
Characterizing the Program Expressive Power of Existential Rule Languages

Heng Zhang1, Guifei Jiang2

1 College of Intelligence and Computing, Tianjin University, China
2 College of Software, Nankai University, China
heng.zhang@tju.edu.cn, g.jiang@nankai.edu.cn

Abstract

Existential rule languages are a family of ontology languages
that have been widely used in ontology-mediated query an-
swering (OMQA). However, for most of them, the expressive
power of representing domain knowledge for OMQA, known
as the program expressive power, is not well-understood yet.
In this paper, we establish a number of novel characteriza-
tions for the program expressive power of several important
existential rule languages, including tuple-generating depen-
dencies (TGDs), linear TGDs, as well as disjunctive TGDs.
The characterizations employ natural model-theoretic prop-
erties, and automata-theoretic properties sometimes, which
thus provide powerful tools for identifying the definability of
domain knowledge for OMQA in these languages.

Introduction
Existential rule languages, a.k.a. Datalog±, had been ini-
tially introduced in databases as dependency languages to
specify the semantics of data stored in a database (Abite-
boul, Hull, and Vianu 1995). As one of the most popular de-
pendency languages, tuple-generating dependencies (TGDs)
and its extensions, including (disjunctive) embedded depen-
dencies and disjunctive TGDs, had been extensively studied.
Recently, these languages have been rediscovered as lan-
guages for data exchange (Fagin et al. 2005), data integra-
tion (Lenzerini 2002), ontology reasoning (Calı̀ et al. 2010)
and knowledge graph (Bellomarini et al. 2017).

A major computational task based on existential rule lan-
guages is known as ontology-mediated query answering
(OMQA), which generalizes the traditional database query-
ing by enriching database with a domain ontology. Unfortu-
nately, even for TGDs, the problem of OMQA was proved
to be undecidable (Beeri and Vardi 1981). Towards efficient
reasoning, many decidable sublanguages have been identi-
fied, including linear TGDs and guarded TGDs (Calı̀, Gott-
lob, and Lukasiewicz 2012), frontier-guarded TGDs (Baget
et al. 2011), sticky TGDs (Calı̀, Gottlob, and Pieris 2012),
weakly-acyclic TGDs (Fagin et al. 2005) and shy pro-
grams (Leone et al. 2012). With these languages, it is thus
important to identify their expressive power so that, given an
application, we know which language should be used.

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In OMQA, there have been mainly two lines of research
on the language expressive power. The first line of research
regards every ontology together with a classical query as a
database query, usually called an ontology-mediated query.
The main goal of this line is to understand which class of
databases can be defined by an ontology-mediated query.
We call such kind of expressive power the data expressive
power. In contrast, the second line is concerned with which
kind of domain knowledge can be expressed in an ontology
language; or more formally, which classes of database-query
pairs are definable in the language. Expressive power of this
kind is known as the program expressive power, which was
first proposed by Arenas, Gottlob, and Pieris (2014).

A number of papers are devoted to characterizing data
expressive power of existential rule languages. An incom-
plete list is as follows: Gottlob, Rudolph, and Simkus (2014)
proved that weakly (frontier-)guarded TGD queries with
stratified negations capture the class of EXPTIME-queries;
nearly (frontier-)guarded TGD queries have the same ex-
pressive power as Datalog. Rudolph and Thomazo (2015)
showed that TGD queries capture the class of recursively
enumerable queries closed under homomorphisms. Krötzsch
and Rudolph (2011) identified that jointly acyclic TGD
queries have the same expressive power as Datalog, which
was later extended to TGD queries with terminating Skolem
chase in (Zhang, Zhang, and You 2015). In description log-
ics, Bienvenu et al. (2014) characterized the data expressive
power ofALC and its variants by some interesting complex-
ity classes and fragments of disjunctive Datalog.

Unlike the data expressive power, the program expressive
power of existential rule languages is not well-understood
yet. Arenas, Gottlob, and Pieris (2014) proved that Data-
log is strictly less expressive than warded Datalog∃, and
obtained a similar separation for the variants with strati-
fied negations and negative constraints. Zhang, Zhang, and
You (2016) proposed a semantic definition for ontologies
in OMQA, and proved that disjunctive embedded depen-
dencies (DEDs) capture the class of recursively enumer-
able OMQA-ontologies. In addition, it is implicit in (Zhang,
Zhang, and You 2015) that the weakly-acyclic TGDs have
the same program expressive power as all its extensions with
terminating Skolem chase. This paper continues this line
of work and aims at characterizing the program expressive
power of several important languages including TGDs, dis-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5950

junctive TGDs and linear TGDs.
Our contributions in this paper are threefold. Firstly, we

show that the equalities in a finite set of DEDs are removable
if, and only if, the OMQA-ontology defined by these DEDs
is closed under both database homomorphisms and constant
substitutions. Secondly, we prove that, under CQ-answering,
every finite set of DTGDs can be translated to an equiva-
lent finite set of TGDs, while the translatability under UCQ-
answering is captured by a property called query construc-
tivity. Thirdly, we characterize the linear TGD-definability
of OMQA-ontologies by data constructivity and the recog-
niziability of queries by a natural class of tree automata.

Preliminaries
Databases and Instances We use a countably infinite set
∆ (resp., ∆n and ∆v) of constants (resp., (labeled) nulls
and variables), and assume they are pairwise disjoint. Ev-
ery term is a constant, a null or a variable. A (relational)
schema S is a set of relation symbols, each associated a
natural number called the arity. Every S -atom is either an
equality or a relational atom built upon terms and a relation
symbol in S . A fact is a variable-free relational atom, and
an S -instance is a set of S -facts. A database is a finite
instance in which no null occurs. Given an instance I , let
adom(I) (resp., term(I)) denote the set of constants (resp.,
terms) occurring in I . Given a set A of terms, let I|A be the
maximum subset J of I such that term(J) ⊆ A.

Let I and J be S -instances, and C a set of constants. A
C-homomorphism from I to J is a function h : adom(I)→
adom(J) such that h(I) ⊆ J and h(c) = c for all constants
c ∈ C. If such h exists, we say I is C-homomorphic to J ,
and write I →C J . In addition, we write I �C J if h is
injective. We say I isC-isomorphic to J if there is a bijective
C-homomorphism h from I to J such that h(I) = J . For
simplicity, in the above, C could be dropped if it is empty.
A substitution is a partial function from ∆v to ∆ ∪∆n.

Queries Fix S as a schema. Every S -CQ is a first-order
formula of the form ∃y ϕ(x,y) where ϕ(x,y) is a finite
but nonempty conjunction of relational S -atoms. An S -
UCQ is a first-order formula built upon S -atoms by using
connectives ∧,∨ and quantifier ∃ only. Clearly, every UCQ
is equivalent to a disjunction of CQs, and every CQ is also a
UCQ. Note that constants are allowed to appear in a query.
Given a query (CQ or UCQ) q, let const(q) denote the set
of all constants that occur in q.

A UCQ is called Boolean if it has no free variables. Let
BCQ be short for Boolean CQ. Given a BCQ q, let [q] denote
a database that consists of all atoms in q where each variable
is regarded as a null. In this paper, unless otherwise stated,
we only consider Boolean queries. Let CQ (resp., UCQ) de-
note the class of Boolean CQs (resp., Boolean UCQs).

Existential Rule Languages Let S be a schema. Then
every disjunctive embedded dependency (DED) over S is a
first-order sentence σ of the form

∀x∀y(φ(x,y)→ ∃z(ψ1(x, z) ∨ · · · ∨ ψk(x, z)) (1)

where x,y, z are tuples of variables, φ a conjunction of re-
lational S -atoms involving terms only from x ∪ y, each ψi

a conjunction of S -atoms involving terms only from x∪ z,
and every variable in x has at least one occurrence in φ. For
simplicity, we omit universal quantifiers and brackets out-
side the atoms. Let head(σ) = {ψi : 1 ≤ i ≤ k} and
body(σ) = φ, called the head and body of σ, respectively.

Disjunctive tuple-generating dependencies (DTGDs) are
defined as equality-free DEDs, and tuple-generating depen-
dencies (TGDs) are disjunction-free DTGDs. A TGD is
called linear if its body consists of a single atom. A DED
of the form (1) is canonical if ψi, 1 ≤ i ≤ k, consists of a
single atom. It is well-known that, by introducing auxiliary
relation symbols, every set of DEDs (resp, DTGDs, TGDs
and linear TGDs) can be converted to an equivalent (un-
der query answering) set of canonical DEDs (resp., DTGDs,
TGDs and linear TGDs). Hence, unless stated otherwise, we
assume dependencies are canonical in the rest of this paper.

Let D be a database, Σ a set of DEDs, and q a Boolean
UCQ. We write D ∪ Σ � q if, for all instances I , if D ⊆ I
and I is a model of σ for all σ ∈ Σ, then I is also a model
of q, where the notion of model is defined in a standard way.

OMQA-ontologies In this subsection, we introduce some
notions related to OMQA-ontology. For more details, please
refer to (Zhang, Zhang, and You 2016). Let D and Q be a
disjoint pair of schemas, and Q a class of Boolean UCQs.
Every quasi-OMQA[Q]-ontology over (D ,Q) is a set of
database-query pairs (D, q), where D is a nonempty D-
database and q a Boolean Q-UCQ inQ such that const(q) ⊆
adom(D). Furthermore, an OMQA[Q]-ontology is a quasi-
OMQA[Q]-ontologyO that admits the following properties:
1. (Closure under Query Conjunctions) If p ∧ q ∈ Q,

(D, p) ∈ O and (D, q) ∈ O, then (D, p ∧ q) ∈ O;
2. (Closure under Query Implications) If p ∈ Q, q � p and

(D, q) ∈ O, then (D, p) ∈ O;
3. (Closure under Injective Database Homomorphisms) If

(D, q) ∈ O and D �const(q) D
′, then (D′, q) ∈ O;

4. (Closure under Constant Renaming) If (D, q) ∈ O and
τ is a constant renaming (i.e., a partial injective function
from ∆ to ∆), then (τ(D), τ(q)) ∈ O.

Given a set Σ of DEDs, let [[Σ]]QD,Q denote the set of all
database-query pairs (D, q) whereD is a D-database, q ∈ Q
a Q-UCQ, andD∪Σ � q. Given an OMQA[Q]-ontology O
over (D ,Q), we say O is defined by Σ if O = [[Σ]]QD,Q.

The following characterization for DEDs is actually im-
plicit in (Zhang, Zhang, and You 2016; Zhang et al. 2020).
Theorem 1 (Zhang, Zhang, and You). An OMQA[UCQ]-
ontology is defined by a finite set of DEDs iff it is recursively
enumerable.

For convenience, given a classQ of Boolean UCQs, every
DED[Q]-ontology (resp., DTGD[Q]-ontology and TGD[Q]-
ontology) is defined as an OMQA[Q]-ontology which is de-
fined by some finite set of DEDs (resp., DTGDs and TGDs).

DTGDs
In this section, we examine the program expressive power
of DTGDs. To do it, we first present a novel chase algorithm
for DTGDs, which also plays a key role in the next section.

5951

Nondeterministic Chase Let D be a schema. A nondeter-
ministic fact (over D) is a finite disjunction of (D-)facts. For
convenience, we often regard each nondeterministic fact as a
set of ground atoms. Every nondeterministic instance (over
D) is defined as a set of nondeterministic facts (over D).

Let I be a nondeterministic instance, and σ a DTGD in
which α1, . . . , αn list all the atoms in the body. We say σ is
applicable to I if there is a substitution h and a tuple F of
nondeterministic facts F1, . . . , Fn ∈ I such that h(αi) ∈ Fi
for all i = 1, . . . , n. In this case, we let res(F , σ, h) denote
the nondeterministic fact defined as follows:

h′(head(σ)) ∪
n⋃
i=1

Fi \ {h(αi)}

where h′ is a substitution that extends h by mapping each
existential variable v in σ to a null which one-one corre-
sponds to the triple (σ, h(x), v), and x denotes the tuple of
variables occurring in both the head and the body of σ. In
addition, we call res(F , σ, h) a result of applying σ to I .

Furthermore, given a database D and a set Σ of DTGDs,
let chase0(D,Σ) = D; for k > 0 let chasek(D,Σ) denote
the union of chasek−1(D,Σ) and the set of all results of ap-
plying σ to chasek−1(D,Σ) for all σ ∈ Σ. Let chase(D,Σ)
denote the union of chasek(D,Σ) for all k ≥ 0.

In above definitions, if Σ is a set of TGDs, the procedure
of nondeterministic chase will degenerate into the traditional
oblivious Skolem chase, see, e.g., (Marnette 2009).

The following theorem gives the soundness and complete-
ness of the nondeterministic chase.
Theorem 2. Let Σ be a set of DTGDs,D be a database, and
q be a Boolean UCQ. Then D ∪ Σ � q iff chase(D,Σ) � q,
where by the notation chase(D,Σ) � q we denote that q is
a logical consequence of chase(D,Σ) as usual.

Now we generalize the notion of homomorphism from in-
stances to nondeterministic instances. Let I and J be non-
deterministic instances over the same schema. Given a set C
of constants, a function h : adom(I) → adom(J) is called
a C-homomorphism from I to J , written h : I →C J , if we
have h(I) ⊆ J and h(c) = c for all constants c ∈ C.

The proposition below shows that the nondeterministic
chase preserves the generalized homomorphisms. This prop-
erty will play an important role in our first characterization.
Proposition 3. Let Σ be a set of DTGDs, let D and D′ be
databases, and let C be a set of constants. If there exists a
C-homomorphism τ from D to D′, then there exists a C-
homomorphism τ ′ ⊇ τ from chase(D,Σ) to chase(D′,Σ).

Characterization In this subsection, we establish a char-
acterization for DTGDs. Before proceeding, we need to
present some properties for OMQA-ontologies.

Let Q be a class of UCQs. An OMQA[Q]-ontology O is
said to be closed under database homomorphisms if, for all
(D, q) ∈ O, if D′ is a database with D →const(q) D

′, then
(D′, q) ∈ O; and O is closed under constant substitutions
if, for all (D, q) ∈ O, if τ is a constant substitution (i.e., a
partial function from ∆ to ∆), then (τ(D), τ(q)) ∈ O.

The following proposition tell us that ontologies defined
by DTGDs are closed under both of above properties.

Lemma 4. Every DTGD[UCQ]-ontology is closed under
both database homomorphisms and constant substitutions.

Moreover, we can show that the properties above exactly
capture the class of DED-ontologies definable by DTGDs.

Theorem 5. A DED[UCQ]-ontology is defined by a finite
set of DTGDs iff it is closed under both database homomor-
phisms and constant substitutions.

Sketch of Proof. The direction of “only-if” immediately fol-
lows from Lemma 4. It thus remains to consider the con-
verse. Let O be a DED[UCQ]-ontology closed under both
database homomorphisms and constant substitutions, and let
Σ be a finite set of DEDs that defines O. We need to con-
struct a finite set Σ′ of DTGDs which plays the same role as
Σ under the semantics of UCQ-answering.

To implement the construction, we introduce Eq as a fresh
binary relation symbol, and use some DTGDs to assert that
Eq defines an equivalence relation. For each (k-ary) relation
symbol R occurring in Σ, let the following DTGD

∧ki=1Eq(xi, yi) ∧R(x1, . . . , xk)→ R(y1, . . . , yk) (2)

to assure that all the terms (constants or nulls) equivalent
w.r.t. Eq will play the same role in R.

Moreover, we simulate each DED σ ∈ Σ by a DTGD σ∗,
which is obtained from σ by substituting Eq for every occur-
rence of the equality symbol =. Let Σ′ be the set consisting
of all the DTGDs mentioned above. Thanks to the closure of
O under both database homomorphisms and constant substi-
tutions, one can prove that the transformation preserves the
semantics of UCQ-answering, i.e., D∪Σ � q iff D∪Σ′ � q
for all D-databases D and Boolean Q-UCQs q. Thus, Σ′ is
the desired DTGD set, which completes the proof.

Let UCQ− denote the class of all Boolean UCQs involv-
ing no constant. For query answering with queries in UCQ−,
the above characterization can be simplified as follows:

Corollary 6. A DED[UCQ−]-ontology is defined by a fi-
nite set of DTGDs iff it is closed under database homomor-
phisms.

TGDs
In this section, let us consider another important existential
rule language, TGDs, a sublanguage of DTGDs in which
disjunctions are not allowed to appear in the rule head.

Characterization for CQ-answering We first show that,
in the case of CQ-answering, disjunctions can be removed
from DTGDs. In other words, TGDs have the same expres-
sive power as DTGDs under CQ-answering.

Theorem 7. Every DTGD[CQ]-ontology is defined by a fi-
nite set of TGDs.

To prove this theorem, it suffices to translate every set of
DTGDs to a set of TGDs such that they define the same on-
tology under CQ-answering. Suppose O is a DTGD[CQ]-
ontology over a schema pair (D ,Q), and Σ a set of canon-
ical DTGDs that defines O. The general idea is to construct
a set Σ∗ of TGDs such that the deterministic chase on Σ∗

5952

simulates the nondeterministic chase on Σ. The desired sim-
ulation employs a technique used in Section 3 of (Zhang and
Zhang 2017) in which the progression of disjunctive logic
programs is simulated by normal logic programs. The main
difficulty here is that we need to treat CQ-answering.

To encode a nondeterministic fact, we need a set of num-
bers and an encoding function. The encoding function is de-
fined by a ternary relation symbol Enc. By Enc(x, y, z) we
mean that z encodes the pair (x, y). Numbers used in the en-
coding are collected by a unary relation symbol Num. Note
that numbers here are not necessary to be natural numbers.
For a technical reason, we also use a unary relation symbol
GT to collect the set of all ground terms that would be used.
Next, we show how to implement the encoding.

For every relation symbolR ∈ D , we introduce the TGDs

R(x1, . . . , xk) → ∧ki=1 (Num(xi) ∧ GT(xi)) (3)
→ ∃xFlagR(x) ∧ Num(x) (4)

where k is the arity ofR, and FlagR a unary relation symbol
that defines a flag for the relation R. The first TGD asserts
that all parameters of R are both numbers and ground terms,
and the second one asserts that the flag for R must exist and,
in particular, it is also a number.

To define the encoding function, we use the TGD

Num(x) ∧ Num(y)→ ∃z Enc(x, y, z) ∧ Num(z) (5)

which asserts that, for all numbers x and y, there is a number
z to encode the pair (x, y). With the relations defined above,
we are then able to encode (ground) atoms. For example, to
encode the atom α = R(x1, x2), we use the formula

FlagR(y1) ∧ Enc(y1, x1, y2) ∧ Enc(y2, x2, y3)

which asserts that y3 is a number encoding the atom α. Note
that α is regarded as the triple (y1, x1, x2) where y1 is the
flag of R, denoting where the encoding of the first element
of the tuple is. In addition, to simplify the notation, given a
formula ϕ(z0, z), we often use ϕ(dαe, z) to denote

FlagR(y1)∧Enc(y1,x1,y2)∧Enc(y2,x2,y3)∧ϕ(y3,z). (6)

To encode a disjunction (resp., conjunction) of formulas,
we need a flag to denote where the encoding of the first dis-
junct (resp., conjunct) is. To generate such flags, we use

→ ∃xFlagd(x) ∧ Num(x) (7)
→ ∃xFlagc(x) ∧ Num(x) (8)

where Flagd (resp., Flagc) is a unary relation symbol in-
tended to define the flag of encoding disjunction (resp., con-
junction). The way of encoding a disjunction (conjunction)
is similar to that for atoms, but with a different flag. In ad-
dition, the notation d·e can also be extended to disjunctions
and conjunctions in an obvious way.

With the above relations, we are able to encode nondeter-
ministic facts. To access nondeterministic facts, some rela-
tions are needed. We introduce fresh relation symbols NF,
Mrg and Eq. By NF(x) we mean that x encodes a nonde-
terministic fact. By Mrg(x, y, z) we denote that z encodes
a disjunction (which is a nondeterministic fact) of the non-
deterministic facts encoded by x and y. Moreover, Eq(x, y)

asserts that the nondeterministic facts encoded by x and y
are equivalent, i.e., they consist of the same set of ground
atoms. We only show how to define the merging operation:

NF(x) ∧ Flagd(y)→Mrg(x,y,x) (9)
Mrg(x,u,v)∧Enc(u,w,y)∧Enc(v,w,z)→Mrg(x,y,z)(10)

To simplify the notation, let Mrg(t1, . . . , tk;xk) be short for

Flagd(x0) ∧Mrg(t1, x0, x1) ∧ · · · ∧Mrg(tk, xk−1, xk).

Next let us construct TGDs to simulate the nondetermin-
istic chase on Σ. We introduce True as a fresh unary relation
symbol, and by True(x) we mean that the formula encoded
by x can be inferred from the set of nondeterministic facts
generated by the chase. For each canonical DTGD σ ∈ Σ,
if α1, . . . , αk list all atoms in the body of σ, we use the fol-
lowing TGDs to simulate the nondeterministic chase for σ:

∧ki=1(NF(vi)∧Enc(ui,dαie,vi) ∧ True(vi))

∧Mrg(u1,. . . ,uk;y)→ ∃z Tσ(x,y,z) ∧ Num(z)
(11)

Tσ(x,y,z) ∧Mrg(y,dhead(σ)e,w)→ True(w) (12)

090 To initialize the truth of relations over the data schema
D , for each k-ary R ∈ D , we introduce the following TGD:

R(x1, . . . , xk) ∧ FlagR(y0) ∧ Enc(y0, x1, y1) ∧ · · ·
∧Enc(yk−1, xk, yk)→ True(yk)

(13)

To make sure that the equivalent facts play the same role
in the chase procedure, we define the following TGD:

NF(x) ∧ NF(y) ∧ True(x) ∧ Eq(x, y)→ True(y) (14)

Let Σ′ denote the set of all TGDs defined above. Fix a
database D. By definition, it is easy to see that symbol Enc
defines an encoding function in chase(D,Σ′). That is, for
all numbers a, b defined by Num in chase(D,Σ′), there is ex-
actly one term c such that Enc(a, b, c) holds in chase(D,Σ′).
Moreover, each symbol in FlagR,Flagd,Flagc defines ex-
actly one number (called a flag) in chase(D,Σ′). Given a
nondeterministic fact F , let 〈F 〉 denote the number encod-
ing F under the defined encoding function and flags. By an
induction on chase, one can prove the following:

Lemma 8. F ∈chase(D,Σ) iff True(〈F 〉)∈chase(D,Σ′).

With this lemma, to construct the desired TGD set Σ∗,
it remains to define some TGDs which generate the BCQs
derivable from chase(D,Σ). The following property will
play an important role in implementing this task.

Lemma 9. Let Σ be a finite set of DTGDs, D a database,
and q a BCQ of the form ∃xϕ(x) where ϕ is quantifier-free
and x is a tuple of length k which lists all the free vari-
ables in ϕ. Then D ∪ Σ � q iff there exists a finite set T ⊆
term(chase(D,Σ))k such that chase(D,Σ) �

∨
t∈T ϕ(t).

To implement the above idea, we need more relation sym-
bols, including DNF and Normalize. By DNF(x) we denote
that the (quantifier-free) formula encoded by x is of disjunc-
tive normal form (DNF), and by Normalize(x, y, z) we mean
that z encodes a DNF-formula obtained from the conjunc-
tion of (DNF-formulas encoded by) x and y by applying the

5953

distributive law. Such relations can be defined in TGDs by
recursions in a routine way. We omit the details here.

To encode BCQs, we need to generate an infinite number
of variables, which can be done by the following TGDs:

→ ∃xVar(x) ∧ Num(x) (15)
Var(x) → ∃y Next(x, y) ∧ Var(y) ∧ Num(y) (16)

where Var(x) asserts that x is a variable, and Next(x, y) de-
notes that y is the variable immediately after x. The gen-
erated variables will be used as numbers. Furthermore, we
use BCQ(x) to denote that x encodes a BCQ. Note that all
variables in a BCQ are existential, so we can omit the quan-
tifiers, and simply regard it as a finite conjunction of atoms.

In addition, we introduce a fresh binary relation symbol
Match. By Match(x, y) we mean that y encodes a ground
DNF-formula in which each disjunct ψ is an instantiation of
the BCQ q encoded by x, that is,ψ can be obtained from q by
substituting some ground term for each existential variable.

With the above relations, we are now able to generate all
the numbers encoding BCQs derivable from chase(D,Σ).

True(x) ∧ True(y) ∧ Normalize(x,y,z)→True(z)(17)
BCQ(x) ∧ DNF(y) ∧ True(y) ∧Match(x,y)→True(x)(18)

To make sure that the BCQs encoded by this class of num-
bers are derivable from chase(D,Σ∗), we employ Zhang
et al.’s technique of generating universal model (see Sub-
section 5.4 and Proposition 11 in (Zhang, Zhang, and You
2016)). Given a class K of databases over the same schema
and a set C of constants, let

⊕
C K denote the C-disjoint

union of K, that is, the instance
⋃
{D∗ : D ∈ K} where,

for every D ∈ K, D∗ is an isomorphic copy of D such that,
for each pair of distinct databases D1 and D2 in K, only
constants from C will be shared by D∗1 and D∗2 .

Given an OMQA[CQ]-ontology O and a database D over
a proper schema, the universal model of O w.r.t. D, denoted
UO(D), is defined as follows:

UO(D) =
⊕

adom(D)
{[q] : (D, q) ∈ O}.

Lemma 10 (Zhang, Zhang, and You 2016). Let O be an
OMQA[CQ]-ontologyO over a schema pair (D ,Q),D a D-
database and q a Q-BCQ. Then (D, q) ∈ O iff UO(D) |= q.

With the above lemma, it remains to show how to generate
the universal model UO(D). Let a be a number that encodes
a BCQ q such that True(a) holds in the intended instance.
For all Q-atoms α, we first test whether α appears in q. If the
answer is yes we then copy α to the universal model. Since
UO(D) is defined by a disjoint union of [q], a renaming of
variables in q would be necessary, which can be achieved by
using existential variable in the rule head to generate nulls.
We introduce a relation symbol Ren, and by Ren(y, z, x) we
mean that y will be replaced with z in the copy of BCQ
(encoded by) x. Below are some TGDs to implement it:

BCQ(x) ∧ Var(y)→ ∃z Ren(y, z, x) (19)
BCQ(x) ∧ GT(y)→ Ren(y, y, x) (20)

where the second TGD means that all the constants appear-
ing in the BCQ will not be changed in the copy.

To generate the universal model UO(D), we still need to
introduce a relation symbol HasQ for each relation symbol
Q ∈ Q. By HasQ(y, x) we mean that Q(y) is an atom
appearing in the BCQ encoded by x. By traversing the whole
BCQ, it is easy to see that HasQ can be defined by TGDs.
To copy all the atoms involvingQ and appearing in the BCQ
to the universal model, we employ the following TGD:

BCQ(x)∧True(x)∧HasQ(y,x)∧Ren(y,z,x)→Q(z) (21)

where Ren(y, z, x) denotes formula
∧

1≤j≤k Ren(yj , zj , x)
if y = y1 · · · yk, z = z1 · · · zk, and k is the arity of Q.

Let Σ∗ be the set of TGDs defined in this subsection. Then
the following property holds, which yields Theorem 7.

Proposition 11. For every pair of D-database D and Q-
BCQ q, we have chase(D,Σ) � q iff chase(D,Σ∗) � q.

Characterization for UCQ-answering It is worth noting
that the translation proposed in the last subsection does not
work for UCQ-answering. In this subsection, we examine
the expressive power of TGDs for this case.

We first define a property. An OMQA[UCQ]-ontology O
is said to admit query constructivity if (D, p ∨ q) ∈ O im-
plies either (D, p) ∈ O or (D, q) ∈ O. The following the-
orem tells us that the above property exactly captures the
definability of a DTGD[UCQ]-ontology by TGDs.

Theorem 12. A DTGD[UCQ]-ontology is defined by a finite
set of TGDs iff it admits query constructivity.

To prove this theorem, we need some notation and prop-
erty. Given an OMQA[UCQ]-ontology O, let O|CQ denote
{(D, q) ∈ O : q ∈ CQ} which is an OMQA[CQ]-ontology.

Lemma 13. Let O and O′ be OMQA[UCQ]-ontologies that
admit query constructivity. If O|CQ =O′|CQ then O=O′.

Now we are in the position to prove Theorem 12.

Proof of Theorem 12. The direction of “if” follows from
Lemma 13 and Theorem 7. For the converse, we assume O
is defined by a finite set Σ of TGDs. Let (D, p ∨ q) ∈ O,
where p and q are Boolean UCQs. By the completeness of
the chase procedure, it holds that chase(D,Σ) |= p ∨ q.
Note that chase(D,Σ) here is a deterministic instance. We
thus have either chase(D,Σ) |= p or chase(D,Σ) |= q. By
the soundness of the chase, either (D, p) ∈ O or (D, q) ∈ O
must be true, which yields the desired direction.

Example 1. Let D be the schema {P}, and Q be the schema
{Q,R}, where P,Q and R are unary relation symbols. Let
Σ be a set consisting of a single DTGD defined as follows:

P (x)→ Q(x) ∨R(x) (22)

LetD = {P (a)}. Clearly,D∪Σ � Q(a)∨R(a), but neither
D ∪ Σ � Q(a) nor D ∪ Σ � R(a). So the ontology defined
by Σ over (D ,Q) does not admit query constructivity.

By the above example and Theorem 12, we thus have:

Corollary 14. There is a DTGD[UCQ]-ontology that is not
defined by any finite set of TGDs.

5954

The next corollary immediately follows from Theorem 12
and Lemma 13. With it, to examine the expressive power of
TGDs, we need only to consider CQ-answering. In the next
section, we will thus focus on CQ-answering.

Corollary 15. Let D and Q be schemas, Σ and Σ′ finite sets
of TGDs. Then [[Σ]]UCQD,Q = [[Σ′]]UCQD,Q iff [[Σ]]CQD,Q = [[Σ′]]CQD,Q.

Linear TGDs
In this section, we focus on the program expressive power
of linear TGDs. Before establishing the characterization, we
need to recall some notions and make a few assumptions.

Tree Automata First recall some notions of tree automata.
For more details, please refer to, e.g., (Comon et al. 2007).

Let L be a nonempty set of labels. An L-labeled tree T is
a quadruple (V,E, r, L) where E ⊆ V × V , (V,E) defines
a tree with the root r ∈ V in a standard way, and L : V → L
is called the label function. T is called finite if V is finite.

Every ranked input alphabet is a finite and nonempty set
of input symbols, each is a pair ω = (`(ω), ar(ω)), where
`(ω) is the letter of ω, and ar(ω) a natural number called
the arity of ω. Given a ranked input alphabet Ω, an Ω-ranked
tree is a finite labeled tree T = (V,E, r, L) over Ω such that
every node v ∈ V has exactly ar(L(v)) children in T.

For convenience, we often use expressions built over Ω to
denote ranked trees. A nullary input symbol π ∈ Ω denotes
a ranked tree consisting of a single node with the label π. Let
ω ∈ Ω be a k-ary symbol, e1, . . . , ek be expressions denot-
ing Ω-ranked trees T1, . . . ,Tk. We then use the expression
ω(e1, . . . , ek) to denote the Ω-ranked tree T, in which the
root r is labeled as ω, such that for every i = 1, . . . , k, Ti is
a subtree of T and the i-th child of r is the root of Ti.

Moreover, a nondeterministic (bottom-up) tree automaton
(NTA) A is defined as a quadruple (S, F,Ω,Θ) where

1. S is a finite set of states, and F ⊆ S a set of final states;
2. Ω is a ranked input alphabet;
3. Θ ⊆ Ω×S∗×S is a transition relation which consists of

transition rules of the form (ω, (s1, . . . , sk), s0), where
ω ∈ Ω is a k-ary symbol for some k and s0, . . . , sk ∈ S.

Let e and e′ be expressions built over Ω and S, where
states in S are regarded as unary symbols. We say e′ is a
legal transition from e if there is an Ω-ranked tree t and a
transition rule (ω, s, s′) ∈ Θ such that e 6= e′ and e′ is
obtained from e by substituting s′(ω(t)) for exactly one oc-
currence of ω(s1(t1), . . . , sk(tk)), where both s and t are
k-tuples for some k, and si (resp., ti) is the i-th component
of s (resp., t). Every run of A on an Ω-ranked tree t is a
finite sequence of expressions e0, . . . , en such that e0 = t,
ei is a legal transition from ei−1 for 0 < i ≤ n, and there is
no legal transition from en.

An NTA A = (S, F,Ω,Θ) is said to accept an Ω-ranked
tree T if there is a run e0, . . . , en of A on T and a final state
s ∈ F such that en = s(T). An Ω-ranked tree language L,
i.e., a set of Ω-ranked trees, is said to be recognized by A if
every Ω-ranked tree is accepted by A if, and only if, it is in
L. It is well-known that a ranked tree language is recognized
by some NTA iff it is regular, see, e.g., (Comon et al. 2007).

An NTAA is called oblivious if for every pair of transition
rules (ω, s, s0) and (ω′, s′, s′0) of A, if `(ω) = `(ω′) then
we have s0 = s′0. In other words, the transition of A only
depends on the letter of the current input symbol. Given a
ranked tree T = (V,E, r, L), the accompanying tree of T,
denoted `(T), is defined as the labeled tree (V,E, r, `(L))
where `(L)(v) = `(L(v)) for all v ∈ V . Given a ranked
tree language L, the accompanying tree language of L is
the class of `(T) for all T ∈ L. Interestingly, a ranked tree
language is recognized by an oblivious NTA iff it is regular
and its accompanying tree language is closed under prefixes.

Automata That Accept BCQs Let q be a BCQ. Let Lq
denote the set of order pairs 〈X,Φ〉 where X is a finite set
of variables or constants, and Φ ⊆ [q]. A tree representation
of q is a finite Lq-labeled tree R = (V,E, r, L) such that

1. [q] =
⋃
v∈V L

2(v), and term(L2(v)) ⊆ L1(v) for every
v ∈ V , where Li(v) denotes the i-th component of L(v);

2. the subgraph of R induced by the set {v∈V : t∈L1(v)}
is connected for every t ∈ ∆ ∪∆v;

3. for all v ∈ V , all constants in L1(v) also occur in L1(r).

The width of R is the maximum cardinality of L1(v) for all
v ∈ V . In particular, a tree representation R = (V,E, r, L)
of q is called linear if, for each v ∈ V , we have |L2(v)| ≤ 1.

Note that a tree representation of q is not necessary a tree
decomposition, but based on any tree decomposition of q,
one can easily construct a tree representation.

Next we show how to encode BCQs as inputs of an NTA.
Let Q be a schema and q a Q-BCQ. Let R = (V,E, r, L)
be a tree representation of q. A rough idea of encoding q is
by directly regarding R as the accompanied tree of a ranked
tree. However, this is infeasible because the ranked input al-
phabet is required to be finite, while the BCQs that we have
to consider may involve an unbounded number of terms.

A natural idea to resolve the mentioned issue is by reusing
variables. For example, suppose v1, v2 and v3 are nodes in
R such that v2 is a child of v1, and v3 a child of v2. Suppose

L(v1) = ({x1, x2, x3}, {R(x1, x2, x3)}),
L(v2) = ({x2, x3, x4}, {S(x3, x4)}),
L(v3) = ({x3, x4, x5}, {T (x5, x4, x5))}.

By the definition of tree representation, x1 is not allowed to
appear in v3 and its descendants. We thus can reuse x1 in
v3, and let L(v3) = ({x3, x4, x1}, {T (x1, x4, x1)}). We as-
sume all the variables occurring in v3 but not in v2 are fresh
variables. Clearly, by reusing variables, only 2k variables are
needed to encode a tree representation of the width k.

Let V be a set that consists of 2k variables. Let At denote
the set of Q-atoms involving terms only from const(q) and
V . Let L be a label set consisting of all the pairs ω = (X,Φ)
such that X ⊆ const(q) ∪ V and Φ is either ∅ or {α}
for some α ∈ At. Clearly, L is finite. By the technique of
reusing variables, R can be represented as an L-labeled tree.
Suppose R′ = (V,E, r, L′) is the mentioned tree. Let T de-
note the ranked tree (V,E, r, L∗) where L∗(v) = (L′(v), n)
if v ∈ V has exactly n children. Clearly, from T one can
easily obtain q. We call T a ranked tree representation of q.

5955

We say an NTA A accepts q if A accepts T for some
ranked tree representation T of q, and A recognizes a class
C of Q-BCQs if for all Q-BCQs q, A accepts q iff q ∈ C.

Characterization We first define some notions and nota-
tions. A BCQ q is said to be nontrivial if [q] 6= ∅, and q is
called a proper subquery of another BCQ p if [q] ([p]. A
BCQ q is said to be inseparable if there are no nontrivial
proper subqueries q1 and q2 of q such that q is equivalent to
q1 ∧ q2. Let C be a class of BCQs. A BCQ q ∈ C is said to
be most specific w.r.t. C if s(q) 6∈ C for each partial function
s : ∆v→∆ that maps at least one variable occurring in q to
a constant. Furthermore, a BCQ q ∈ C is said to be prime
w.r.t. C if it is inseparable and most specific w.r.t. C.

Given an OMQA[CQ]-ontology O and a database D, let
O(D) denote the class of BCQs q such that (D, q) ∈ O.

Now we have a characterizations for linear TGDs.

Theorem 16. Let D and Q be schemas. An OMQA[CQ]-
ontology O over (D ,Q) is defined by a finite set of linear
TGDs iff it admits both of the following properties:

1. (Data Constructivity) If D and D′ are D-databases and
q ∈ O(D ∪D′) is prime w.r.t. O(D ∪D′), then we have
either q ∈ O(D) or q ∈ O(D′).

2. (NTA-recognizability) If D is a D-database with a single
fact, then O(D) is recognized by some oblivious NTA.

Sketch of Proof. Due to space limit, we only give a proof for
the direction of “only-if”. Suppose O is defined by a finite
set Σ of linear TGDs. We need to show thatO admits Proper-
ties 1 and 2. Property 1 can be proven by a careful induction
on the chase. Below we prove that O admits Property 2.

Let D be a D-database with a single fact. Now let us con-
struct an oblivious NTA that recognizes O(D). Let S de-
note the schema of Σ. Let k be the maximum arity of rela-
tion symbols in S . Let V be the set that consists of pair-
wise distinct variables x1, . . . , x2k. Let At be the set of all
atoms built upon relation symbols from S and terms from
adom(D)∪V . We introduce dlog2(|At|+2)e fresh variables,
and let V0 denote the set that consists of these variables. Let
ι be an injective function from At to 2V0 \ {∅,V0}. Thus,
every atom in At can be encoded by a set of variables in V0.

With the above assumptions, we are now able to define the
NTA. Let S = At∪{�} be the set of states, and let F = {�}
be the set of final state where � is used as the unique final
state. Furthermore, let L be a label set which consists of

1. (term(α), {α}) for each α ∈ At which is a Q-atom;
2. (term(α) ∪ ι(α), ∅) for each α ∈ At;
3. (adom(D) ∪ V0, ∅).

For convenience, let λ : L → S be a function that maps each
label ` ∈ L of the form 1 or 2 to the atom (state) α, and maps
the label of the form 3 to the final state �. Clearly, λ is well-
defined. Let Ω be a ranked input alphabet which consists of
ordered pairs (`,m) for all ` ∈ L and all 0 ≤ m ≤ |At|,
where each (`,m) is used as an m-ary input symbol.

Furthermore, let Θ be a set consisting of

1. ((`, 1), α, �) if λ(`) = � and D = {α};

2. ((`,m), (α1, . . . , αm), α) if λ(`) = α, 0 ≤ m ≤ |At|,
α, α1, . . . , αm ∈ At and for 1 ≤ i ≤ m, {α} ∪ Σ �
∃xiαi, where xi is a tuple consisting of all the variables
that occur in αi but not in α.

Let A = (S, F,Ω,Θ). Since λ is a well-defined function,
we know that A is an oblivious NTA. Next we show that A
recognizes the class O(D). By the definition of A, it is easy
to see that every Q-BCQ accepted by A belongs to O(D).

Conversely, let q ∈ O(D). We need to prove that A ac-
cepts q. Let D be a labeled tree constructed as follows:

1. Create the root r with the label L(r) = (adom(D), D);
2. For each node v already in D, if there is an atom α ∈ At

such that L2(v) ∪ Σ � ∃xα, then create a child v′ for v
and let L(v′)=(term(α∗), {α∗}), where α∗ is obtained
from α by substituting fresh variables for variables in x.

Let atom(D) be the set of all atoms appearing in D. By def-
inition we know that chase(D,Σ) is adom(D)-isomorphic
to a subset of atom(D). Let C denote const(q). As q ∈
O(D), according to the construction of D, it is not difficult
to prove that [q] is C-isomorphic to a subset of atom(D).

LetQ be a subset of atom(D) that is C-isomorphic to [q].
Let Dq be a minimal connected subgraph of D that coversQ
and the root r. Suppose Dq = (V,E, r, L). Next, let Rq be
the labeled tree (V,E, r, L0) where L0 is defined as follows:

1. for the root r, let L0(r) = (adom(D) ∪ V0, ∅);
2. for every node v ∈ V \{r}withL(v) = (term(α), {α}),

let L0(v) = (term(α) ∪ ι(α), ∅) if α 6∈ Q, and L0(v) =
L(v) otherwise.

Clearly, Rq is a finite and linear tree representation of q. By
the technique mentioned in the last subsection, such a tree
can be naturally encoded by an Ω-ranked tree, which can be
easily showed to be accepted by A by a routine check.

Conclusion and Related Work
We have established a number of novel characterizations for
the program expressive power of DTGDs, TGDs as well as
linear TGDs. These results make significant contributions
towards a complete picture for the (absolute) program ex-
pressive power of existential rule languages. As a byprod-
uct, we have proposed a new chase procedure called nonde-
terministic chase for DTGDs. Moreover, we have observed
that queries derivable from linear TGDs are recognizable by
a natural class of tree automata, and this may shed light on
optimizing ontology by automata techniques.

Besides the data and program expressive power, there has
been some earlier research motivated to characterize other
kinds of expressive power of existential rule languages. For
example, ten Cate and Kolaitis (2010) characterized the
source-to-target TGDs (a class of acyclic TGDs) and its sub-
classes under the semantics of schema mapping; by regard-
ing ontology languages as logical languages, (Makowsky
and Vardi 1986; Zhang, Zhang, and Jiang 2020; Console,
Kolaitis, and Pieris 2021) established a number of model-
theoretic characterizations for existential rule languages, in-
cluding DEDs, DTGDs, TGDs, equality-generating depen-
dencies, full TGDs, guarded TGDs as well as linear TGDs.

5956

Acknowledgements
We would like to thank anonymous referees for their help-
ful comments and suggestions. This work was partially sup-
ported by the National Key Research and Development Pro-
gram of China (2020AAA0108504) and the National Natu-
ral Science Foundation of China (61806102, 61972455).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Arenas, M.; Gottlob, G.; and Pieris, A. 2014. Expressive
languages for querying the semantic web. In Proceedings of
PODS-2014, 14–26.
Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2011.
On rules with existential variables: Walking the decidability
line. Artif. Intell., 175(9-10): 1620–1654.
Beeri, C.; and Vardi, M. Y. 1981. The Implication Problem
for Data Dependencies. In Proceedings of ICALP-1981, 73–
85.
Bellomarini, L.; Gottlob, G.; Pieris, A.; and Sallinger, E.
2017. Swift Logic for Big Data and Knowledge Graphs.
In Proceedings of IJCAI-2017, 2–10.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014.
Ontology-Based Data Access: A Study through Disjunctive
Datalog, CSP, and MMSNP. ACM Trans. Database Syst.,
39(4): 33:1–33:44.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A gen-
eral Datalog-based framework for tractable query answering
over ontologies. J. Web Sem., 14: 57–83.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A Family of Logical Knowl-
edge Representation and Query Languages for New Appli-
cations. In Proceedings of LICS-2010, 228–242.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2012. Towards more ex-
pressive ontology languages: The query answering problem.
Artif. Intell., 193: 87–128.
Comon, H.; Dauchet, M.; Gilleron, R.; Löding, C.; Jacque-
mard, F.; Lugiez, D.; Tison, S.; and Tommasi, M. 2007. Tree
Automata Techniques and Applications. Online Book.
Console, M.; Kolaitis, P. G.; and Pieris, A. 2021. Model-
theoretic Characterizations of Rule-based Ontologies. In
Proceedings of PODS-2021, 416–428.
Fagin, R.; Kolaitis, P.; Miller, R. J.; and Popa, L. 2005. Data
exchange: Semantics and query answering. Theor. Comput.
Sci., 336(1): 89–124.
Gottlob, G.; Rudolph, S.; and Simkus, M. 2014. Expressive-
ness of guarded existential rule languages. In Proceedings
of PODS-2014, 27–38.
Krötzsch, M.; and Rudolph, S. 2011. Extending Decidable
Existential Rules by Joining Acyclicity and Guardedness. In
Proceedings of IJCAI-2011, 963–968.
Lenzerini, M. 2002. Data Integration: A Theoretical Per-
spective. In Proceedings of PODS-2002, 233–246.
Leone, N.; Manna, M.; Terracina, G.; and Veltri, P. 2012.
Efficiently Computable Datalog∃ Programs. In Proceedings
of KR-2012.

Makowsky, J. A.; and Vardi, M. Y. 1986. On the Expressive
Power of Data Dependencies. Acta Inf., 23(3): 231–244.
Marnette, B. 2009. Generalized schema-mappings: from ter-
mination to tractability. In Proceedings of PODS-2009, 13–
22.
Rudolph, S.; and Thomazo, M. 2015. Characterization of the
Expressivity of Existential Rule Queries. In Proceedings of
IJCAI-2015, 3193–3199.
ten Cate, B.; and Kolaitis, P. 2010. Structural characteriza-
tions of schema-mapping languages. Commun. ACM, 53(1):
101–110.
Zhang, H.; and Zhang, Y. 2017. Expressiveness of Logic
Programs under the General Stable Model Semantics. ACM
Trans. Comput. Log., 18(2): 9:1–9:28.
Zhang, H.; Zhang, Y.; and Jiang, G. 2020. Model-theoretic
Characterizations of Existential Rule Languages. In Pro-
ceedings of IJCAI-2020, 1940–1946.
Zhang, H.; Zhang, Y.; and You, J. 2015. Existential Rule
Languages with Finite Chase: Complexity and Expressive-
ness. In Proceedings of AAAI-2015, 1678–1685.
Zhang, H.; Zhang, Y.; and You, J. 2016. Expressive Com-
pleteness of Existential Rule Languages for Ontology-Based
Query Answering. In Proceedings of IJCAI-2016, 1330–
1337.
Zhang, H.; Zhang, Y.; You, J.; Feng, Z.; and Jiang, G. 2020.
Towards Universal Languages for Tractable Ontology Me-
diated Query Answering. In Proceedings of AAAI-2020,
3049–3056.

5957

