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Abstract

In social choice theory, (Kemeny) rank aggregation is a well-
studied problem where the goal is to combine rankings from
multiple voters into a single ranking on the same set of items.
Since rankings can reveal preferences of voters (which a voter
might like to keep private), it is important to aggregate pref-
erences in such a way to preserve privacy. In this work, we
present differentially private algorithms for rank aggregation
in the pure and approximate settings along with distribution-
independent utility upper and lower bounds. In addition to
bounds in the central model, we also present utility bounds
for the local model of differential privacy.

Introduction
The goal of rank aggregation is to find a central ranking
based on rankings of two or more voters. Rank aggregation
is a basic formulation that is studied in diverse disciplines
ranging from social choice (Arrow 1963), voting (Young
and Levenglick 1978; Young 1995), and behavioral eco-
nomics to machine learning (Wistuba and Pedapati 2020),
data mining (Dwork et al. 2001), recommendation sys-
tems (Pennock, Horvitz, and Giles 2000), and information
retrieval (Mansouri, Zanibbi, and Oard 2021). The problem
has a long and rich algorithmic history (Conitzer, Davenport,
and Kalagnanam 2006; Meila et al. 2007; Kenyon-Mathieu
and Schudy 2007; Mandhani and Meila 2009; Schalekamp
and van Zuylen 2009; Ailon, Charikar, and Newman 2008).

In many rank aggregation applications such as voting, it is
imperative to find a central ranking such that the privacy of
the voters who contributed the rankings is preserved. A prin-
cipled way to achieve this is to view the problem through
the lens of the rigorous mathematical definition of differen-
tial privacy (DP) (Dwork et al. 2006b,a). As in other privacy
settings, it is then important to understand the trade-off be-
tween privacy and utility, i.e., the quality of the aggregation.

DP rank aggregation has been studied in a few recent
papers (Hay, Elagina, and Miklau 2017; Yan, Li, and Liu
2020; Liu et al. 2020). While the algorithms in these works
are guaranteed to be DP, their utility is provably good only
under generative settings such as the Mallows model (Mal-
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lows 1957; Fligner and Verducci 1986) or with other dis-
tributional assumptions. The question we ask in this work
is: can one circumvent such stylized settings and obtain a
DP rank aggregation algorithm with provably good utility in
the worst case? We answer this affirmatively by providing a
spectrum of algorithms in the central and local DP models.

In the central model of DP, a trusted curator holds the non-
private exact rankings from all users and aggregates them
into a single ranking while ensuring privacy. In the local
model of DP, this process would be done without collating
the exact rankings of the users. As an example, consider a
distributed recommendation system that can be used to de-
termine a central ranking based on individual user rankings.

Background
Let [m] = {1, . . . ,m} be the universe of items to be ranked
(we assume this is public information) and let Sm be the
group of rankings (i.e., permutations) on [m]. For example,
the universe of items could be the set of all restaurants in
New York. Let Π = {π1, . . . , πn} be a given set of rank-
ings, where n is the number of users and each πk ∈ Sm
gives an ordering on the m items. We assume that the lower
the position π(j) of an item j ∈ [m] in a ranking π, the
higher our preference for that item j. For i, j ∈ [m] such
that i 6= j, define wΠ

ij = Prπ∼Π[π(i) < π(j)], i.e., wΠ
ij is

the fraction of rankings that rank item i before j. As noted
by Ailon, Charikar, and Newman (2008), for a graph on m
nodes, when the weight of each edge (i, j) is wΠ

ij , rank ag-
gregation reduces to the weighted version of the minimum
Feedback Arc Set in Tournaments (FAST) problem.

Rank aggregation is based on the Kendall tau metric:

K(π1, π2) = |{(i, j) : π1(i) < π1(j) but π2(i) > π2(j)}|,

for any two rankings π1, π2 ∈ Sm. In other words,
K(π1, π2) is the number of pairwise disagreements between
the two permutations π1 and π2. Note that K(π, π) = 0
for any permutation π and the maximum value of K(·, ·) is(
m
2

)
. We also define the average Kendall tau distance (or

the Kemeny Score) to a set Π = {π1, . . . , πn} of rank-
ings as K(σ,Π) = 1

n

∑n
i=1K(σ, πi). We use OPT(Π)

to denote minσK(σ,Π). We say that a randomized algo-
rithm A obtains an (α, β)-approximation for the (Kemeny)
rank aggregation problem if, given Π, it outputs σ such that
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Eσ[K(σ,Π)] ≤ α ·OPT(Π)+β, where α is the approxima-
tion ratio and β is the additive error. When β = 0, we callA
an α-approximation algorithm.

Differential Privacy. We consider two sets Π =
{π1, . . . , πn},Π′ = {π′1, . . . , π′n} of rankings to be neigh-
boring if they differ on a single ranking. In this work,
we consider both the central and local models of DP. For
ε > 0, δ ≥ 0, a randomized algorithm A : (Sm)n → Sm is
(ε, δ)-differentially private (DP) in the central model if for
all neighboring sets Π,Π′ of rankings and for all S ⊆ Sm,

Pr[A(Π) ∈ S] ≤ eε Pr[A(Π′) ∈ S] + δ.

In other words, in the central model the algorithm A can
access all the input rankings and only the output aggregated
ranking is required to be private.

In the (interactive) local model of DP (Kasiviswanathan
et al. 2011), the users retain their rankings and the algorithm
A is a randomized protocol between the users; let TA de-
note the transcript of the protocol1. An algorithmA is (ε, δ)-
differentially private (DP) in the local model if for all neigh-
boring sets Π,Π′ of rankings and for all sets S of transcripts,

Pr[TA(Π) ∈ S] ≤ eε Pr[TA(Π′) ∈ S] + δ.

We say that A is a pure-DP algorithm (denoted ε-DP)
when δ = 0 and is an approximate-DP algorithm otherwise.

Our Results
We obtain polynomial-time pure- and approximate-DP ap-
proximation algorithms for rank aggregation in the central
and local models. Note that by using the exponential mech-
anism of (McSherry and Talwar 2007), one can obtain an
algorithm with approximation ratio of 1 and additive error
of Õ(m3/n); however this algorithm is computationally in-
efficient (Hay, Elagina, and Miklau 2017).

Our algorithms are based on two generic reductions. In
our first reduction, we show that using standard DP mecha-
nisms for aggregation (e.g., Laplace or Gaussian in the cen-
tral model) to estimate the values of wij’s and then running
an off-the-shelf approximation algorithm for rank aggrega-
tion (that is not necessarily private), preserves the approx-
imation ratio and achieves additive errors of O(m4/n) for
pure-DP in the central model, O(m3/n) for approximate-
DP in the central model, andO(m3/

√
n) in the local model.

In the second reduction, we show how to improve the ad-
ditive errors to Õ(m3/n), Õ(m2.5/n), and Õ(m2.5/

√
n)

respectively, while obtaining an approximation ratio of al-
most 5. This reduction utilizes the query pattern properties
of the KwikSort algorithm of Ailon, Charikar, and New-
man (2008), which only needs to look at O(m logm) en-
tries wij’s. Roughly speaking, this means that we can add a
smaller amount of noise per query, leading to an improved
error bound. Our results are summarized in Tables 1 and 2.

We remark that the idea of adding a smaller amount of
noise when the algorithm uses fewer queries of wij’s was

1We refer the readers to (Duchi and Rogers 2019) for a more
detailed formalization and discussion on interactivity in the local
model.

α β

ε-DP
5 + ξ

m3 logm
εn

(Corollary 6)

(ε, δ)-DP m2.5√logm
εn

√
log 1

δ
(Corollary 7)

ε-DP
1 + ξ

m4

εn
(Corollary 3)

(ε, δ)-DP m3

εn

√
log 1

δ
(Corollary 4)

ε-DP 1 m3

εn
logm (Hay et. al., 2017)

Table 1: Guarantees of different (α, β)-approximation algo-
rithms in the central model; here ξ can be any positive con-
stant. We drop the big-O notation in β for brevity. All of our
algorithms run in poly(nm) time, whereas the exponential
mechanism (Hay et. al., 2017) runs in O(m! · n) time.

α β

ε-DP 1 + ξ m3

ε
√
n

(Corollary 9)

ε-DP 5 + ξ m2.5 logm
ε
√
n

(Corollary 12)

Table 2: Guarantees of (α, β)-approximation algorithms in
the local model. As before, we drop the big-O notation in β.

also suggested and empirically evaluated for the KwikSort
algorithm by Hay, Elagina, and Miklau (2017). However,
they did not prove any theoretical guarantee of the algo-
rithm. Furthermore, our algorithm differs from theirs when
KwikSort exceeds the prescribed number of queries: ours
outputs the DP ranking computed using the higher-error al-
gorithm that noises allm2 entries whereas theirs just outputs
the sorted ranking so far where the unsorted part is randomly
ordered. The latter is insufficient to get the additive error that
we achieve because leaving even a single pair unsorted can
lead to error as large as Ω(1); even if this event happens
with a small probability of 1/mO(1), the error remains at
Ω(1/mO(1)), which does not converge to zero as n→∞.

In addition to our algorithmic contributions, we also prove
lower bounds on the additive error that roughly match the
upper bounds for n ≥ Õ(m) in the case of pure-DP and for
n ≥ Õ(

√
m) for approximate-DP, even when the approxi-

mation ratio is allowed to be large. Our lower bounds pro-
ceed by reducing from the 1-way marginal problem and uti-
lizing existing lower bounds for pure- and approximate-DP
for the 1-way marginals problem (Hardt and Talwar 2010;
Bun, Ullman, and Vadhan 2018; Steinke and Ullman 2015;
Dwork et al. 2015; Steinke and Ullman 2017).

Notation
Let wΠ denote the [m] × [m] matrix whose (i, j)th entry is
wΠ
ij . Note that the average Kendall tau distance can also be

written as
K(σ,Π) =

∑
i,j∈[m]

1[σ(i) ≤ σ(j)] · wΠ
ji,

where 1[·] is the binary indicator function. Hence, we may
writeK(σ,wΠ) to denoteK(σ,Π) and OPT(wΠ) to denote
OPT(Π). When σ or Π are clear from the context, we may
drop them for brevity.
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To the best of our knowledge, all known rank aggregation
algorithms only use w and do not directly require the input
rankings Π. The only assumption that we will make through-
out is that the wij’s satisfy the probability constraint (Ailon,
Charikar, and Newman 2008), which means that wij ≥ 0
and wij + wji = 1 for all i, j ∈ [m] where i 6= j. Again,
the non-private algorithms of (Ailon, Charikar, and Newman
2008; Kenyon-Mathieu and Schudy 2007) that we will use in
this paper obtained approximation ratios under this assump-
tion.

In fact, many algorithms do not even need to look at all
of w. Due to this, we focus on algorithms that allow query
access to w. Besides these queries, the algorithms do not ac-
cess the input otherwise. Our generic reductions below will
be stated for such algorithms.

Algorithms in the Central Model
In this section we present pure- and approximate-DP algo-
rithms for rank aggregation in the central model of DP. Our
algorithms follow from two generic reductions: for noising
queries and for reducing the additive error.

Noising Queries. To achieve DP, we will have to add noise
to the query answers. In this regard, we say that a query an-
swering algorithmQ incurs expected error e if for every i, j
the answer w̃ij returned by Q satisfies E[|w̃ij − wij |] ≤ e.
Furthermore, we assume that Q computes the estimate w̃ij
for all i, j ∈ [m] (non-adaptively) but only a subset of w̃ij
is revealed when queried by the ranking algorithm; let w̃ de-
note the resulting matrix of w̃ij’s. In this context, we say that
Q satisfies (ε, δ)-DP for q (adaptive) queries ifQ can answer
q such w̃ij’s while respecting (ε, δ)-DP. In our algorithms,
we only use Q that adds independent Laplace or Gaussian
noise to each wij to get w̃ij but we state our reductions in
full generality as they might be useful in the future.

Reduction I: Noising All Entries
We first give a generic reduction from a not necessarily pri-
vate algorithm to DP algorithms. A simple form is:
Theorem 1. Let α > 1, e, ε > 0, q ∈ N, and δ ∈ [0, 1].
Suppose that there exists a polynomial-time (not necessarily
private) α-approximation algorithm A for the rank aggre-
gation problem that always makes at most q queries. Fur-
thermore, suppose that there exists a polynomial-time query
answering algorithm Q with expected error e that is (ε, δ)-
DP for answering at most q queries.

Then, there exists a polynomial-time (ε, δ)-DP (α, (α +
1)m2e)-approximation algorithm B for rank aggregation.

This follows from an easy fact below that the error in the
cost is at most the total error from querying all pairs of i, j.
Fact 2. For any w̃,w and σ ∈ Sm, we have |K(σ,w) −
K(σ, w̃)| ≤

∑
i,j∈[m] |wji − w̃ji|.

Proof of Theorem 1. Our algorithm B simply works by run-
ning A, and every time A queries for a pair i, j, it returns
the answer using the algorithm Q. The output ranking σ is
simply the output from A. Since only Q is accessing the in-
put directly and from our assumption, it immediately follows
that B is (ε, δ)-DP.

Since we may view A as having the input instance w̃ (ob-
tained by querying Q), the α-approximation guarantee of A
implies that

Eσ[K(σ, w̃)] ≤ α ·OPT(w̃). (1)

By applying Fact 2 twice, we then arrive at

Eσ,w̃[K(σ,w)]

(Fact 2) ≤ m2e+ Eσ,w̃[K(σ, w̃)]

(1) ≤ m2e+ α ·OPT(w̃)

(Fact 2) ≤ m2e+ α · (OPT(w) +m2e)

= α ·OPT(w) + (α+ 1)m2e.

The above reduction itself can already be applied to sev-
eral algorithms, although it does not yet give the optimal ad-
ditive error. As an example, we may use the (non-private)
PTAS of Kenyon-Mathieu and Schudy (2007); the PTAS
requires all wij’s meaning that q ≤ m2 and thus we may

let Q be the algorithm that adds Lap
(

0, m
2

εn

)
noise to each

query2. This immediately implies the following:

Corollary 3. For any ξ, ε > 0, there exists an ε-DP(
1 + ξ,Oξ

(
m4

εn

))
-approximation algorithm for the rank

aggregation problem in the central model.

Similarly, if we instead add Gaussian noise with standard

deviationO
(
m
εn

√
log 1

δ

)
to each query, we arrive at the fol-

lowing result:

Corollary 4. For any ξ, ε, δ > 0, there exists an (ε, δ)-DP(
1 + ξ,Oξ

(
m3

εn

√
log 1

δ

))
-approximation algorithm for the

rank aggregation problem in the central model.

Reduction II: Improving the Additive Error
A drawback of the reduction in Theorem 1 is that it requires
the algorithm to always make at most q queries. This is
a fairly strong condition and it cannot be applied, e.g., to
QuickSort-based algorithms that we will discuss below. We
thus give another reduction that works even when the algo-
rithm makes at most q queries with high probability. The
specific guarantees are given below.

Theorem 5. Let α, e, ε > 0, q ∈ N, and ζ, δ ∈ [0, 1].
Suppose that there exists a polynomial-time (not necessar-
ily private) α-approximation algorithmA for rank aggrega-
tion that, with probability 1− ζ

m4 , makes at most q queries.
Furthermore, suppose that there exists a polynomial-time
query answering algorithm Q with expected error e that is
(ε/2, δ)-DP for answering at most q queries.

Then, there exists a polynomial-time (ε, δ)-DP
(α+ ζ, β)-approximation algorithm B for the rank
aggregation problem where β = Oα

(
m2e+ 1

εn

)
.

2More precisely, to satisfy the probability constraints, we actu-
ally add the noise to each wij only for all i < j and clip it to be
between 0 and 1 to arrive at w̃ij . We then let w̃ji = 1− w̃ij .
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Proof of Theorem 5. Our algorithm B simply works by run-
ningA, and every timeA queries for a pair i, j, it returns the
answer using the algorithm Q. If A ends up using at most q
queries, then it returns the output σA ofA. Otherwise, it runs
the ε/2-DP algorithm from Corollary 3 with ξ = 1 and re-
turn its output σ∗. The (ε, δ)-DP guarantee of the algorithm
is immediate from the assumptions and the basic composi-
tion property of DP (see, e.g., Dwork and Roth (2014)).

We next analyze the expected Kendall tau distance of the
output. To do this, let Eq denote the event that A uses more
than q queries. From our assumption, we have Pr[Eq] ≤
ζ/m4. Furthermore, observe that

EσA [K(σA, w̃)] ≥ Pr[Eq] · EσA [K(σA, w̃) | Eq]. (2)

Now, let σ denote the output of our algorithm B. We have

Eσ,w̃[K(σ, w̃))]

≤ Pr[Eq] · EσA,w̃[K(σA,w) | Eq] + Pr[¬Eq] · Eσ∗ [K(σ∗,w)]

≤ EσA [K(σA, w̃)] +
ζ

m4
·
(

2 ·OPT(w) +Oα

(
m4

εn

))
≤ α ·OPT(w) +Oα(m2e) +

2ζ

m4
·OPT(w) +Oα

(
1

εn

)
≤ (α+ ζ) ·OPT(w) +Oα

(
m2e+

1

εn

)
,

where the second inequality follows from (2) and the ap-
proximation guarantee of the algorithm from Corollary 3,
the third inequality follows from similar computations as in
the proof of Theorem 1, and the last inequality follows be-
cause we may assume w.l.o.g. that m ≥ 2.

Concrete Bounds via KwikSort. Ailon, Charikar, and
Newman (2008) devise an algorithm KwikSort, inspired by
QuickSort, to determine a ranking on m candidates and they
show that this algorithm yields a 5-approximation for rank
aggregation. It is known in the classic sorting literature that
with high probability, QuickSort (and by extension, Kwik-
Sort) performs O(m logm) comparisons on m candidates
to order these m items. Specifically, with probability at least
1− ξ/m4, the number of comparisons between items would
be at most q = Oξ(m logm). Plugging this into Theorem 5
where Q adds Lap

(
0, qεn

)
noise to each query, we get:

Corollary 6. For any ξ, ε > 0, there is an ε-DP(
5 + ξ,Oξ

(
m3 logm

εn

))
-approximation algorithm for the

rank aggregation problem in the central model.
If we use Gaussian noise with standard deviation

O
(√

q

εn

√
log 1

δ

)
instead of the Laplace noise, then we get:

Corollary 7. For any ξ, ε, δ > 0, there exists an (ε, δ)-DP(
5 + ξ,Oξ

(
m2.5√logm

εn

√
log 1

δ

))
-approximation algo-

rithm for the rank aggregation problem in the central model.

Although the approximation ratios are now a larger con-
stant (arbitrarily close to 5), the above two corollaries im-
prove upon the additive errors in Corollaries 3 and 4 by a
factor of Θ̃(m) and Θ̃(

√
m) respectively.

Algorithm 1: DPKwikSort.
Parameters: ε, δ ∈ (0, 1], q ∈ N
Input: Π = {π1, . . . , πn},U ⊆ [m], c← 0
if U = ∅ then

return ∅
UL,UR ← ∅
Pick a pivot i ∈ U uniformly at random
for j ∈ U \ {i} do

c← c+ 1
if c > q then

Return PTAS with privacy budget of ε/2 as
final output . See Corollary 3

w̃ji ← wΠ
ji +N . See text

if w̃ji > 0.5 then
Add j to UL

else
Add j to UR

return DPKwikSort(Π, UL, c), i, DPKwikSort(Π, UR, c)

For concreteness, we present the idea in Corollaries 6
and 7 as Algorithm 1. We use a global counter c to keep
track of how many comparisons have been done. Once c > q
(which happens with negligible probability when we set q =
Ω(m logm)), we default to using a PTAS with privacy bud-
get of ε/2 (Corollary 3). If δ > 0, we let N be the Gaussian

noise with standard deviation Oξ
(√

m logm
εn

√
log 1

δ

)
and if

δ = 0, we let N be drawn from Lap
(

0, Oξ

(
m logm
εn

))
.

Algorithms in the Local Model
We next consider the local model (Kasiviswanathan et al.
2011), which is more stringent than the central model. We
only focus on pure-DP algorithms in the local model since
there is a strong evidence3 that approximate-DP does not
help improve utility in the local model (Bun, Nelson, and
Stemmer 2019; Joseph et al. 2019).

Reduction I: Noising All Entries
Similar to our algorithms in the central model, we start with
a simple reduction that works for any non-private ranking
algorithm by noising each wji. This is summarized below.

Theorem 8. Let α > 1, ε > 0, and δ ∈ [0, 1]. Sup-
pose that there exists a polynomial-time (not necessarily
private) α-approximation algorithm A for the rank aggre-
gation problem. Then, there exists a polynomial-time ε-DP(
α,Oα

(
m3

ε
√
n

))
-approximation algorithm B for the rank

aggregation problem in the local model.

The proof of Theorem 8 is essentially the same as that
of Theorem 1 in the central model, except that we use the

3Bun, Nelson, and Stemmer (2019); Joseph et al. (2019) give
a generic transformation from any sequentially interactive local
approximate-DP protocols to a pure-DP one while retaining the
utility. However, this does not apply to the full interaction setting.
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query answering algorithm of Duchi, Jordan, and Wain-
wright (2014), which can answer all the m2 entries with
expected error of O

(
m
ε
√
n

)
per entry; this indeed results in

O
(
m3

ε
√
n

)
additive error in the above theorem. We remark

that if one were to naively use the randomized response algo-
rithm on each entry, the resulting error would be O

(
m2

ε
√
n

)
per entry; in other words, Duchi, Jordan, and Wainwright
(2014) saves a factor of Θ(m) in the error. The full proof of
Theorem 8 is deferred to the Supplementary Material (SM).

Plugging the PTAS of Kenyon-Mathieu and Schudy
(2007) into Theorem 8, we arrive at the following:

Corollary 9. For any ξ, ε > 0, there exists an ε-local DP(
1 + ξ,Oξ

(
m3

ε
√
n

))
-approximation algorithm for the rank

aggregation problem in the local model.

Reduction II: Improving the Additive Error
Similar to the algorithm in the central model, intuitively,
it should be possible to reveal only the required queries
while adding a smaller amount of noise. Formalizing
this, however, is more challenging because the algorithm
of Duchi, Jordan, and Wainwright (2014) that we use is non-
interactive in nature, meaning that it reveals the information
about the entire vector at once, in contrast to the Laplace or
Gaussian mechanisms for which we can add noise and reveal
each entry as the algorithm progresses. Fortunately, Bass-
ily (2019) provides an algorithm that has accuracy similar
to Duchi, Jordan, and Wainwright (2014) but also works in
the adaptive setting. However, even Bassily’s algorithm does
not directly work in our setting yet: the answers of latter
queries depend on that of previous queries and thus we can-
not define w̃ directly as we did in the proof of Theorem 5.

Modifying Bassily’s Algorithm. We start by modifying
the algorithm of Bassily (2019) so that it fits in the “query
answering algorithm” definition we used earlier in the cen-
tral model. However, while the previous algorithms can al-
ways support up to q queries, the new algorithm will only be
able to do so with high probability. That is, it is allowed to
output ⊥ with a small probability. This is formalized below.

Lemma 10. For any ε, ζ > 0 and q > 10m logm, there
exists an ε-DP query-answering algorithm Q in the local
model such that

• If we consider ⊥ as having zero error, its expected error
per query is at most O

(
q

ε
√
nm

)
.

• For any (possibly adaptive) sequence i1j1, . . . , iqjq of
queries, the probability that Q outputs ⊥ on any of the
queries is at most exp(−0.1q/m).

For simplicity of the presentation, we assume that n is
divisible by m. We remark that this is without loss of gener-
ality as otherwise we can imagine having “dummy” t < m
users so that n + t is divisible by m, where these dummy
users do not contribute to the queries.

The algorithm is simple: it randomly partitions the n users
into sets P1, . . . ,Pm. Then, on each query ji, it uses a

Algorithm 2: ε-DP Adaptive Query Answering Al-
gorithm in the Local Model.
Parameters: ε > 0, q ∈ N, Partition (P1, . . . ,Pm)
of [n], ` : [m]× [m]→ [m]
Input: Π = {π1, . . . , πn}, c : [m]→ Z
ε0 ← 0.5εm/q

dε ← eε0+1
eε0−1

for user k ∈ P`(j,i) do
c(`(j, i))← c(`(j, i)) + 1
if c(`(j, i)) > 2q/m then

return ⊥
wkji = 1[πk(j) < πk(i)]

Let w̃kji ←
{
dε w.p. 1/2 · (1 + wkji/dε)

−dε w.p. 1/2 · (1− wkji/dε)
return w̃ji := m

n ·
∑
k∈P`(j,i) w̃

k
ji

random set to answer the query (via the Randomized Re-
sponse mechanism (Warner 1965)) with ε0-DP where ε0 =
0.5εm/q. Finally, the algorithm outputs ⊥ if that particular
set has already been used at least 2q/m times previously.

We remark that the main difference between the original
algorithm of Bassily (2019) and our version is that the for-
mer partitions the users into q sets and use the tth set to an-
swer the tth query. This unfortunately means that an answer
to a query jimay depend on which order it was asked, which
renders our utility analysis of DP ranking algorithms invalid
because w̃ is not well defined. Our modification overcomes
this issue since the partition used for each ji (denoted by
`(j, i) below) is independently chosen among the m sets.

Proof of Lemma 10. The full algorithm is described in Al-
gorithm 2; here (P1, . . . ,Pm) is a random partition where
each set consists of n/m users and `(j, i) is i.i.d. uniformly
at random from [m]. Moreover, c is a vector of counters,
where c(p) is initialized to zero for all p ∈ [m].

We will now prove the algorithm’s privacy guarantee. Let
us consider a user k; suppose that this user belongs to P`.
By definition of the algorithm, this user applies the Random-
ized Response algorithm at most 2q/m times throughout the
entire run. Since each application is ε0-DP (see, e.g., (Ka-
siviswanathan et al. 2011)), basic composition of DP ensures
that the entire algorithm is (2q/m) · ε0 = ε-DP.

We next analyze its accuracy guarantee. Fix a query ji.
For every user k ∈ [n], let Bk denote 1[k ∈ P`(j,i)]. Notice
that w̃ji =

∑
k∈[n]

m
n ·Bk · w̃

k
ji and E[Bk · w̃kji] = 1

m · w
k
ji.

Thus, we have E[w̃ji] = wji. Furthermore, we have

Var(w̃ji) =
(m
n

)2

·

( ∑
k∈[n]

Var(Bk · w̃kji)

+
∑

1≤k<k′≤n

Cov(Bk · w̃kji, Bk′ · w̃k
′

ji )

)
. (3)

Observe that Var(Bk · w̃kji) ≤ E[(Bk · w̃kji)2] = d2
ε/m =

O
(

1
mε20

)
= O

(
q2

m3ε2

)
. Moreover, since P` is a random
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subset of n/m users, Bk and Bk′ are negatively correlated,
meaning that Cov(Bk · w̃kji, Bk′ · w̃k

′

ji ) ≤ 0. Plugging these

back into (3) yields Var(w̃ji) ≤ O
(

q2

nmε2

)
. This, together

with the fact that w̃ji is an unbiased estimator ofwji, implies

that E[|w̃ji − wji|] ≤ O
(

q
ε
√
nm

)
as desired.

Finally, we bound the probability that the algorithm out-
puts ⊥. Since the `(j, i)’s are i.i.d. drawn from [m], we can
apply the Chernoff bound and the union bound (over the m
partitions) to conclude that the probability that any sequence
of q queries will trigger the algorithm to return ⊥ is at most
m · exp(−q/(3m)) ≤ exp(−0.1q/m), where the inequality
follows from our assumption that q ≥ 10m logm.

The Reduction. Having described and analyzed the modi-
fied version of Bassily’s algorithm, we can now describe the
main properties of the second reduction in the local model:
Theorem 11. Let α, ε > 0, q ∈ N, and ζ, δ ∈ [0, 1] such that
q ≥ 10m log(m/ζ). Suppose that there exists a polynomial-
time (not necessarily private) α-approximation algorithmA
for the rank aggregation problem that with probability 1 −
ζ
m4 makes at most q queries.

Then, there is a polynomial-time ε-DP (α+ ζ, β)-
approximation algorithm B for the rank aggregation prob-
lem where β = Oα

(
m1.5q
ε
√
n

)
in the local model.

The proof of Theorem 11 follows its counterpart in the
central model (Theorem 5); the main difference is that, in-
stead of stopping after q queries previously, we stop upon
seeing⊥ (in which case we run the PTAS from Corollary 9).
The full proof is deferred to SM.

As in the central model, if we apply the concrete bounds
for the KwikSort algorithm (which yields 5-approximation
and requires O(m logm) queries w.h.p.) to Theorem 11, we
arrive at the following corollary:
Corollary 12. For any ξ, ε > 0, there is an ε-DP(

5 + ξ,Oξ

(
m2.5 logm

ε
√
n

))
-approximation algorithm for the

rank aggregation problem in the local model.
For concreteness, we also provide the full description in

Algorithm 3. Again, similar to the setting of Algorithm 2, we
pick (P1, . . . ,Pm) to be a random partition where each set
consists of n/m users and `(j, i) i.i.d. uniformly at random
from [m], and we initialize c(p) = 0 for all p ∈ [m]. Here τ
is the threshold that is set to be Ω(logm).

Lower Bounds
To describe our lower bounds, recall that the “trivial” addi-
tive error that is achieved by outputting an arbitrary ranking
isO(m2). In this sense, our algorithms achieve “non-trivial”
additive error when n ≥ Õ(m/ε) for pure-DP (Corollary 6)
and n ≥ Õ(

√
m/ε) for approximate-DP (Corollary 7) in the

central model and when n ≥ Õ(m/ε2) in the local model
(Corollary 12). In this section we show that this is essentially
the best possible, even when the multiplicative approxima-
tion ratio is allowed to be large. Specifically, we show the
following results for pure-DP and approximate-DP respec-
tively in the central model.

Algorithm 3: LDPKwikSort.
Parameters: ε > 0, τ > 0, Partition (P1, . . . ,Pm)
of [n], `← [m]× [m]→ [m]
Input: Π = {π1, . . . , πn},U ⊆ [m], c : [m]→ Z
if U = ∅ then

return ∅
UL,UR ← ∅
Pick a pivot i ∈ U uniformly at random
for j ∈ U \ {i} do

for user k ∈ P`(j,i) do
c(`(j, i))← c(`(j, i)) + 1
if c(`(j, i)) > τ then

Run (local) PTAS with privacy budget of
ε/2 . See Corollary 9

w̃kji ←
{
dε w.p. 1/2 · (1 + wkji/dε)

−dε w.p. 1/2 · (1− wkji/dε)
w̃ji ← m

n ·
∑
k∈P`(j,i) w̃

k
ji

if w̃ji > 1/2 then
Add j to UL

else
Add j to UR

return LDPKwikSort(Π, UL, c), i, LDPKwikSort(Π,
UR, c)

Theorem 13. For any α, ε > 0, there is no ε-DP
(α, 0.01m2)-approximation algorithm for rank aggregation
in the central model for n = o(m/ε).

Theorem 14. For any constant α > 0 and any ε ∈ (0, 1],
there exists c > 0 (depending on α) such that there is no
(1, o(1/n))-DP (α, cm2)-approximation algorithm for rank
aggregation in the central model for n = o(

√
m/ε).

We stress that any lower bound in the central model also
applies to DP algorithms in the local model. Specifically,
the sample complexity in Theorem 13 also matches that
in Corollary 12 to within a factor of O(1/ε).

Due to space constraints, we will only describe high-level
ideas here. The full proofs are deferred to SM.

Proof Overview: Connection to (1-Way) Marginals. We
will describe the intuition behind the proofs of Theorems 13
and 14. At the heart of the proofs, we essentially reduce from
the 1-way marginal problem. For d, t ∈ N, let x 7→ πxd,t
denote the mapping from {−1,+1}d to S2d+t defined by
πxd,t(`) = ` for all ` ∈ {d+ 1, . . . , d+ t} and

πxd,t(j) :=

{
j if xj = 1

j + d+ t if xj = −1,

πxd,t(j + d+ t) :=

{
j + d+ t if xj = 1

j if xj = −1,

for all j ∈ [d]. In words, πxd,t is an ordering where we start
from the identity and switch the positions of j and j + d+ t
if xj = +1.
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Recall that in the (1-way) marginal problem, we are given
vectors x1, . . . , xn ∈ {−1,+1}d and the goal is to deter-
mine 1

n

∑
i∈[n] x

i. The connection between this problem and
the rank aggregation problem is that a “good” aggregated
rank on πx

1

d,t, . . . , π
xn

d,t must “correspond” to a d-dimensional
vector whose sign is similar to the 1-way marginal. To for-
malize this, let us define the “inverse” operation of x 7→ πxd,t,
which we denote by ρd,t : S2d+t → {−1,+1}d as follows:

ρd,t(π)j =

{
−1 if π(j) < π(j + d+ t)

+1 otherwise.

The aforementioned observation can now be formalized:
Observation 15. For any x1, . . . , xn ∈ {−1,+1}d and any
σ ∈ S2d, we have

K(σ, {πx
1

d,t, . . . , π
xn

d,t})

≥ t

d
2
− 1

2

〈
ρd,t(σ),

1

n

∑
i∈[n]

xi

〉 .

The “inverse” of the above statement is not exactly true,
since we have not accounted for the inversions of elements
in {1, . . . , d + 1, d + t + 1, . . . , 2d + t}. Nonetheless, this
only contributes at most 2d2 to the number of inversions and
we can prove the following:
Observation 16. For any x1, . . . , xn, y ∈ {±1}d, we have

K(πyd,t, {π
x1

d,t, . . . , π
xn

d,t})

≤ t

d
2
− 1

2

〈
y,

1

n

∑
i∈[n]

xi

〉+ 2d2.

Ignoring the additive 2d2 term, Observations 16 and 15
intuitively tell us that if the 1-way marginal is hard for DP
algorithms, then so is rank aggregation.

Pure-DP For pure-DP, it is now relatively simple to apply
the packing framework of Hardt and Talwar (2010) for prov-
ing a DP lower bound: we can simply pick x1 = · · · = xn

to be a codeword from an error-correcting code. Observa-
tion 15 tells us that this is also a good packing for the
Kendall tau metric, which immediately implies Theorem 13.

Approximate-DP Although there are multiple lower
bounds for 1-way marginals in the approximate-DP setting
(e.g., (Bun, Ullman, and Vadhan 2018; Steinke and Ullman
2015; Dwork et al. 2015; Steinke and Ullman 2017)), it does
not immediately give a lower bound for the rank aggrega-
tion problem because our observations only allow us to re-
cover the signs of the marginals, but not their values. Fortu-
nately, it is known that signs are already enough to violate
privacy (Dwork et al. 2015; Steinke and Ullman 2017) and
thus we can reduce from these results4. Another complica-
tion comes from the additive O(d2) term in Observation 16.

4Another advantage of (Dwork et al. 2015; Steinke and Ullman
2017) is that their the marginal distributions are flexible; indeed, we
need distributions which have large standard deviation (i.e., mean
is close to −1 or +1) in order to get a large approximation ratio.

However, it turns out that we can overcome this by simply
picking t to be sufficiently large so that this additive factor
is small when compared to the optimum.

Other Related Work
In many disciplines (especially in social choice), rank ag-
gregation appears in many different forms with applications
to collaborative filtering and more general social comput-
ing (Cohen, Schapire, and Singer 1999; Pennock, Horvitz,
and Giles 2000; Dwork et al. 2001). It has been shown previ-
ously by Arrow (1963) that no voting rule (on at least three
candidates) can satisfy certain criteria at once. To circum-
vent such impossibility results, we could rely on relaxed cri-
teria such as the Condorcet (Young and Levenglick 1978;
Young 1995) condition, where we pick a candidate that beats
all others in head-to-head comparisons. The Kemeny rank-
ing (Kemeny and Snell 1962) can be used to obtain a Con-
dorcet winner (if one exists) and also rank candidates in
such a way as to minimize disagreements between the rank-
ings from the voters. The Kemeny ranking problem is NP-
hard even for four voters (Bartholdi, Tovey, and Trick 1989;
Cohen, Schapire, and Singer 1999; Dwork et al. 2001). To
overcome this, computationally efficient approximation al-
gorithms have been devised (de Borda 1781; Diaconis and
Graham 1977; Conitzer, Davenport, and Kalagnanam 2006;
Kenyon-Mathieu and Schudy 2007; Ailon, Charikar, and
Newman 2008). Our results rely on such algorithms.

In correlation clustering (Bansal, Blum, and Chawla
2004), we are given a graph whose edges are labeled green
or red. The goal is to find a clustering that minimizes the
number of pairwise disagreements with the input graph, i.e.,
the number of intra-cluster red edges and inter-cluster green
edges. Correlation clustering is closely related to ranking
problems (see e.g., (Ailon, Charikar, and Newman 2008)).
Bun, Eliás, and Kulkarni (2021) recently tackled correla-
tion clustering under DP constraints, although their notion
of neighboring datsets—roughly corresponding to changing
an edge—is very different than ours.

Conclusions & Future Work
In this work, we have provided several DP algorithms and
lower bounds for the rank aggregation problem in the cen-
tral and local models. Since each of our algorithms achieves
either the near-optimal approximation ratio or the near-
optimal additive error (but not both), an immediate open
question here is if one can get the best of both worlds.

Furthermore, recall that our local DP algorithm in Corol-
lary 12 requires interactivity, which seems inherent for
any QuickSort-style algorithms. It is interesting if one can
achieve similar guarantees with a non-interactive local DP
algorithm. We point out that separations between interactive
and non-interactive local models are known (see e.g., (Da-
gan and Feldman 2020) and references therein); thus, it is
possible that such a separation exists for rank aggregation.
Lastly, it is interesting to see if we can extend our results
to other related problems—such as consensus and correla-
tion clustering—that rely on the (weighted) minimum FAST
problem for their non-private approximation algorithms.
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