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Abstract

Answer Set Programming (ASP) is a well-known declar-
ative AI formalism for knowledge representation and rea-
soning. State-of-the-art ASP implementations employ the
ground&solve approach, and they were successfully applied
to industrial and academic problems. Nonetheless there are
classes of ASP programs whose evaluation is not efficient
(sometimes not feasible) due to the combinatorial blow-up of
the program produced by the grounding step. Recent research
suggests that compilation-based techniques can mitigate the
grounding bottleneck problem. However, no compilation-
based technique has been developed for ASP programs that
contain aggregates, which are one of the most relevant and
commonly-employed constructs of ASP. In this paper, we
propose a compilation-based approach for ASP programs
with aggregates. We implement it on top of a state-of-the-
art ASP system, and evaluate the performance on publicly-
available benchmarks. Experiments show our approach is ef-
fective on ground-intensive ASP programs.

Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2011) is a declarative AI formalism for knowl-
edge representation and reasoning based on the stable model
semantics (Gelfond and Lifschitz 1991). ASP is a viable so-
lution for representing and solving many classes of prob-
lems thanks to a standardized first-order language that has
been implemented in several efficient systems (Gebser et al.
2018). Indeed, ASP has been successfully applied to several
academic and industrial AI applications such as planning,
scheduling, robotics, decision support, natural language un-
derstanding and more (cfr. (Erdem and Öztok 2015)).

Albeit ASP is supported by efficient systems, the im-
provement of their performance is still an open and interest-
ing research topic. State-of-the-art ASP systems are based
on the ground&solve approach (Kaufmann et al. 2016). The
first-order input program is transformed by the grounder
module in its propositional counterpart, whose stable models
are computed by the solver, implementing a Conflict-Driven
Clause Learning (CDCL) algorithm (Kaufmann et al. 2016).

ASP implementations based on ground&solve, basically,
enabled the development of ASP applications. Nonethe-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

less there are classes of ASP programs whose evaluation is
not efficient (sometimes not feasible) due to the combina-
torial blow-up of the program produced by the grounding
step. This issue is known under the term grounding bottle-
neck (Ostrowski and Schaub 2012; Calimeri et al. 2016).
Many attempts have been done to approach the ground-
ing bottleneck, from language extensions (Ostrowski and
Schaub 2012; Balduccini and Lierler 2017, 2013; Aziz,
Chu, and Stuckey 2013; Cat et al. 2015; Susman and Lier-
ler 2016; Eiter, Redl, and Schüller 2016) to lazy ground-
ing (Palù et al. 2009; Lefèvre and Nicolas 2009; Weinzierl
2017). These techniques obtained good preliminary results,
but lazy grounding systems are still not competitive with
ground&solve systems on common problems (Gebser et al.
2018). Recent research suggests that compilation-based
techniques can mitigate the grounding bottleneck problem
due to constraints (Cuteri et al. 2019, 2020). Essentially,
their idea is to identify the subprograms causing the ground-
ing bottleneck, and subsequently translate them to propaga-
tors, which are custom procedures that lazily simulate the
ground&solve on the removed subprograms. Problematic
constraints are removed from the non-ground input program
and the corresponding propagator is dynamically linked to
the solver to simulate their presence at running time. This
approach is meant to speed-up computation by avoiding full
grounding and exploiting information known at compilation
time to create custom procedures that are specific to the
program at hand. However, no compilation-based technique
has been developed so far for ASP programs with aggre-
gates (Faber, Pfeifer, and Leone 2011), which are among
the most relevant and commonly-employed constructs of
ASP (Gebser, Maratea, and Ricca 2017).

In this paper, we propose a compilation-based approach
for ASP programs with aggregates. We identify the syntac-
tic conditions under which a program with aggregates can be
compiled, thus extending the definition of compilable sub-
program of (Cuteri et al. 2019). Then, we implement the ap-
proach on top of the state-of-the-art ASP solver WASP (Al-
viano et al. 2015). Propagators are both of the eager (called
during the propagation phase) and lazy (called once an an-
swer set candidate is found) kind (Dodaro and Ricca 2020).
Our compiler automatically selects the kind based on the
program structure. Experiments show our approach is effec-
tive on ground-intensive ASP programs.
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Preliminaries
ASP Syntax. Variables are strings starting with upper-
case letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a vari-
able or a constant. A standard atom is an expression of
the form p(t1, . . . , tn), where p is a predicate of arity n
and t1, . . . , tn are terms. A standard atom p(t1, . . . , tn) is
ground if t1, . . . , tn are constants. A standard literal is an
atom p or its negation ∼p, where ∼ denotes negation as fail-
ure. A ground set is a set of pairs of the form 〈consts :
conj〉, where consts is a list of constants and conj is a
conjunction of ground standard literals. A symbolic set is
a set specified syntactically as {Vars : Conj}, where
Vars is a non-empty list of variables, and Conj is a non-
empty conjunction of standard literals. An aggregate func-
tion is of the form f(S), where S is a symbolic set, and
f ∈ {#count,#sum} is an aggregate function symbol. An
aggregate atom is of the form f(S) ≺ T , where f(S) is an
aggregate function, ≺ ∈ {<,≤, >,≥,=} is a comparison
operator, and T is a term called guard. An aggregate atom
f(S) ≺ T is ground if T is a constant and S is a ground
set. An atom is either a standard atom or an aggregate atom.
A literal is an atom or its negation. The complement of l is
denoted l, and it is ∼a, if l = a, or a a if l = ∼a. This no-
tation is extended also to sets of literals. For a set of literals
L, L+ and L− denote the set of positive and negative literals
appearing in L, resp. An ASP program π is a set of rules:

h← b1, . . . , bk,∼bk+1, . . . ,∼bm (1)

with m ≥ k ≥ 0, where h is a standard atom referred to as
head and it can absent, whereas b1, . . . , bk,∼bk+1, . . . ,∼bm
is the body, b1, . . . , bk are atoms, and bk+1, . . . , bm are stan-
dard atoms. A constraint is a rule where h is absent, and a
fact is a rule where m = 0. Moreover, for a rule r, Hr and
Br are two sets containing the head and the body of a rule r,
respectively,B+

r andB−r are two sets containing the positive
and the negative body of r, respectively, Bar denotes the set
of aggregate atoms appearing in Br, and Conj+(Bar ) and
Conj−(Bar ) denotes the set of positive and negative stan-
dard literals appearing in the aggregate atoms of the body,
respectively. Given a program π, Uπ is the Herbrand Uni-
verse, and represents the set of all constants appearing in π;
whereasBπ is the Herbrand Base, and the set of all possible
ground atoms that can be built using predicate in π and con-
stants in Uπ . B denotes Bπ ∪Bπ . Given an ASP expression
(atom, literal, rule, program, etc.) ε and the Herbrand Uni-
verse Uπ , we define ground(ε) as the set of all instantiations
of ε built by assigning variables to constant in Uπ .

ASP Semantics. An interpretation I ⊆ B is a set of lit-
erals. A literal l is true w.r.t I if l ∈ I , l is false w.r.t. I
if l ∈ I , otherwise it is undefined. In the following, for
a program π, IUπ denotes all literals in B that are unde-
fined. For a rule, its body is a conjunction of literals. A
conjunction conj of literals is true w.r.t I if all literals in
conj are true w.r.t. I , and false if there is at least one literal
in conj that is false w.r.t. I . Let I(S) denote the multiset
[t1|(t1, . . . , tn) : conj ∈ S, ground(conj ) is true w.r.t. I].
The evaluation I(f(S)) of an aggregate function f(S) w.r.t.

I is the result of the application of f on I(S). An interpre-
tation I is total if all literals in B are either true or false,
otherwise I is partial. An interpretation I is consistent if for
each literal l ∈ I , l 6∈ I , otherwise it is inconsistent. A to-
tal and consistent interpretation I is a model for π if for each
rule r ∈ ground(π), the head of r is true whenever the body
of r is true. Given a program π and an interpretation I , the
FLP-reduct (Faber, Pfeifer, and Leone 2011) of π, denoted
by πI , is defined as the set of rules obtained from π by delet-
ing those rules whose body is false w.r.t I . Let I be a model
for π, I is also a stable model for π if there is no I ′ ⊂ I such
that I ′ is a model for πI .

Classical CDCL Evaluation. The standard solving ap-
proach for ASP uses two components, namely grounder and
solver. The grounder takes as input an ASP program π and
produces ground(π), which is later on processed by the
solver to produce stable models. The solver employes an
algorithm that extends the CDCL algorithm with propaga-
tors specific to ASP (Kaufmann et al. 2016). The CDCL is
based on a choose-propagate-learn pattern, and the idea is
to build a stable model step-by-step starting from an empty
interpretation I . At each step, a literal is heuristically se-
lected and added to I (choice). Then, specific procedures,
called (eager) propagators, are used to extend I with the
deterministic consequences of this choice and their reason,
i.e., literals in I leading to the propagation. In case the prop-
agation leads to an inconsistency in the interpretation I , the
algorithm learns a new constraint using the reason of each
propagated literal, undoes the choices leading to the incon-
sistency, and restores the consistency of I . This process is
repeated until I is a stable model candidate or the consis-
tency of I cannot be restored, showing that no stable model
can be found. In the first case I is then analyzed by lazy
propagators, which perform additional checks on I . If I is
consistent under those checks, then the algorithm terminates,
otherwise new constraints are added to ground(π) and the
algorithm restarts. We refer the reader to (Brewka, Eiter, and
Truszczynski 2016) for a gentle overview of ASP.

Loop Unrolling and Dead Code Elimination. We recall
two optimizations used by compilers, namely loop unrolling
and dead code elimination (Muchnick 1997). Loop unrolling
consists of removing loop control instructions by proper
replicating the loop body in order to obtain an equivalent
code. The following (exemple) portion of code clarifies this:

for(i = 0, . . . , n) for(i = 0, . . . , n){
for(j = 0, . . . , 3) a[0] = b[0] + i;
if(j < 2) a[j] = b[j] + i; =⇒ a[1] = b[1] + i;
else b[j] = a[j] + i; b[2] = a[2] + i; }

where the code on the left-hand side is transformed result-
ing in the code reported on the right-hand side. Note that for
each iteration of the outermost statement one has to perform
3 · n increments of the variable j and 3 · n evaluations of
the if statement, which are not required after loop unrolling.
Clearly, the benefits of loop unrolling can be seen with large
values of n. Dead code elimination consists of removing in-
structions that can never be executed, e.g., the body of state-
ments that cannot be reached. We refer the reader to (Much-
nick 1997) for more details.

5835



Compilation of Aggregates
Conditions for Splitting and Compiling Programs
Given a program π, a sub-program of π is a set of rules
λ ⊆ π. In what follows, we denote with preds(X) the set
of predicate names appearing in X where X is a structure
(literal, conjunction, rule, program, etc). Moreover, given a
set of rules λ, let head(λ) = {a | a ∈ Hr, r ∈ λ}.
Definition 1 Given an ASP program π, the dependency
graph of π, denoted DGπ , is a labeled graph (V,E) where
V is the set of predicate names appearing in some head
of π, and E contains (i) (v1, v2,+), if there is r ∈ π |
v1 ∈ preds(B+

r ) ∪ preds(Conj+(Bar )), v2 ∈ preds(Hr);
(ii) (v1, v2,−), if there is r ∈ π | v1 ∈ preds(B−r ) ∪
preds(Conj−(Bar )), v2 ∈ preds(Hr).
Definition 2 Given an ASP program π, an ASP sub-
program λ ⊆ π is compilable w.r.t. π if (i)DGλ has no loop
in it; (ii) for each p ∈ pred(head(λ)), p /∈ pred(π \ λ);
(iii) given two rules r1, r2 ∈ λ, r1 6= r2, preds(Hr1) ∩
preds(Hr2) = ∅; and (iv) for each r ∈ λ, |Bar | ≤ 1.

Normalization of the Input Program
In the following we describe the main preprocessing steps
that are performed to the sub-program to compile. First of all
the sub-program λ is analyzed in order to be split in two sub-
programs, namely λlazy and λeager . This analysis consists
of navigating the dependency graph starting from nodes that
have no incoming edges and recursively label predicates that
appears in the body of a rule whose head predicate has been
already labeled. In this way, the rules whose head predicate
has not been labeled could be treated in a lazy way (λlazy );
other rules are in λeager . For λeager , we perform a rewriting
to obtain a normalized form with rules of a specific format,
and have a uniform treatment of all the rules to compile.
Also, for a structure (set, list, conjunction, etc.) of elements
X , let vs(X) be the set of all variables appearing in X .

Step 1. Each rule r ∈ λeager of the form (1), with |Bar | =
1, f({Vars : Conj}) ≺ T ∈ Bar , and ≺∈ {<,≤, >,≥}, is
replaced by the following rules:
1. asr(Vars , ρ)← Conj ;
2. bdr(ρ, T )← Br \Bar ;
3. aggrr(ρ, T ) ← dmr(ρ, T ), f({Vars :

asr(Vars , ρ)}) ≥ G, where G = T if ≺∈ {≥, <}, and
G = T + 1 if ≺∈ {≤, >};

4. h← bdr(ρ, T ), aggrr(ρ, T ) if ≺∈ {>,≥} and
h← bdr(ρ, T ),∼aggrr(ρ, T ) if ≺∈ {<,≤};

where ρ is vs(Conj )∩ vs(Br \Bar ). Intuitively, ρ is a set of
all variables appearing in both aggregate set and body.
Example 1 Let assume r to be the following rule:

a(X,W )← b(X,Y ), c(Y,W ),
#sum{Z : d(X,Z),∼e(Z)} ≥W.

Then, r is replaced by the following rules:
r1 : asr(Z,X) ← d(X,Z),∼e(Z)
r2 : bdr(X,W ) ← b(X,Y ), c(Y,W )
r3 : aggrr(X,W ) ← dmr(X,W ),

#sum{Z : asr(Z,X)} ≥W
r4 : a(X,W ) ← bdr(X,W ), aggrr(X,W )

Step 2. Each rule r ∈ λeager of the form (1), with |Bar | =
1, f({Vars : Conj}) ≺ T ∈ Bar , and ≺∈ {=}, is replaced
by the rules 1., 2., and by the following rules:
5. aggr1r(ρ, T ) ← dmr(ρ, T ), f({Vars :

asr(Vars , ρ)}) ≥ T ;
6. aggr2r(ρ, T ) ← dmr(ρ, T ), f({Vars :

asr(Vars , ρ)}) ≥ T + 1;
7. h← bdr(ρ, T ), aggr

1
r(ρ, T ),∼aggr

2
r(ρ, T ).

Step 3. Each rule r ∈ λeager of the form (1), with |Bar | =
0, is replaced by the following rules:
8. h← aux r(vs(B

+
r ));

9. ← aux r(vs(B
+
r )), bi ∀i ∈ {1, . . . ,m};

10. ← Br,∼aux r(vs(B
+
r )).

This step is applied also to rules from steps 1 and 2.
Example 2 Let assume r to be the following rule:

a(Z,X)← d(X,Z),∼e(Z).

Then, r is replaced by the following rules:
r8 : a(Z,X) ← aux r(X,Z)
r′9 : ← aux r(X,Z),∼d(X,Z)
r′′9 : ← aux r(X,Z), e(Z)
r10 : ← d(X,Z),∼e(Z),∼aux r(X,Z).

Intuitively, the normalization ensures that aggregate func-
tions are applied to set of atoms, and rules are subject to a
form of completion (Clark 1977). After applying the nor-
malization step the program contains only rules of the form:

h← b (2)
h← d,#count({V ars : b}) ≥ g (3)
h← d,#sum({V ars : b}) ≥ g (4)

← c1, ..., cn (5)
Thus, the compiler will only have to produce propagators
simulating the above-mentioned four rule types.

Finally, it is important to emphasize that atoms of the form
dmr(·) and aux r(·) do not appear in the head of any rule in
the program, and thus the ASP semantics would make them
false in all stable models. Therefore, in our approach, they
are treated as external atoms (Gebser et al. 2016), whose
instantiation and truth values are defined at running time in
the propagator when the base Bλeager

is determined.

Compilation
In this section we present our strategy to compile a subpro-
gram into a propagator focusing on the main compilation
procedures for space reasons. In order to present our algo-
rithms we followed the baseline and syntactic conventions
described in (Cuteri et al. 2020) with some minor differ-
ences. In particular, the compiler transforms a logic program
in the pseudo-code of the corresponding propagator. In this
presentation the code enclosed between �� is printed by
the compiler as it is, but the code enclosed in JK , is first sub-
stituted with its run-time value before being printed. For ex-
ample, given a rule r of type (2) of the form a(X)← b(X),
Algorithm 2 at line 3 prints case ”a” :.

Given a compilable sub-program λ in input, λ is split in
two subprograms, namely λlazy and λeager as explained in
previous section. Then λlazy and λeager are compiled in dif-
ferent ways as described in the following.
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Algorithm 1 CompileProgram
Input : A normalized ASP program P
Output: Prints propagator procedure of P propagating l

1 begin
2 � Il = ∅�
3 � switch pred(l)�
4 forall the r ∈ P do
5 if r is of type (2) then
6 CompileRule(r)

7 else if r is of type (3) then
8 CompileRuleWithCount(r)

9 else if r is of type (4) then
10 CompileRuleWithSum(r)

11 else if r is of type (5) then
12 forall the c ∈ Br do
13 CompileConstraintWithStarter(r,c)

14 �return Il�

Algorithm 2 CompileRule
Input : A rule r of type (2), i.e., h← b
Output: Prints propagator procedure for the rule r

1 begin
2 �σ = ε� �u = ⊥�
3 �case ” Jpred(h)K ”:�
4 forall the i ∈ 1, ..., |trm(h)| do
5 if trm(h)[i] is variable then
6 �σ = σ ∪ { Jtrm(h)[i]K 7→ trm(l)[ JiK ]}�

7 � T = {p ∈ I+|match(σ( JbK ), p)}�
8 � U = {p ∈ (B \ I)+|match(σ( JbK ), p)}�
9 � if |T | == 0 ∧ |U | == 1 ∧ l ∈ I+�

10 � u = p | p ∈ U�
11 � R = {l} ∪ {p ∈ I−|match(σ( JbK ), p)}�
12 � Il = Il ∪ (u,R)�

13 � else if |T | = 0 ∧ l ∈ I−�
14 � forall p ∈ U �
15 � u = p�
16 � Il = Il ∪ (u, {l})�
17 �case ” Jpred(b)K ”:�
18 forall the i ∈ 1, ..., |trm(b)| do
19 if trm(b)[i] is variable ∧ trm(b)[i] ∈ trm(h) then
20 �σ = σ∪{ Jtrm(b)[i]K 7→ trm(l)[ JiK ]}�

21 � T = {p ∈ I+|match(σ( JbK ), p)}�
22 � U = {p ∈ (B \ I)+|match(σ( JbK ), p)}�
23 � if l ∈ I+�
24 � if σ( JhK ) ∈ (B \ I)+�
25 � u = σ( JhK )�
26 � Il = Il ∪ (u, {l})�
27 � else�
28 � if |T | = 0 ∧ |U | = 0 ∧ σ( JhK ) ∈ (B \ I)+�

29 � R = {p ∈ I−|match(σ( JbK ), p)}�
30 � u = σ( JhK )�
31 � Il = Il ∪ (u,R)�

Eager Propagator. Given a compilable sub-program
λeager , we first transform it in the normalized counterpart

P , as described in the previous section. Then, Algorithm
1 compiles P as an eager propagator. Recall that a propa-
gator is called to compute the deterministic consequences
of one literal at time, which is given by the solver (Cuteri
et al. 2020). Thus, in the algorithms the variable l printed in
output by the compiler is used to store the literal to propa-
gate in the propagator pseudo-code. Roughly, the propagator
matches ground literals to first order literals in the rules of
λeager (as in the grounding) and tries to temporarily build
the substitution that instantiates that rule, thus it determines
where some propagation occurs. In case of inconsistency a
reason is computed and passed to the solver for enabling
learning (Cuteri et al. 2020). In this process loop unrolling
and dead code elimination is performed using the syntactic
information on the rule structure. More formally, The algo-
rithm 1 first prints the declaration of an empty implication
list, namely Il, where the propagator stores all the propaga-
tions caused by the fact that a literal to progagate l is added
to the interpretation I . Afterward, according to the predi-
cate name of l, the propagator evaluates the propagations
depending on the kind of the rule in which the predicate ap-
pears. We concentrate on rules of type (2) and (4), since (3)
is analogous to (4), and (5) is the same as in (Cuteri et al.
2020) (full details and examples in supplementary material).
In turn, Algorithm 2 prints two different switch cases for
checking if l appears in h (line 3) or in b (line 17). In both
cases the algorithm also prints the code for substituting vari-
ables that are in the head of the rule (lines 4-6 and 18-20,
respectively). Moreover, true and undefined atoms matching
σ(b) (lines 7-8 and 21-22, respectively) are stored in two
sets, namely T and U . Note that σ is a variable substitu-
tion that replaces variables occurrences with constants that
are mapped to, e.g., consider l = a(X), if σ(X) = 1 then
σ(l) = a(1). Then, the algorithm prints the code specific for
the case when l appears in h. In particular, if l is positive
then h is true w.r.t. I and the propagator has to find a body
that can support it (lines 9-12). Otherwise, if l is negative,
then h is false w.r.t. I , then the propagator has to set as false
all possible body instantiations (lines 13-16). Instead, if the
predicate of l appears in b and l is positive, then the body
of the rule is true w.r.t. I and then the propagator has to set
h as true (lines 24-26). Otherwise, if l is negative and all
other body instantiations are false w.r.t. I , then h is derived
as false (lines 28-31). For rules of type (4), i.e., rules of the
form h ← d,#sum({V : b}) ≥ g, Algorithm 3 prints the
propagator code. In particular, it prints two different switch
cases for checking if the predicate of l appears in the head
of the rule (line 3) or in the aggregate atom (line 20). In both
cases the propagator needs to build a variable substitution
σ to simulate the rule instantiation. This substitution maps
the variables occurring in h with the constants in l (lines 4-7
and 21-24). If the predicate of l appears in h, the propaga-
tor first collects true (line 8) and undefined (line 9) atoms
w.r.t. I matching σ(b) in T and U , respectively. Next, the
propagator computes actual and possible sums as the sum
of the weights associated with literal in T and U , respec-
tively (line 10). Then, the propagator has to distinguish two
cases. If l is positive (line 11), thus h is true w.r.t. I , then
the aggregate must be true in order to support h. This can be
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done by checking that the maximal possible sum is always
greater than or equal to g. Therefore, if there is a literal, say
p, whose falsity would make the maximal possible sum less
than g (line 14), then p is derived as true (line 15). Other-
wise, if l is negative (line 16), thus h is false w.r.t. I , then the
aggregate must be false, i.e., the propagator ensures that the
actual sum does not exceed g. Therefore, if there is a literal,
say p, whose truth would make the actual sum greater than
or equal to g (line 18), then p is derived as false (line 19). If
the predicate of l appears in the aggregate, then the code of
the propagator is as follows. First, the propagator collects in
T (respectively, F ) all possible positive (respectively, nega-
tive) true w.r.t. I literals matching the variable substitution
on the head, and in U all undefined atoms matching the vari-
able substitution on the head (lines 25-27). For each literal,
say hl ∈ T ∪F ∪U , the propagator considers three different
types of propagations. In particular, if hl ∈ T or hl ∈ F ,
then the propagator performs similar operations as in lines
8-19 (lines 33-44). Instead, if hl ∈ U , then the propagator
considers two cases. If the actual sum is greater than or equal
to the guard (line 46), therefore the body of the rule is true,
and thus the head is derived as true (line 47). If the maximal
possible sum is less than the guard (line 48) then the head is
derived as false (line 49). Note that the propagator stores in
Il also the literals causing the propagation of a literal, i.e.,
the so-called reason (e.g., line 12 of Algorithm 3). In case
of inconsistency, the solver retrieves from Il the reason for
propagation used later on for learning.

Lazy Propagator. Lazy propagator instantiates the body
of rules by using literals in the model I , and extends I with
the heads obtained from such body instantiations. In particu-
lar, for each rule r ∈ λlazy , the propagator calls Algorithm 4
with r as parameter. The algorithm first reorders the body
of r in such a way that the positive body is evaluated before
the negative one (line 3). Subsequently, the algorithm calls
Algorithm 5 with the reordered body (B), the rule r, and the
index 0 as parameters. Then, for each positive literal b in B,
Algorithm 5 prints the code to iterate over positive and true
w.r.t. I literals that match σ(b) (lines 5-9). For each nega-
tive literal n in B, Algorithm 5 prints the code to check if
σ(n) is negative and true w.r.t. I (lines 29-30). For each ag-
gregate literal, instead, the algorithm recursively calls itself
with the list of literals inside the aggregate, the rule r, and
the index j of the aggregate as parameters (line 15). In this
way, the algorithm prints nested join loops and if statements
that evaluate the aggregate conjunction. After that, the algo-
rithm prints the code that computes the sum of the weights
(or count) of the elements in the aggregate set (lines 16-21).
Once nested join loops and if statements for the aggregate
conjunction are closed, the algorithm prints the code that ei-
ther checks if the aggregate relation is verified or maps the
aggregate guard to the aggregate value. Then, the code re-
turns to the end of Algorithm 4, which prints the code that
adds σ(Hr) to the model I (line 6), since nested join loops
and if statements for each body literal are printed.

Experiments
In the experiments we considered three different settings.

Algorithm 3 CompileRuleWithSum
Input : A rule r of type (4), h← d,#sum({V : b}) ≥ g
Output: Prints propagator code starting for rule r

1 begin
2 k = i s.t. trm(b)[i] = V [0], i ∈ {1, ..., |trm(b)|}
3 �case ” Jpred(h)K ”�
4 �σ = ε�
5 forall the i ∈ 1, ..., |trm(h)| do
6 if trm(h)[i] is variable then
7 �σ = σ ∪ { Jtrm(h)[i]K 7→ trm(l)[ JiK ]}�

8 � T = {p ∈ I+|match(σ( JbK ), p)}�
9 � U = {p ∈ (B \ I)+|match(σ( JbK ), p)}�

10 � act, pos = getSum(T,U, JkK )�
11 � if l ∈ I+�

12 � R = {l} ∪ {p ∈ I−|match(σ( JbK ), p)}�
13 � forall p ∈ U �
14 � if act+ pos− trm(p)[ JkK ] < σ( JgK )�
15 � Il = Il ∪ (p,R)�
16 � else�
17 � forall p ∈ U �
18 � if act+ trm(p)[ JkK ] ≥ σ( JgK )�
19 � Il = Il ∪ (p, {l} ∪ T )�
20 �case ” Jpred(b)K ”�
21 � σ = ε�
22 forall the i ∈ 1, ..., |trm(b)| do
23 if trm(b)[i] is variable ∧ trm(b)[i] ∈ trm(h) then
24 �σ = σ ∪ { Jtrm(b)[i]K 7→ trm(l)[ JiK ]}�

25 � T = {p ∈ I+|match(σ( JhK ), p)}�
26 � F = {p ∈ I−|match(σ( JhK ), p)}�
27 � U = {p ∈ (B \ I)+|match(σ( JhK ), p)}�
28 � forall hl ∈ T ∪ U ∪ F �
29 � σh = σ�
30 forall the i ∈ 1, ..., |trm(h)| do
31 if trm(h)[i] is variable then
32 �σh = σh ∪ { Jtrm(h)[i]K 7→

trm(hl)[ JiK ]}�

33 � UB = {p ∈ (B\I)+|match(σh( JbK ), h)}�
34 � FB = {p ∈ I−|match(σh( JbK ), p)}�
35 � TB = {p ∈ I+|match(σh( JbK ), p)}�
36 � act, pos = getSum(TB,UB, JkK )�
37 � if hl ∈ T�
38 � forall p ∈ UB �
39 � if act+ pos− trm(p)[ JkK ] < σh( JgK )�
40 � Il = Il ∪ (p, {hl} ∪ FB)�
41 � else if hl ∈ F�
42 � forall p ∈ UB �
43 � if act+ trm(p)[ JkK ] ≥ σh( JgK )�
44 � Il = Il ∪ (p, {hl} ∪ TB)�
45 � else�
46 � if act ≥ σh( JgK )�
47 � Il = Il ∪ (hl, TB)�
48 � else if act+ pos < σh( JgK )�
49 � Il = Il ∪ (hl, FB)�

Setting (i). A simple benchmark that we use as a motivat-
ing example to show the limits of ground&solve:
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Algorithm 4 CompileLazyRule
Input : A rule r
Output: Prints lazy propagator code for a program P

1 begin
2 h = Hr // head of r
3 B = bodyOrdering(Br)
4 �σ = ε�
5 PrintNestedJoin(B, r, 0)
6 � I = I ∪ {σ(h)}�
7 forall the i ∈ 1, ..., |B| do
8 �σ = σ Ji,0K �

Algorithm 5 PrintNestedJoin
Input : A list of literals B, a rule r, an index i
Output: Prints nested join to instantiate B

1 begin
2 forall the j ∈ 1, ..., |B| do
3 �σ Jj,iK = σ�

4 if B[j] is a positive literal then
5 �T Jj,iK = {p ∈

I+|match(σ( JB[j]K ), p)}�
6 �for all t Jj,iK ∈ T Jj,iK �

7 forall the k ∈ 1, ..., |trm(B[i])| do
8 if trm(B[j, i])[k] is variable then
9 �σ = σ ∪ { Jtrm(B[j])[k]K 7→

trm(t Jj,iK )[ JkK ]}�

10 else if B[j] is an aggregate literal then
11 Ba = bodyOrdering(conj(Ba

r ))
12 V = vars(Ba

r )
13 a s = ∅
14 a v = 0
15 PrintNestedJoin(Ba, r, j)
16 � if σ( JV K ) /∈ a s�
17 � a s = a s ∪ σ( JV K )�
18 if B[j] is sum aggregate then
19 � a v+ = σ( JV [0]K )�
20 else
21 � a v+ = 1�

22 for k ∈ 1, ..., |conj(Ba)| do
23 �σ = σ Jk,jK �

24 if B[j] is bound relation then
25 �if a v � σ( Jguard(Ba

r )K )�
26 else
27 �σ = σ ∪ { Jguard(Ba

r )K 7→ a v}�

28 else
29 �t Jj,iK = σ( JB[j]K )�
30 �if t Jj,iK ∈ I �

r1 : d(1..k)←
r2 : {a(X) : d(X); b(Y ) : d(Y )} ←
r3 : ← #count{X : a(X)} > Y, b(Y ).

r1 is a shortcut for k facts of the form d(i)← (i = 1, . . . , k);
and r2 contains a choice rule (Calimeri et al. 2020);

Setting (ii). All benchmarks from ASP competitions (Cal-
imeri et al. 2016) including at least one rule with aggregates
that can be compiled under our conditions. This setting is
useful to analyze the performance of our compilation-based
technique on benchmarks that do not present a ground-
ing bottleneck problem. The selected benchmarks are the
following: Abstract Dialectical Framework, Bottle Filling
Problem, Connected Maximum Density-Still Life, Crossing
Minimization, Incremental Scheduling, Partner Units, Soli-
taire, Weighted Sequence Problem;

Setting (iii). Three grounding-intensive benchmarks taken
from the literature, in particular Component Assignment
Problem proposed by Alviano, Dodaro, and Maratea (2018),
Dynamic In-Degree Counting and Exponential-Save pro-
posed by Bomanson, Janhunen, and Weinzierl (2019).

Hardware and Software. In all the experiments, the
compilation-based approach, reported as WASP-COMP, has
been compared with the plain version of WASP (Alviano
et al. 2015) v. 169e40d and with the state-of-the-art system
CLINGO v. 5.4.0 (Gebser et al. 2016). All the tested systems
use GRINGO (included in the binary of CLINGO) as grounder.
Moreover, for the benchmarks Dynamic In-Degree Counting
and Exponential-Save we considered also the system AL-
PHA (Weinzierl 2017), which is based on lazy-grounding
techniques. ALPHA cannot be used for other experiments
since it does not support some of the language constructs
used in the benchmarks (e.g., choice rules with bounds).
For each benchmark, we selected the rules to be compiled
by looking at the potential grounding issues. Experiments
were executed on Xeon(R) Gold 5118 CPUs running Ubuntu
Linux (kernel 5.4.0-77-generic), time and memory are lim-
ited to 2100 seconds and 4GB, respectively.

Results. Results of experiments in the setting (i) and set-
ting (ii) are reported in Table 1 and Table 2, respectively. In
the tables we report for each solver the number of solved in-
stances (sol.), the sum of running times (sum t) in seconds,
and the average used memory (avg mem) in MB. Moreover,
concerning WASP-COMP, Table 2 reports an additional col-

k WASP-COMP WASP CLINGO
t mem t mem t mem

1000 0 0 1.02 59.6 0.66 40.2
2000 0.1 18.6 4.36 286.5 3.23 303.5
3000 0.24 38.5 9.98 696.3 7.68 709.5
4000 0.53 53.7 18.47 1168.1 13.62 1216.8
5000 0.93 74.6 28.8 2215.4 22.23 1933.3
6000 1.19 109.8 42.47 2807.2 32.73 2871.1
7000 1.44 142.3 58.31 3402 42.88 3576.7
8000 1.96 152 - - - -
9000 2.89 191.6 - - - -

10000 3.87 254.7 - - - -
20000 12.52 898.5 - - - -
30000 26.43 1888.3 - - - -
40000 58.88 3319.6 - - - -
50000 - - - - - -

Table 1: Comparison with WASP and CLINGO on setting (i).
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Benchmark # WASP-COMP WASP CLINGO
sol. sum t avg mem comp. t sol. sum t avg mem sol. sum t avg mem

Abs. Dia. Fram. 200 117 23467.7 118.9 6.47 123 24311.1 117.2 200 1244.6 26.4
Bottle Filling 100 100 2208.3 773.8 11.98 100 545.8 761.8 100 394.0 213.4
Con. Max. Den. 26 6 2166.8 26.4 31.8 6 427.5 31.4 4 85.4 11.1
Crossing Min. 85 84 305.3 16.4 8.97 84 257.3 14.5 51 10013.0 20.4
Incr. Sched. 500 329 25960.7 96.6 6.94 317 42282.4 210.9 345 18952.8 253.7
Partner Units 112 52 35525.7 160.9 12.51 69 29612.5 247.6 80 7147.8 73.8
Solitaire 27 25 601.7 27.0 12.03 25 140.2 18.4 25 273.1 9.8
Weighted Seq. 65 65 6663.4 36.1 8.46 65 4713.5 32.3 65 569.6 14.5
Comp. Assign. 302 188 56137.2 814.4 20.79 70 15325.81 973.3 118 36832.0 1288.6
Dyn. Ind. Cou. 80 80 48.0 62.0 6.48 80 1374.6 619.4 80 1282.1 551.8
Exp.-Save 27 21 2594.1 527.0 * 6 18.5 369.8 7 24.4 365.4

Table 2: Comparison of the compilation-based approach with WASP and CLINGO on instances of settings (ii) and (iii).

umn (comp. t), representing the compile time in seconds.
The latter is not included in the sum of the time, since the
compilation is done only once for each benchmark (with the
exception of Exponential-Save) and, thus, can be done of-
fline. Concerning the setting (i), we observe that CLINGO
and WASP cannot solve instances with k = 8000, whereas
WASP-COMP can efficiently handle instances up to values
of k = 40000. Concerning the setting (ii), we observe that
CLINGO obtains the best performance overall, and it is faster
than WASP and WASP-COMP on the non-ground-intensive
benchmarks (above the double line in Table 2). The impact
of the proposed technique can be seen by comparing WASP-
COMP and WASP. In this case, we observe that the former
is competitive with the latter in all the benchmarks but Ab-
stract Dialectical Framework and Partner Units, where WASP
solves 6 and 17 more instances than WASP-COMP. Nonethe-
less, WASP-COMP performs better than WASP on the bench-
mark Incremental Scheduling, solving 12 more instances,
where the lazy propagator gives a clear advantage. Interest-
ingly, on this benchmark, WASP-COMP also uses less mem-
ory than WASP and CLINGO. Indeed, if only 512 MB are
available (as reasonable in some case) WASP-COMP solves
57 and 53 instances more than WASP and CLINGO, respec-
tively. Concerning the setting (iii), WASP-COMP outperforms
WASP in all the tested benchmarks solving 133 more in-
stances overall. It is important to observe that each instance
of Exponential-Save requires to be compiled, since aggre-
gates to be compiled are part of the instances. Therefore,
in this benchmark, the solving time includes also the com-
pilation time. Concerning Dynamic In-Degree Counting,
WASP-COMP and WASP solve the same number of instances,
but WASP-COMP is much faster. Moreover, we observe that
WASP-COMP solves 84 more instances than CLINGO over-
all. Finally, we observe that WASP-COMP is competitive also
with ALPHA, since the latter solves 80 instances of Dynamic
In-Degree Counting in 492.0 seconds using 649.1 MB, and
27 instances of Exponential-Save in 332.9s using 227.8 MB.

Related Work
The grounding bottleneck is widely recognized as one of
the major drawbacks of state-of-the-art ASP systems (Cu-
teri et al. 2020; Bomanson, Janhunen, and Weinzierl 2019).

Different alternative approaches have been proposed to over-
come it, from extensions of the ASP language, as Con-
straints Answer Set Programming (CASP) (Ostrowski and
Schaub 2012; Balduccini and Lierler 2017, 2013; Aziz, Chu,
and Stuckey 2013; Cat et al. 2015; Susman and Lierler
2016), and HEX programs (Eiter, Redl, and Schüller 2016),
to lazy grounding (Lefèvre and Nicolas 2009; Palù et al.
2009). Lazy grounding systems perform grounding of the
rules during the stable model search, where a rule is instan-
tiated only when its body is satisfied; in this way the ground-
ing is done only for rules used during the search. The state-
of-the-art lazy-grounding system ALPHA (Weinzierl 2017)
also includes many techniques implemented in traditional
ASP systems, such as learning, conflict-based heuristics,
restarts, and so on. Bomanson, Janhunen, and Weinzierl
(2019) implemented on top of ALPHA a techniques for lazily
rewriting aggregates as rules. This latter compared with
our approach shows similar performance on the grounding-
intensive benchmarks supported by both systems. ALPHA
differs from our approach since it avoids the grounding the
entire program, where we compile as a propagator a subpro-
gram, and automatically integrate it into the solving com-
ponent of a CDCL-based solver. Note that our approach
builds on optimized systems, whereas ALPHA requires to re-
implement all existing techniques. Moreover, we mention a
recent work (Lierler and Robbins 2021) that is based on the
same principles of (Cuteri et al. 2020), where the ground-
ing of some rules is done using a lazy propagator. However,
(Lierler and Robbins 2021) does not yet include aggregates.

Conclusion
The grounding bottleneck is a limiting factor for ASP sys-
tems based on the ground&solve architecture. Compilation-
based approaches proposed by Cuteri et al. (2020) offer the
possibility to mitigate this issue in presence of constraints
while keeping the benefits of state-of-the-art approaches. In
this paper we extend the compilation-based approaches to
handle aggregates, a relevant construct of ASP. Experiments
confirm that our approach outperforms state-of-the-art sys-
tems on several ground-intensive programs with aggregates.
Finally, we mention that benchmarks and executables are
publicly-available (Dodaro, Mazzotta, and Ricca 2021a,b).
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