
tions. The way those features are utilised to implement LNS
is shown in Alg. 2. The given ASP program is first grounded
in Line 2. Afterwards, we obtain an initial solution in the next
line. This initial solution is generated with the specified solver.
By default, it is the first solution found. Alternatively, pre-
optimisation allows to run the solver in optimisation mode
for a specified time before LNS takes over. Pre-optimisation
is useful if the ASP solver is already good at finding optimal
or near optimal solutions for many instances. Now, after an
initial solution was obtained, a bound is given to the interal
solver telling it that the next solution has to have strictly
better cost. At each iteration of the loop, the algorithm calls
the internal solver with assumptions generated for this itera-
tion and the given neighbourhood timeout. Intuitively, those
assumptions specify which parts of the current solution are
fixed in this iteration (or move). If the solver finds a solution,
we update the incumbent and add a new bound, otherwise we
do nothing and try again with different assumptions until we
reach the timelimit.

While neighbourhoods can be specified as part of the ASP
encoding, the solver will use random relaxation of the visible
atoms specified via #show as the default neighbourhood if
no other definition is found. For the Social Golfer example,
this corresponds exactly to neighbourhood pos.

While the solver works already “out-of-the-box” with de-
faults for all search parameters as well as the neighbourhood,
performance can often be improved by adjusting them. The
size of the neighbourhood can be specified either as a ratio
or as an absolute number of elements to fix or to relax from
the terms specified via _1ns_select/1; the default is to
fix 80%. The size is too small if the ASP solver frequently
reports unsatisfiability; it is too large (or the time limit for
the solver calls too low) if the solver frequently times out.
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Heuristics and customised neighbourhoods. The meth-
ods of the solver that construct the neighbourhood in each
step can easily be overloaded with customised versions to
implement more complex behaviour than possible with the
declarative option. In particular, this concerns the meth-
ods getInitialSolution and getMoveAssumptions as seen
in Alg. 2. Overriding the former provides the ability to specify
the initially used solution. Hence, if the ASP solver struggles
with finding an initial solution, it is a good idea to use, if
available, a fast construction heuristic to start the search. Fur-
thermore, by overloading getMoveAssumptions, it is possi-
ble to declare neighborhoods which are more domain specific
and are not based on random relaxation. On the technical side,
overriding those methods is achieved by creating a Python
class which derives the abstract implementation provided in
our framework. We give examples for this later, which can
serve as a blue-print for more customised applications.

Experiments on Benchmark Problems

We experimentally demonstrate the effectiveness of
clingo-1ns on different benchmark problems.* Unless
stated otherwise, clingo was called with no additional
command-line parameters, i.e, it uses a single solving thread
and employs branch-and-bound-based optimisation.

Social Golfer Problem. For Social Golfer, we compare
clingo-1lns against plain clingo as baseline with a time
limit of 1800 seconds for each run. As instances, we consider
problems with 8 groups of 4 golfers over 7 to 12 weeks. As
stated above, the optimisation goal here is to minimise the
number of times two players meet each other more than once.
We use clingo-1ns with the different neighbourhood def-
initions from the previous section. We report the best and
worst solution found with c1ingo—-1ns in 5 runs. The time
limit to explore individual neighbourhoods was 20 seconds.
The size of each neighbourhood was set to relax about 80%
of the atoms over plays/3. This is rather large compared
to our other experiments but necessary to find better solutions
while still helping the solver by restricting the search space.
The results are shown in Table 1.

Social Golfer is known to be notoriously hard for symbolic
solvers due to symmetries, and optimal solutions are still
out of reach for many instances where optimal bounds are
known. Yet, any improvement for ASP can be considered as
an important step forward. For instances with 7-10 weeks,
conflict-free schedules exist in principle; this is not the case
for instances with 11 and 12 weeks. LNS with cl1ingo—1ns
is able to find better solutions than plain c1ingo in many
cases with all neighbourhood settings. Fixing a number of
weeks entirely turns out to work best for this experiment,
where it gives improvements most consistently.

YAl experiments were run on a cluster with 13 nodes, each
having 2 Intel Xeon CPUs E5-2650 v4 (max. 2.90GHz, 12 physi-
cal cores, no hyperthreading), with memory limit 20GB. We used
clingov5.5.land clingo-dl v 1.2.1. All encodings, instances,
logs, and random seeds are available at http://www.kr.tuwien.ac.at/
research/projects/bai/aaai2?2.zip.



clingo clingo—-1ns

pos week  group  group-p

7 0 0 0 0 0
8 3 1-2 2-3 3 2-4
9 7 67 4-6 6-7 5-7
10 11 9-10 7-9 9-10 8-9
11 13 12-13  11-12 12-13 12
12 15 14-15 14  14-15 14

Table 1: clingo vs. clingo—1ns for instances 8-4-w of
the Social Golfer Problem with different neighbourhoods.
For clingo—-1ns, we report the best and worst penalties
over 5 runs.

clingo clingo—-1ns
01 601 390.4 (384-394)
02 563 332.0 (327-337)
03 580 408.2 (403-413)
04 649 4352  (430-440)
05 602 369.8 (365-373)
06 643 406.0 (399-409)
07 569 393.2 (385-399)
08 549 369.6 (367-374)
09 606 393.6 (391-399)
10 540 345.0 (338-357)
11 567 353.4 (349-357)
12 721 409.8 (401-420)
13 598 422.6 (414-430)
14 695 4342 (429-440)
15 745 469.2 (463-474)
16 696 4264 (424-429)
17 725 4440 (441-449)
18 667 502.2  (394-513)
19 740 4504  (446-456)
20 683 420.2  (413-426)

Table 2: clingo vs. clingo—1ns for 20 instances of the
Travelling Salesperson Problem with average, best, and worst
cost among S runs for clingo-1ns.

Travelling Salesperson Problem. We next consider the
well-known Travelling Salesperson Problem (TSP). The en-
coding in Listing 2 is an optimisation variant of the one
from the Asparagus platform.’ Instances were taken from
Asparagus as well.

The overall time limit was set to 300 seconds, and we
limited search within any neighbourhood to 5 seconds. We
used clingo-1ns out-of-the box with its default neigh-
bourhood, i.e. random relaxation of the cycle/2 atoms.
We only increased the neighbourhood size from 20% relax-
ation rate to 30% as this helps with faster convergence for the
considered instances. The results are given in Table 2, where
we report the cost of the best round trip found by clingo
as well as the best of worst costs found by clingo—-1ns in
5 runs.

The LNS approach finds better bounds than clingo
throughout. Even the worst solutions found with LNS give an

>https://asparagus.cs.uni-potsdam.de/.
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improvement of 34% on average. The default neighbourhood
is advantageous for this problem since atoms cycle/2 in-
dicate the next element in the Hamiltonian tour, and relaxing
them resembles k-opt moves from local search, where, in
each step, k links of the current tour are replaced by links
such that a shorter tour is achieved.

Sudoku Puzzle Generation. ASP can be used for optimi-
sation problems where checking feasible solutions is beyond
NP; in fact, uniform ASP encodings can solve decisional vari-
ants of such problems with complexity up to A% (Leone et al.
2006). In particular, checks in coNP are expressible (e.g., a
TSP instance has no solution) with a saturation technique
(Eiter and Gottlob 1995) that uses minimality of answer sets.
Suppose we want to compute Sudoku puzzles that give a
smallest number of hints. Listing 3 shows an encoding for this
problem with variable grid size. Roughly speaking, we guess
a set of hints subject to minimisation (lines 1,23) and check
that they can be completed to a fully filled-in Sudoku S (lines
3-9). As each Sudoku puzzle must have a unique completion,
we check, using saturation, that no different completion S’
exists, i.e., every assignment S’ of numbers to the grid is
either not a valid completion or equal to S (lines 11-21).
We compared c1lingo and clingo—-1ns with its default
search parameters and options ——configuration=many
and -t 4 for c1ingo, which is the default portfolio for multi-
threaded solving and four threads. While c1ingo finds a so-
lution with 21 hints for the standard 9 x 9 grid within 10 min-
utes, we found puzzles with 19 hints using clingo-1ns.
This is a significant improvement that reduces the gap be-
tween the baseline and the known minimal bound 17 by 50%.

Weighted Strategic Companies. A well-known ASP
benchmark that is complete for ¥¥ is Strategic Compa-
nies (Cadoli, Eiter, and Gottlob 1997): a company of a hold-
ing is strategic if it belongs to a strategic set, i.e., a minimal
set of companies of the holding that allow to manufacture all
products and maintain control relationships. We consider an
optimisation variant here, where we assign random weights
to companies, and the objective is to find strategic sets of
minimal total weight. The encoding is given in Listing 4; the
instances are those of the 3rd (Calimeri, Ianni, and Ricca
2014), 4th (Alviano et al. 2013) and 5th (Calimeri et al. 2016)
ASP Competition with random weights from [1, 1000] added.

We compare c1ingo (called via the Python API) against
clingo—-1ns, where we use the default neighbourhood and
relax 20% of the companies in each step. The global time
limit was 1800 seconds, and the time limit for LNS steps
was 30 seconds. The results are shown in Table 3. Note that
we omit instances for which c1ingo does not produce any
feasible solution in 30 minutes. The LNS approach improves
the bounds from the baseline by up to 65%, while the average
solution quality is only worse for a single instance.

Applications of LNS with ASP

We next turn to advanced use cases of ASP with LNS for
problems with more direct real-world applications. In partic-
ular, we address the practically relevant Shift Design problem
from the domain of work force scheduling as well as Parallel
Machine Scheduling from semi-conductor production.



Listing 2: Encoding for the Travelling Salesperson Problem.

1 { cycle(X,Y) edge (X,Y); cycle(X,Y) edge (Y, X) } 1 :— vtx(X).

2 { cycle(X,Y) edge (X,Y); cycle(X,Y) edge (Y,X) } =1 = vtx(Y).

3 reached(1l).

4 reached(Y) :- reached(X), cycle(X,Y).

5 :- vtx(X), not reached(X).

6 :~ cycle(X,Y), edgewt (X,Y,C). [C,X,Y]

7 #show cycle/2.

Listing 3: Encoding for Sudoku Puzzle Generation

1 { hint (R, C, N) R =1..grid_sz, C = 1..grid_sz, N = 1..grid_sz }.
2

3 a(R,C,N) :— hint(R, C, N).

4 { a(R,C,N): N=1..grid sz } =1 :-= R = 1..grid_sz, C = 1..grid_sz.
5 - a(R,C1,N), a(rR, C2, N), Cl1 != C2.

6 - a(R1,C,N), a(R2, C, N), Rl != R2.

7 - a(R,C,N), a(rR1, C1, N), R !=R1, C !=C1,

8 (((R-1) /subgrid_sz) xsubgrid_sz + (C-1)/subgrid_sz) =

9 (((R1-1) /subgrid_sz) *subgrid_sz + (Cl-1)/subgrid_sz) .

10

11 b(R,C,N) N = 1..grid_sz :- R = 1..grid_sz, C = 1..grid_sz.

12 saturate :- b(R,C,N1), hint(R, C, N2), N1 != N2.

13 saturate :- b(R,C1,N), b(R, C2, N), Cl != C2.

14 saturate :- b(R1,C,N), b(R2, C, N), Rl != R2.

15 saturate :- b(R,C,N), b(rR1l, Cl1, N), R !=R1, C !=C1,

16 (((R-1) /subgrid_sz) *subgrid_sz + (C-1)/subgrid_sz) =

17 (((R1-1) /subgrid_sz) *subgrid_sz + (Cl-1)/subgrid_sz) .

18 saturate :- equals(R,C) (R,C) = (1..grid_sz, 1..grid_sz).

19 equals(R,C) :- a(R,C,N), b(R,C,N).

20 b(R,C,N) :- saturate, R = 1..grid_sz, C = 1..grid_sz, N = 1..grid_sz.
21 :- not saturate.

22

23 :~ hint(R, C, N). [1,R,C,N]

24  #show hint/3.

Shift Design. The goal is to align shifts so that over- and thus used pre-optimisation for 50 minutes to let the solver

understaffing is avoided. We refer to Abseher et al. (2016)
for a detailed problem description as well as the ASP en-
coding and the instances. The objective function we use is
the hierarchical one from the original paper of first avoiding
understaffing, second avoiding overstaffing, and third, min-
imising the total number of shifts. We consider all instances
from DataSet3 and DataSet4, some of which are still quite
challenging for ASP. DataSet3 contains instances where over-
and understaffing cannot be avoided, and DataSet4 contains
a larger instance from a real-world application.

We again use the solver clingo as baseline, but
this time with the options ——opt-strat=usc, 3 and
—-—configuration=handy which runs clingo with
unsatisfiable-core based optimisation and defaults geared
towards large problems. This solver configuration was the
most effective in the experiments of the original paper. We
used the same solver configuration also within the LNS loop,
as well as the 1 hour limit per instance for the experiments.
The LNS solver spends at most 30 seconds exploring each
neighbourhood, which is set to randomly relax 70% of the
assigned shifts in each step. Plain ASP is with the right solver
configuration already quite effective for this problem and
finds optimal or near optimal solutions in many cases. We
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reproduce the old bounds before using LNS on top. We report
the best and worst bounds from 5 runs for the LNS approach.
For 8 out of 33 instances from both data sets, neither approach
could find any solution. For 17 instances c1ingo could find
the optimal value and c1ingo—-1ns reported the same value
as clingo. Results for the 7 remaining instances are given
in Table 4, where we get indeed considerable improvements.

Parallel Machine Scheduling. As a more advanced appli-
cation of LNS with clingo-dl, we deal with a parallel
machine scheduling problem with sequence-dependent setup
times, release dates, and machine capabilities from an indus-
trial semi-conductor production plant. In recent work (Eiter
et al. 2021), an ASP approach with difference logic has been
introduced for this problem. Further improvements are possi-
ble with LNS and ASP.

The ASP encoding that we use is an improved version of
the original one.® The objective is to assign jobs to machines
such that the makespan, i.e., the total execution length, of the
schedule is minimal. Solutions are represented via predicate
assigned/ 2, which defines the machine assignment, and

%The encoding can be found at http://www.kr.tuwien.ac.at/
research/projects/bai/aaai2?2.zip.



Listing 4: Encoding for Weighted Strategic Companies.

1 strategic(X1l) |strategic(X2) |strategic(X3) |strategic (X4)

2 strategic (W) :- controlled_by (W,X1,X2,X3,X4),
strategic (X4).

3 :~ strategic(C), weight(C,W). [W,C]

4 #show strategic/1.

:— produced_by (X, X1,X2,X3,X4).
strategic(X1l), strategic(X2), strategic(X3),

clingo clingo—-1ns
001 231092 209414.6 (207374-212612)
006 91221 94782.2 (88925-99116)
015 224472 210205.6 (207467-212338)
018 134757 129645.0 (124313-131251)
019 105481 103482.0 (98796-107197)
030 226653 213393.8 (203136-217266)
033 230732 219070.6 (217381-219493)
042 138809 125909.0 (124494-128524)
050 210771 190303.6 (186975-192591)
051 170227 76929.8 (69945-82626)
052 207188 90402.6 (84859-98724)
053 161343 741114 (69348-81988)
054 224058 76589.4 (72038-85074)
055 205034 95254.6 (82870-105613)
056 204921 84050.4 (78299-91111)
057 219262 79053.2 (74010-86627)
058 175945 73224.0 (70936-77177)
059 200575 73383.8 (70640-77592)
060 201830 87292.4 (82552-91980)
061 216207 74421.4 (71772-76291)

Table 3: clingo vs. clingo-1lns for instances of
Weighted Strategic Companies with average, best, and worst
weight among 5 runs for clingo-1ns.

next /3, which defines a total order of jobs on the machines.

The default random neighbourhood is not suitable here,
since dependencies between atoms make it likely that re-
moved atoms will be reconstructed. We consider two neigh-
bourhoods for this problem: (job) select a number of jobs and
fix any atoms over assigned/2 and next /3 that mention
this job; (machine) select a number of machines and relax
all jobs on them. We ensure that the machine determining
the makespan in the current solution is always part of the se-
lection as otherwise improvements are impossible. Similarly,
should the first neighbourhood select no job from the ma-
chine determining the makespan, we remove an arbitrary job
from the selection and add a random job from that machine.
At each LNS step, we choose either the job or the machine
neighbourhood at random.

In principle, we could use c1ingo—-d1l to obtain an initial
solution. However, it is beneficial to construct one using a
simple greedy heuristic: starting from an empty schedule,
while some job is unassigned, we pick one with minimal
release date and put it on a machine such that the makespan
of the partial schedule increases the least. This algorithm
always produces a feasible schedule of fairly good quality.

The implementation in clingo-1ns is easy to extend by
overloading predefined member functions for obtaining an
initial solution and defining the neighbourhood. For quality
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clingo clingo-1lns
3-04 (0, 413,50) (0, 353,45)-(0, 372,47)
3-06 (0, 286,44) (0, 222,43)-(0, 312,52)
3-11 (0, 821,74) (0, 713,65)-(0, 725,65)
3-20 (0,1006,66) (0, 946,68)—(0, 963,67)
3-26 (0,1061,77) (0,1037,78)-(0,1078,75)
3-27 (0, 393,25) (0, 376,24)-(0, 393,24)
3-29 (0, 509,67) (0, 465,59)-(0, 470,63)
4-02 (0, 466,50) (0, 388,39)-(0, 401,54)

Table 4: clingo vs. clingo-1ns for Shift Design in-
stances from DataSet3 and DataSet4 with best and worst
objective value among 5 runs for clingo-1ns. The values
respectively correspond to shortage of staff, excess of staff
and number of shifts.

control, solutions encountered are also verified in Python.

We compare plain clingo—dl with our LNS approach.
The time limit is 15 minutes overall and 15 seconds for LNS
steps. For the neighbourhoods, we fix 80% of the jobs or all
but 2 of the machines, respectively. Furthermore, to avoid
selections that are too large, we limit the number of selected
jobs to 20% for both neighbourhoods.

The results for the 500 instances from the original paper
are visualised in Fig. 1 as box plots. We show the median as
well as 5 and 95 percentiles of the relative difference to the
best solutions for c1ingo—d1l with and without LNS respec-
tively the construction heuristic. Both versions of LNS were
run 5 times for each instance and the average was taken as the
result. Plain LNS improved the performance of c1ingo-dl
already, but the best results were obtained by using LNS with
clingo—dl and the construction heuristic in combination.
They significantly improve the published solutions for this
problem.

Related Work

ASP solvers have seen a number of improvements for opti-
misation in recent years (Alviano et al. 2020) which makes
them also attractive for LNS. Especially recent advances like
using comparator networks (Bomanson and Janhunen 2020)
and combining integer programming with ASP (Saikko et al.
2018) can be helpful in this context.

The use of LNS in MIP (Danna, Rothberg, and Pape 2005;
Rothberg 2007; Ghosh 2007) and CP (Perron, Shaw, and
Furnon 2004; Berthold et al. 2011; Bjordal et al. 2020) is
well explored. For declarative LNS neighbourhood defini-
tions, the constraint modelling languages were extended to
support solver-independent LNS search (Dekker et al. 2018;
Bjordal et al. 2018; Rendl et al. 2015). Our approach merely
requires dedicated predicates that can be defined by rules,
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Figure 1: Relative differences to best solution for

clingo-dl with LNS for Parallel Machine Scheduling.

and it offers unlimited power for neighbourhood definition
by external plugins. Declarative LNS was also considered
for Imperative-Declarative Programming, where LNS moves
can be specified in predicate logic (Pham, Devriendt, and
Causmaecker 2019).

The only work that touches on LNS in the context of ASP
is the recent application of the c1ingcon for Test Labo-
ratory Scheduling (Geibinger, Mischek, and Musliu 2021).
There, c1ingcon was used as a black-box solver to find an
assignment for a sub-problem within an LNS loop, without
using multi-shot solving. In principle, a similar black-box ap-
proach for other ASP solvers like wasp (Dodaro and Ricca
2020; Alviano et al. 2015) is possible, but an empowered
multi-shot solving approach needs further efforts.

Gebser, Ryabokon, and Schenner (2015) studied a combi-
nation of greedy algorithms with ASP. They used the greedy
method to generate heuristics for accelerating an ASP solver,
but left the optimisation procedure unchanged. By our results,
it would be of interest whether fruitful greedy heuristics for
LNS with ASP could be (semi-)automatically constructed.

Conclusion

We have introduced an optimisation framework for ASP that
exploits LNS and multi-shot solving, and we have demon-
strated that this approach indeed boosts the capabilities of
ASP for challenging optimisation problems. Notably, ASP
makes LNS viable even for problems whose decision variant
is beyond NP. We presented a general LNS solver that can
be used to quickly set up LNS for ASP and to experiment
with different neighbourhoods that can be specified as part of
the ASP encoding itself. Thus, the spirit of ASP as a declar-
ative approach for rapid prototyping is retained. With some
extra effort, the LNS solver can be customised for ASP ap-
plications by implementing problem specific heuristics; this
can further boost performance as witnessed by a machine
scheduling problem from the industry.

For future work, we plan as a next step to make LNS self-
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adaptive so that parameters of the LNS search are adjusted
on the fly during search.
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