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Abstract

DatalogMTL is an extension of Datalog with operators from
metric temporal logic which has received significant attention
in recent years. It is a highly expressive knowledge represen-
tation language that is well-suited for applications in temporal
ontology-based query answering and stream processing. Rea-
soning in DatalogMTL is, however, of high computational
complexity, making implementation challenging and hinder-
ing its adoption in applications. In this paper, we present
a novel approach for practical reasoning in DatalogMTL
which combinesmaterialisation (a.k.a. forward chaining) with
automata-based techniques. We have implemented this ap-
proach in a reasoner called MeTeoR and evaluated its perfor-
mance using a temporal extension of the Lehigh University
Benchmark and a benchmark based on real-world meteoro-
logical data. Our experiments show that MeTeoR is a scalable
system which enables reasoning over complex temporal rules
and datasets involving tens of millions of temporal facts.

Introduction
Temporal data is ubiquitous in many application scenarios,
such as stock trading (Nuti et al. 2011), network flow anomaly
detection (Munz and Carle 2007), and equipment malfunc-
tion monitoring (Doherty, Kvarnström, and Heintz 2009).
In order to represent knowledge and subsequently reason
in the presence of such temporal data, Brandt et al. (2018)
proposed DatalogMTL—an extension of Datalog (Ceri, Got-
tlob, and Tanca 1989) with operators from metric temporal
logic (Koymans 1990) interpreted over the rational timeline.
DatalogMTL is a powerfulKR language,which has found ap-
plications in ontology-based query answering (Brandt et al.
2018; Kikot et al. 2018; Kalaycı et al. 2018; Koopmann 2019)
and stream reasoning (Wałęga, Kaminski, and Cuenca Grau
2019). For example, the following DatalogMTL rule can be
used to analyse equipment data:

�[0,1]ExcHeat(G) ← �[0,1]Temp24(G) ∧x[0,1]Temp41(G).
The rule states that a device G has been under excessive heat
continuously within a past interval of length 1 (�[0,1]) if the
temperature recorded in this interval was always above 24
degrees (Temp24) and also, at some point in this interval
(x[0,1]), the temperature was above 41 degrees (Temp41).
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Reasoning in DatalogMTL is, however, of high complex-
ity, namely ExpSpace-complete (Brandt et al. 2018) and
PSpace-complete with respect to data size (Wałęga et al.
2019), which makes reasoning in practice challenging. Thus,
research has recently focused on establishing a suitable trade-
off between expressive power and complexity of reasoning,
by identifying lower complexity fragments of DatalogMTL
(Wałęga et al. 2020b; Wałęga, Zawidzki, and Cuenca Grau
2021) as well as studying alternative semantics with more
favourable computational behaviour (Wałęga et al. 2020a;
Ryzhikov, Wałęga, and Zakharyaschev 2019).

The design and implementation of practical reasoning al-
gorithms for the full DatalogMTL language, however, re-
mains a largely unexplored area—something that has pre-
vented its widespread adoption in applications. In particular,
the only implementation we are aware of is the prototype
by Brandt et al. (2018), which is limited to non-recursive
DatalogMTL programs. This is in stark contrast with plain
Datalog, for which a plethora of systems have been devel-
oped and successfully deployed in practice (Motik et al. 2014;
Carral et al. 2019; Bellomarini, Sallinger, and Gottlob 2018).

In this paper, we present the first practical reasoning al-
gorithm for the full DatalogMTL language, which combines
materialisation (a.k.a. forward chaining) and automata-based
reasoning. On the one hand, materialisation is the reasoning
paradigm adopted in most Datalog systems (Bry et al. 2007);
to check fact entailment in this setting, one first computes
in a forward chaining manner all facts logically entailed by
the input program and dataset, and then verifies whether
the input fact is included amongst the entailed facts. A di-
rect implementation of materialisation-based reasoning in
DatalogMTL is, however, problematic since forward chain-
ing may require infinitely many rounds of rule applications
(Wałęga, Zawidzki, and Cuenca Grau 2021). On the other
hand, Wałęga et al. (2019) introduced a decision procedure
for DatalogMTL which relies on constructing Büchi au-
tomata and checking non-emptiness of their languages. This
procedure has been introduced for obtaining tight complex-
ity bounds, and not with efficient implementation in mind; in
particular, the constructed automata are of exponential size,
which makes direct implementations impractical.

Our new algorithm deals with these difficulties by pro-
viding an effective way of combining the scalability of
materialisation-based reasoning and the completeness guar-
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anteed by automata-based procedures, thus bringing to-
gether ‘the best of both worlds’. To achieve this, our algo-
rithm aims at minimising reasoning workload by resorting
to materialisation-based reasoning whenever possible while
minimising the use of automata. Furthermore, we propose
a suite of optimisation techniques aimed at reducing the
workload involved in rule application duringmaterialisation-
based reasoning, as well as in Büchi automata construction
and the subsequent non-emptiness checks.

We have implemented our approach in a new reasoner
called MeTeoR (https://meteor.cs.ox.ac.uk), which supports
fact entailment over arbitrary (i.e., potentially recursive)
DatalogMTL programs and large-scale temporal datasets.
We have evaluated the performance of our reasoner on an
extension of the Lehigh University Benchmark (Guo, Pan,
and Heflin 2005) with temporal rules and data, as well as on
a benchmark based on a real-world meteorological dataset
(Maurer et al. 2002). Our results show that MeTeoR is a
scalable system that can successfully reason over complex
recursive programs and datasets including tens of millions
of temporal facts; furthermore, it consistently outperformed
the approach by Brandt et al. (2018) when reasoning over
non-recursive programs.

Preliminaries
We recapitulate the standard definition of DatalogMTL, in-
terpreted with the standard continuous semantics over the
rational timeline (Brandt et al. 2018).

Syntax. A relational atom is a function-free first-order
atom of the form %(s), with % a predicate and s a tuple
of terms. A metric atom is an expression given by the follow-
ing grammar, where %(s) is a relational atom, and x, |, �,
�, S, U are MTL operators indexed with positive rational
intervals r (i.e., containing only non-negative rationals):

" F > | ⊥ | %(s) | xr" | |r" |
�r " | �r" | "Sr" | "Ur".

A rule is an expression of the form of

" ′← "1 ∧ · · · ∧ "=, for = ≥ 1, (1)

with each "8 a metric atom, and " ′ a metric atom not
mentioning operators x, |, S, and U; metric atom " ′ is
the rule’s head and the conjunction"1∧· · ·∧"= is its body.
A rule is safe if each variable in its head also occurs in its
body; a program is a finite set of safe rules. An expression
(metric atom, rule, etc.) is ground if it mentions no variables.
A fact is an expression "@r with " a ground relational
atom and r a rational interval; a dataset is a finite set of
facts. The coalescing of facts "@r1 and "@r2, with r1
and r2 intervals that are either adjacent or have a non-empty
intersection, is the fact "@r3 where r3 is the union of r1
and r2. The grounding ground(Π,D) of a program Π with
respect to a datasetD is a set of all ground rules obtained by
assigning constants from Π and D to variables in Π.

The dependency graph of a program Π is the directed
graph �Π, with a vertex E% for each predicate % in Π and
an edge (E&, E') whenever there is a rule in Π mentioning

ℑ, C |= > for each C
ℑ, C |= ⊥ for no C
ℑ, C |= xr" iff ℑ, C ′ |= " for some C ′ with C − C ′ ∈ r
ℑ, C |= |r" iff ℑ, C ′ |= " for some C ′ with C ′ − C ∈ r
ℑ, C |= �r" iff ℑ, C ′ |= " for all C ′ with C − C ′ ∈ r
ℑ, C |= �r" iff ℑ, C ′ |= " for all C ′ with C ′ − C ∈ r
ℑ, C |= "1Sr"2 iff ℑ, C ′ |= "2 for some C ′ with C − C ′ ∈ r

and ℑ, C ′′ |= "1 for all C ′′ ∈ (C ′, C)
ℑ, C |= "1Ur"2 iff ℑ, C ′ |= "2 for some C ′ with C ′ − C ∈ r

and ℑ, C ′′ |= "1 for all C ′′ ∈ (C, C ′)

Table 1: Semantics of ground metric atoms

& in the body and ' in the head. Program Π is recursive
if �Π has a cycle. A predicate % is recursive in Π if �Π
has a path ending in E% and including a cycle (the path can
be a self-loop). Furthermore, for a predicate %, a rule A is
%-relevant in Π if there exists a rule A ′ in Π mentioning %
or ⊥ in the head and a path in �Π starting from a vertex
representing the predicate in the head of A and ending in
a vertex representing some predicate from the body of A ′.
Intuitively, %-relevant rules may be used for deriving facts
about % or ⊥ (i.e., inconsistency).

Semantics. An interpretation ℑ specifies, for each ground
relational atom " and each time point C ∈ Q, whether "
holds at C, in which case we write ℑ, C |= " . This extends
to metric atoms with MTL operators as shown in Table 1.
An interpretation ℑ satisfies a fact "@r if ℑ, C |= " for
all C ∈ r. An interpretation ℑ satisfies a ground rule A if,
whenever ℑ satisfies each body atom of A at a time point
C, then ℑ also satisfies the head of A at C. An interpretation
ℑ satisfies a (non-ground) rule A if it satisfies each ground
instance of A. An interpretation ℑ is a model of a program
Π if it satisfies each rule in Π, and it is a model of a dataset
D if it satisfies each fact in D. A program Π and a dataset
D are consistent if they have a model, and they entail a fact
"@r if each model of both Π and D is also a model of
"@r. Each dataset D has the least model ℑD , and we say
that dataset D represents interpretation ℑD .

Canonical Interpretation. The immediate consequence
operator )Π for a program Π is a function mapping an in-
terpretation ℑ to the least interpretation containing ℑ and
satisfying the following property for each ground instance
A of a rule in Π: whenever ℑ satisfies each body atom of A
at time point C, then )Π (ℑ) satisfies the head of A at C. The
successive application of )Π to ℑD defines a transfinite se-
quence of interpretations ) U

Π
(ℑD) for ordinals U as follows:

(i) )0
Π
(ℑD) = ℑD , (ii) ) U+1Π

(ℑD) = )Π () UΠ (ℑD)) for U an
ordinal, and (iii) ) U

Π
(ℑD) =

⋃
V<U )

V

Π
(ℑD) for U a limit or-

dinal. The canonical interpretation ℭΠ,D of Π and D is the
interpretation )l1

Π
(ℑD), with l1 the first uncountable ordi-

nal. If Π and D have a model, the canonical interpretation
ℭΠ,D is the least model of Π and D (Brandt et al. 2018).
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Reasoning. The main reasoning tasks in DatalogMTL are
fact entailment and consistency checking. The former is to
check whether a program and dataset entail a given fact,
and the latter is to check whether a program and dataset are
consistent. These problems are reducible to the complement
of each other; both of them are ExpSpace-complete (Brandt
et al. 2018) and PSpace-complete in data complexity (i.e.
with respect to the size of a dataset) (Wałęga et al. 2019).

Materialisation vs. Automata-based Reasoning
Materialisation (a.k.a. forward chaining) is a standard rea-
soning technique used in scalable implementations of plain
Datalog, which consists of successive rounds of rule applica-
tions to compute all consequences of an input program and
dataset (Motik et al. 2019; Bry et al. 2007). The resulting
set of facts represents the canonical model over which all
queries can be answered directly. As in plain Datalog, each
consistent pair of a DatalogMTL programΠ and a datasetD
admits a canonical model ℭΠ,D defined as the least fixpoint
of the immediate consequence operator )Π capturing a sin-
gle round of rule applications. The use of metric operators
in rules, however, introduces two main practical difficulties.
First, DatalogMTL interpretations are intrinsically infinite
and hence a materialisation-based algorithm must be able to
finitely represent (e.g., as a dataset) the result of each individ-
ual round of rule applications. Second, reaching the least fix-
point of the immediate consequence operator inDatalogMTL
may require an infinite number of rule applications; hence,
a direct implementation of materialisation-based reasoning
is non-terminating. In contrast, materialisation is guaranteed
to terminate for non-recursive programs, thus providing a
decision procedure (Brandt et al. 2018).

Wałęga et al. (2019) provided an automata-based decision
procedure for consistency checking applicable to unrestricted
DatalogMTL programs. This approach relies on reducing
consistency checking of an input program Π and dataset D
to checking non-emptiness of two Büchi automata. These au-
tomata are responsible for accepting parts of amodel located,
respectively, to the left of the least number mentioned in D,
and to the right of the greatest number inD. Thus, Π andD
have a model if and only if both automata have non-empty
languages. States of these automata are polynomially repre-
sentable in the size of D, so the reduction yields a PSpace
data complexity bound for consistency checking. The idea
behind the reduction is based on splitting a model witnessing
consistency ofΠ andD into fragments corresponding to seg-
ments of the timeline; automata states describe metric atoms
holding in such segments and the transition functions guar-
antee that atoms from successive fragments do not violate the
semantics of metric operators. Although this automata-based
approach provides tight complexity bounds, it does not yield
a practical decision procedure since the automata contain a
large (exponential in the size of D) number of states.

A Practical Decision Procedure
In this section, we present our approach to practical reasoning
in the full DatalogMTL language. Our algorithm decides fact
entailment, that is, checks whether a given fact is entailed by

a given program and dataset. To this end, we optimise and
combine materialisation—which is a scalable technique, but
is not guaranteed to terminate—, and the automata-based
approach—which is terminating in general, but less efficient
in practice. The key novelties of our approach are as follows:
– an optimised implementation of the materialisation ap-
proach, which aims at applying the immediate conse-
quence operator efficiently and storing a succinct repre-
sentation of the fragment of the canonical interpretation
constructed thus far;

– an optimised implementation of the automata-based rea-
soning approach of Wałęga et al. (2019), which aims at
minimising the size of the automata; and

– an effective way of combining materialisation with
automata-based reasoning that aims at reducing reasoning
workload and achieving early termination.

In the remainder of this section we will discuss each of these
components in detail.

Optimising Materialisation
The key component of materialisation-based reasoning is
an effective implementation of the immediate consequence
operator capturing a single round of rule applications. Our
implementation takes as input a program Π and a dataset D
and computes a dataset D ′ representing the interpretation
)Π (ℑD) obtained by application of )Π to the least model of
D. Thus, it addresses one of the difficulties associated to
materialisation-based reasoning by ensuring that the result
of a single round of rule applications is a finite object.

To facilitate the presentation of our rule application proce-
dure, we first briefly discuss details regarding the represen-
tation and storage of datasets. We associate to each ground
relational atom a list of intervals sorted by their left end-
points, which provides a compact account of all facts men-
tioning this ground relational atom. Moreover, each ground
relational atom is indexed by a composite key consisting of its
predicate and its tuple of constants. This layout is useful for
fact coalescing and fact entailment checking; for instance, to
check if fact "@r is entailed by datasetD, it suffices to find
r′ such that "@r′ ∈ D and r ⊆ r′; this can be achieved
by first scanning the sorted list of intervals for " using the
index and checking if r is a subset of one of these intervals.
Additionally, each ground relational atom is also indexed by
each of its term arguments to facilitate joins. Finally, when
a fact is inserted into the dataset, the corresponding list of
intervals is sorted to facilitate subsequent operations.

We perform a single round of rule applications with a pro-
cedure ApplyRules presented in Algorithm 1. To construct
a representation of )Π (ℑ�), for an input program Π and
a dataset D, our algorithm performs two main steps. The
first step is performed for each ground rule in ground(Π,D)
(Line 2), where rule grounding is performed using a standard
index nested loop join algorithm (Garcia-Molina, Ullman,
and Widom 2009) since facts in D are indexed. Then, the
first step consists of extending D with all facts that can be
derived by applying A toD (we also add ⊥ toD if some rule
leads to inconsistency). Hence, the new dataset D ′ repre-
sents the interpretation ){A } (ℑ�) (Line 3). To implement the
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Algorithm 1: ApplyRules
Input: a program Π and a dataset D
Output: a dataset

1 D ′ B D;
2 for each rule A ∈ ground(Π,D) do
3 D ′ B representation of ℑD′ ∪ ){A } (ℑD);
4 for each ground metric atom " appearing in D ′ do
5 Retrieve all "@r1, . . . , "@r= occuring in D ′;
6 Merge r1, . . . , r= into r′1, . . . , r

′
<;

7 Replace "@r1, . . . , "@r= with
"@r′1, . . . , "@r′< in D ′;

8 Return D ′;

first step, we modified the completion rules for normalised
programs defined by Brandt et al. (2018, Section 3)—our ap-
proach is suitable for arbitrary DatalogMTL rules and thus
not only for rules in the aforementioned normal form, which
disallows nested MTL operators, the use of| andx in rule
bodies, and the use of � and � in rule heads (Brandt et al.
2018). Since our approach does not require program normal-
isation as a pre-processing step, we avoid the computation
and storage of auxiliary predicates introduced by the normal-
isation. Furthermore we implement an optimised version of
(temporal) joins that is required to evaluate rules with several
body atoms. A naïve implementation of the join of metric
atoms "1, . . . , "= occurring in the body of a rule would re-
quire computing all intersections of intervals r1, . . . , r= such
that "8@r8 occurs in the so-far constructed dataset, for each
8 ∈ {1, . . . , =}. Since each "8 may hold in multiple intervals
in the dataset, the naïve approach is ineffective in practice.
In contrast, we implemented a variant of the sort-merge join
algorithm: we first sort all = lists of intervals corresponding
to "1, . . . , "=, and then scan the sorted lists to compute the
intersections, which improves performance. Our approach to
temporal joins can be seen as a generalisation of the idea
sketched by Brandt et al. (2018, Section 5), which deals with
two metric atoms at a time but has not been put into practice.

The second step ofAlgorithm1 consists of coalescing facts
in the so-far constructed dataset (Lines 4–7). Conceptually,
whenever there exist facts "@r and "@r′ inD ′ such that
r and r′ can be coalesced, we replace themwith"@r ∪ r′.
To achieve this in practice, for each ground relational atom
occurring inD ′ we iterate through the corresponding sorted
list of intervals and merge them as needed (Lines 5–6). Re-
placing intervals with coalesced ones reduces memory us-
age while preventing redundant computations in subsequent
rounds of rule applications. Finally, in Line 8, Algorithm 1
returns a dataset, which represents )Π (ℑ�).

Optimising Automata-based Reasoning
We have implemented an optimised variant of the automata-
based approach for checking consistency of a programΠ and
datasetD introduced byWałęga et al. (2019), which is based
on verifying non-emptiness of two Büchi automata. States of
these automata are of size polynomial in D and exponential
in the combined size of Π and D, which makes automata

construction and the non-emptiness checks hard in practice.
To address this difficulty, our implementation introduces a
number of optimisations and we next highlight two of them.

First, instead of directly checking consistency of Π and
D, our implementation checks consistency of Π and the
‘relevant’ part of D, namely the subset D ′ of facts in D
mentioning predicates occurring in the bodies of rules in Π.
This optimisation is based on the straightforward observation
that Π and D are consistent if and only if Π and D ′ are. In
practice, D ′ can be significantly smaller than D, with the
subsequent reduction in the size of the constructed automata.

Second, we have optimised the construction of states of the
automata when searching for accepting runs. Since automata
states represent fragments of a model, we can exploit the
semantics of MTL operators to restrict possible locations
of metric atoms holding in the same state. For example, if
�[0,∞)% holds at a time point C, then it needs to hold in all time
points greater than C; similarly, if |[0,∞)% holds at C, then it
needs to hold at all time points smaller than C, and analogous
statements hold for metric atoms with past operators � and
x. We have incorporated a suite of such restrictions, which
resulted in a more efficient construction of automata states.

Combining Materialisation and Automata
Our approach aims at minimising the reasoning workload
by considering only relevant parts of the input during rea-
soning, and by resorting to materialisation-based reasoning
whenever possible while minimising the use of automata.

Given as input a program Π, a dataset D, and a fact
%(s)@r, our procedure returns a truth value stating whether
Π and D entail %(s)@r. To this end, we proceed as sum-
marised in Algorithm 2. The algorithm starts by checking
whether %(s)@r is already entailed by D alone, in which
case True is returned in Line 1. As already discussed, this
check can be realised very efficiently using suitable indexes.

In Line 2, we identify (using the program’s dependency
graph�Π) the subsetΠ% of %-relevant rules inΠ, that can be
potentially used to derive %(s)@r (or⊥, i.e., inconsistency).
This allows us to disregard a potentially large number of ir-
relevant rules during reasoning, optimise automata construc-
tion, and also identify cases where materialisation naturally
terminates and automata-based reasoning is not required. In
particular, if Π% is non-recursive, fact entailment can be de-
cided using only materialisation (Lines 3–8), namely rules
of Π% are applied (Line 5) until entailment of %(s)@r is
detected (Line 6) or a fixpoint of the immediate consequence
operator is reached (Line 7).

Even if Π% is recursive, we can still benefit from using
materialisation. For this, we start by performing a ‘pre-
materialisation’ step (Lines 10–16), where we materialise
until all factsmentioning non-recursive predicates inΠ% have
been derived, in which case we break the pre-materialisation
loop and continue to the next stage. Upon completion of
the pre-materialisation step, we run two threads in parallel,
where the first thread continues applying materialisation on a
best-effort basis (Lines 18–23) and the second thread resorts
to automata (Lines 24–26); the algorithm terminates as soon
as one of the threads generates an output truth value.
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Algorithm 2: Practical fact entailment
Input: A program Π, a dataset D, and a fact %(s)@r

Output: A truth value
1 if D |= %(s)@r then Return True;
2 Π% B the set of all %-relevant rules in Π;
3 if Π% is non-recursive then
4 loop
5 D ′ B ApplyRules(Π% ,D);
6 if D ′ |= %(s)@r then Return True;
7 if D ′ = D then Return False;
8 D B D ′;
9 else
10 loop
11 D ′ B ApplyRules(Π% ,D);
12 if D ′ |= %(s)@r then Return True;
13 if D ′ = D then Return False;
14 D B D ′;
15 if all facts with non-recursive predicates are

derived then break;
16 Dpre B D;
17 run two threads in parallel:
18 Thread 1:
19 loop
20 D ′ B ApplyRules(Π% ,D);
21 if D ′ |= %(s)@r then Return True;
22 if D ′ = D then Return False;
23 D B D ′;
24 Thread 2:
25 Π′,D ′ B EntailToInconsist(Π% ,Dpre, %(s)@r);
26 Return negation of AutomataProcedure(Π′,D ′);

The second thread reduces fact entailment to inconsistency
of a new programΠ′ and datasetD ′ using the reduction from
the literature (Brandt et al. 2018;Wałęga et al. 2019) and then
runs the automata-based procedure for consistency checking
described in the previous section. Our reduction from entail-
ment to inconsistency (Line 25) uses the set of relevant rules
Π% instead ofΠ, which reduces the size of the automata; fur-
thermore we use the pre-materialised datasetDpre instead of
the input dataset D to optimise the non-emptiness tests for
the constructed automata. Indeed, with Dpre we can deter-
mine entailment of all facts with non-recursive predicates,
and this allows us to reduce the search space when checking
existence of accepting runs of the automata.

Algorithm 2 is clearly sound and complete. Furthermore,
it is designed so that, on the one hand, the majority of en-
tailment tests are handled via materialisation and, on the
other hand, the recursive program passed on as input to the
automata-based approach is small. These features of the al-
gorithm will be empirically confirmed by our experiments
described in the following section.

Implementation and Evaluation
We have implemented a prototype DatalogMTL reasoner,
called MeTeoR, which exploits our practical decision proce-

dure from Algorithm 2 to decide fact entailment. Our imple-
mentation uses existing libraries in the Python 3.8 eco-system
without depending on other third-party libraries. To the best
of our knowledge, no reasoning benchmark is currently avail-
able for DatalogMTL1, so to evaluate the performance of
MeTeoR we have designed two new benchmarks.
LUBMBenchmark. We obtain the first benchmark by ex-
tending the Lehigh University Benchmark (LUBM) (Guo,
Pan, and Heflin 2005) with temporal rules and data. To con-
struct temporal datasets we modified LUBM’s data genera-
tor, which provides means for generating datasets of differ-
ent sizes, to randomly assign an interval to each generated
fact; the rational endpoints of each interval belong to a range,
which is a customised parameter.We used the same approach
to generate input query facts for entailment checks. In addi-
tion, we extended the 56 plain Datalog rules obtained from
the OWL 2RL fragment of LUBMwith 29 temporal rules in-
volving recursion and mentioning all metric operators avail-
able in DatalogMTL. We denote the resulting DatalogMTL
program with 85 rules as Π! .
Meteorological Benchmark. For this benchmark, we used
a freely available dataset with meteorological observations
(Maurer et al. 2002); in particular, we used a set D, of 397
millions of facts from the years 1949–2010. We then adapted
the DatalogMTL program used by Brandt et al. (2018) to
reason with DatalogMTL about weather, which resulted in a
a non-recursive program Π, with 4 rules.
Machine Configuration. All experiments have been con-
ducted on a Dell PowerEdge R730 server with 512 GB RAM
and two Intel Xeon E5-2640 2.6 GHz processors running Fe-
dora 33, kernel version 5.8.17. Our first experiment tests the
scalability of MeTeoR; the second experiment compares the
performance of MeTeoR and the approach of Brandt et al.
(2018) when reasoning over non-recursive programs. In both
experiments, each test was conducted once.

Experiment 1: Scalability of MeTeoR
In Experiment 1a, to evaluate the scalability of MeTeoR, we
used the recursive program Π! from our LUBM benchmark
and four datasets (obtained with LUBM’s data generator)
D1
!
, D2

!
, D3

!
, and D4

!
of increasing size, which consist

of 5, 10, 15, and 20 million facts, respectively. As already
mentioned, input query facts are randomly generated. We
hypothesise that performance critically depends on the type
of these input query facts and, in particular, on which block
within Algorithm 2 the answer is returned.

To check our hypothesis we have identified five disjoint
types of input query facts for an input programΠ and dataset
D, depending on where in the execution of Algorithm 2 an
answer is returned. In particular, Algorithm 2 terminates in
– Line 1 for facts of type T1, so these facts are already
entailed by the input dataset D;

– Lines 6 or 7 for facts of type T2, so these facts are not
entailed by D and mention a predicate whose relevant
rules in Π are non-recursive;
1The datasets used by Brandt et al. (2018) to test their reasoning

approach for non-recursive programs are not publicly available.
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T1 T2 T3 T4 T5
D1
!

0.6s(2 = 0.6s,= = 0) 70.1s(2 = 2.1s,= = 1.7) 66.9s(2 = 4.1s,= = 1.9) 97.8s(2 = 3.2s,= = 21.4) 7.6min(? = 2.7s)
D2
!

0.8s(2 = 0.8s,= = 0) 152.5s(2 = 8.9s,= = 1.5) 167.9s(2 = 11.2s,= = 3.1)229.3s(2 = 10.2s,= = 17.1) 50.2min(? = 10.5s)
D3
!

1.9s(2 = 1.9s,= = 0)201.4s(2 = 13.1s,= = 1.6)269.2s(2 = 18.3s,= = 2.9)284.8s(2 = 27.3s,= = 11.1) 92.1min (? = 19.7s)
D4
!

2.5s(2 = 2.5s,= = 0)301.2s(2 = 21.3s,= = 1.8)341.9s(2 = 26.1s,= = 2.6) 312.5s(2 = 41.3s,= = 7.8) 172.6min (? = 28.6s)

Table 2: Results of Experiment 1a

– Line 13 or 22 for facts of type T3, so materialisation
of the relevant (recursive) subprogram reaches a fixpoint,
and the fact is not entailed by the resultingmaterialisation;

– Line 12 or 21 for facts of type T4, so these facts have a
recursive relevant subprogramand are found to be entailed
after finitely many rounds of rule application; and

– Line 26 for facts of type T5, so the entailment of these
facts is checked using automata.
The results of Experiment 1a are reported in Table 2,

where we have generated 10 facts of each type and recorded
the average runtime of MeTeoR for such sets of 10 facts;
additionally, we have stated in brackets how much time was
consumed for fact coalescing (2) and how many rounds of
rule applications (=) were performed on average. In the case
of type T5 we report, instead, the time consumed by the
pre-materialisation step (?). The experiment shows that the
performance of MeTeoR is dependent on the type of an in-
put fact, and in particular, on whether the system can verify
it using materialisation only (types T1–T4) or automata are
needed (type T5). As expected, runtimes increase with the
size of the dataset and the number of rounds of rule appli-
cations needed. Furthermore, although materialisation was
more efficient, it is worth noting that the automata-based ap-
proach could also be successfully applied to such large-scale
datasets. Finally, coalescing times were relatively small, and
so were pre-materialisation times for facts of type T5.
If the majority of input facts can be verified using ma-

terialisation only, then we can expect robust and scalable
performance; we hypothesise that this is likely to be the case
in many practical situations. To verify this hypothesis on our
benchmark, we have generated 1, 000 random facts for each
of the datasetsD1

!
–D4

!
and calculated the percentage of facts

that belong to each of the types T1–T5 (with respect to the
considered dataset and the program Π!). We found that in
46.0% cases the facts were of type T1, 28.3% of type T2,
16.6% of type T3, 8.3% of type T4, and only 0.8% of type
T5. This supports our hypothesis that input facts requiring
the use of automata may rarely occur in practice.

Finally, in Experiment 1b, we have stress tested MeTeoR.
To this end, we proceeded as in Experiment 1a, but we keep
constructing bigger datasets, until the average run times ex-
ceed 40 minutes. Note that this threshold is already exceeded
by facts of type T5 in Experiment 1a, whereas facts of type
T1 do not require rule applications. Therefore, in Experiment
1b we focused on types T2, T3, and T4. Our results, which
are shown in Figure 1, suggest that MeTeoR scales very well
and it is capable of handling datasets containing up to 150
million temporal facts using materialisation.
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Figure 1: Results of Experiment 1b

Experiment 2: Comparison with Baseline
We performed two experiments to compare the performance
of MeTeoR and the baseline approach of Brandt et al. (2018)
for reasoning with non-recursive programs. The approach
by Brandt et al. (2018) is based on query rewriting—-given
a target predicate % and an input program Π the algorithm
generates a SQL query that, when evaluated over the in-
put dataset D, provides the set of all facts with maximal
intervals over % entailed by Π and D. To the best of our
knowledge there is no publicly available implementation of
this approach; thus, we have produced our own implemen-
tation. Following Brandt et al. (2018), we used temporary
tables (instead of subqueries) to compute the extensions of
predicates appearing in Π on the fly, which has two impli-
cations. First, we usually have not just one SQL query but
a set of queries for computing the final result; second, simi-
larly to MeTeoR, the approach essentially works bottom-up
rather than top-down. The implementation by Brandt et al.
(2018) provides two variants for coalescing: the first one uses
standard SQL queries by Zhou, Wang, and Zaniolo (2006),
whereas the second one implements coalescing explicitly.
For our baseline we adopted the standard SQL approach,
which is less dependent on implementation details. Finally,
we used Postgresql 10.18 for all our baseline experiments.
In each test, we could verify that the answers returned by
MeTeoR and the baseline coincided.

In Experiment 2a, we compared the performance of our
system with that of the baseline using three target predi-
cates from our LUBM benchmark program Π! , whose rele-
vant sets of rules constitute non-recursive programsΠ1

!
,Π2

!
,

and Π3
!
consisting of 5, 10, and 21 rules, respectively. For

each program Π1
!
–Π3

!
and each dataset D1

!
–D4

!
from our

benchmark, we used the baseline approach and MeTeoR to
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Π1
!

Π2
!

Π3
!

baseline MeTeoR baseline MeTeoR baseline MeTeoR
D1
!

160.3s 51.3s 345.9s 146.8s 523.9s 213.4s
D2
!

331.8s 90.5s 747.8s 321.9s 1118.5s 455.2s
D3
!

503.2s 114.2s 1154.0s 425.8s 1688.5s 760.1s
D4
!

683.0s 170.3 1575.6s 582.7s 2254.6s 953.4s

Table 3: Results of Experiment 2a

compute all facts over the target predicates entailed by the
corresponding program and dataset—this was achieved by
MeTeoR using materialisation only since these programs are
non-recursive. As a result, MeTeoR computed a representa-
tion of the entire canonical model, and not just the extension
of the target predicates. As shown in Table 3, both approaches
exhibit good performance and scalable behaviour as the size
of the data increases, with our system consistently outper-
forming the baseline.

In Experiment 2b, we performed similar tests as in Ex-
periment 2a, but using the meteorological benchmark. We
chose two target predicates from the program Π, which
correspond to non-recursive programs Π1

,
and Π2

,
, each

with two rules. In addition, we constructed subsets D8
,

of
the entire meteorological datasetD, , where the superscript
8 indicates the number of years covered by the dataset; in
particular D62

,
is the full dataset covering all 62 years, so

D62
,
= D, . The results, as presented in Table 4, show that

MeTeoR consistently outperforms the baseline approach.

Π1
,

Π2
,

baseline MeTeoR baseline MeTeoR
D10
,

376.9s 141.8s 38.8s 34.8s
D20
,

761.3s 324.0s 78.5s 77.9s
D30
,

1059.5s 430.8s 119.4s 101.8s
D40
,

1406.5s 782.8s 163.23s 140.6s
D50
,

1765.1s 929.2s 203.7s 171.8s
D62
,

2234.0s 1050.8s 258.5s 240.4s

Table 4: Results of Experiment 2b

Although in Experiments 2a and 2b the performance of
the baseline was comparable to that of MeTeoR, we hy-
pothesised that the performance gap would significantly in-
crease (in favour of MeTeoR) as the number of temporal
joins involved during reasoning increases. This is because
computing temporal joins requires intersecting intervals—
something for which databases do not seem to be optimised.
In contrast, we anticipate that the performance of MeTeoR is
more robust due to the way we implement joins (by first sort-
ing the sets of intervals involved in a join and then linearly
scanning these sets to compute the relevant intersections).

To verify this hypothesis we performed Experiment 2c
which is similar to Experiments 2a and 2b, but we consid-
ered only one target predicate from the LUBM benchmark
with the corresponding (non-recursive) program Π1
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Figure 2: Results of Experiment 2c

datasets D200
!

, D1000
!

, D2000
!

, D3000
!

, and D4000
!

, which, for
each relational atom, contain increasing number of facts. In
particular, these datasets contain facts mentioning 7, 082 re-
lational atoms—D200

!
has 200 facts for each of these atoms

(so in total 1, 416, 400 facts); whereas D1000
!

, D2000
!

, D3000
!

,
and D4000

!
have 1000, 2000, 3000, and 4000 facts, respec-

tively. In general, the larger is the number of facts mentioning
the same relational atom, the larger the number of temporal
joins involved in reasoning. Thus, our hypothesis is that, as
we progress from D200

!
towards D4000

!
, we will see a larger

performance gap between baseline and MeTeoR.
The results of Experiment 2c are shown in Figure 2. As an-

ticipated, the performance of the baseline quickly degrades as
the number of temporal joins needed for SQL query evalua-
tion increases, whereas the performance of MeTeoR remains
stable. We see these results as empirical validation for the
need of specialised temporal join algorithms, which are not
provided off-the-shelf by SQL engines.

Conclusion and Future Work

We have presented the first practical algorithm and scal-
able implementation for the full DatalogMTL language. Our
system MeTeoR effectively combines optimised implemen-
tations of materialisation and automata-based reasoning, and
was able to successfully decide fact entailment over complex
recursive programs and large-scale datasets containing tens
of millions of temporal facts.

We see many exciting avenues for future research. First,
Cucala et al. (2021) have recently extended DatalogMTL
with stratified negation as failure—a very useful feature for
applications—and provided an automata-based decision pro-
cedure. It would be interesting to extend MeTeoR to support
stratified negation, which will require a non-trivial revision
of our algorithm since materialisation within each separate
stratum may be non-terminating. Second, it would be inter-
esting to explore incremental reasoning techniques (Wałęga,
Kaminski, and Cuenca Grau 2019), which are especially rel-
evant to stream reasoning applications. Third, we aim to
explore additional optimisations to further improve scalabil-
ity and also to apply MeTeoR in real-world applications in
collaboration with our industrial partners.
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