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Abstract

Deep neural networks are vulnerable to small input perturba-
tions known as adversarial attacks. Inspired by the fact that
these adversaries are constructed by iteratively minimizing
the confidence of a network for the true class label, we pro-
pose the anti-adversary layer, aimed at countering this effect.
In particular, our layer generates an input perturbation in the
opposite direction of the adversarial one and feeds the classi-
fier a perturbed version of the input. Our approach is training-
free and theoretically supported. We verify the effectiveness
of our approach by combining our layer with both nomi-
nally and robustly trained models and conduct large-scale ex-
periments from black-box to adaptive attacks on CIFAR10,
CIFAR100, and ImageNet. Our layer significantly enhances
model robustness while coming at no cost on clean accuracy.

Introduction
1Deep Neural Networks (DNNs) are vulnerable to small
input perturbations known as adversarial attacks (Szegedy
et al. 2013; Goodfellow, Shlens, and Szegedy 2015). In par-
ticular, a classifier f , which correctly classifies x, can be
fooled by a small adversarial perturbation δ into misclassi-
fying (x+δ) even though x and (x+δ) are indistinguishable
to the human eye. Such perturbations can compromise trust
in DNNs, hindering their use in safety- and security-critical
applications, e.g. self-driving cars (Sitawarin et al. 2018).
While there have been extensive efforts aimed at training
DNNs that are robust to adversarial attacks, assessing the
robustness of defenses remains an elusive task. This diffi-
culty is due to the following reasons. (i) The robustness of
models varies according to the information an attacker is
assumed to know, e.g. training data, gradients, logits, etc.,
which, for ease, dichotomously categorizes adversaries as
being black- or white-box. Consequently, this categorization
results in difficulties when comparing defenses tailored to a
specific type of adversaries. For instance, several defenses
crafted for robustness against white-box adversaries were
later broken by their weaker black-box counterparts (Paper-
not et al. 2016a; Brendel, Rauber, and Bethge 2018). (ii) In
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Figure 1: Anti-adversary classifier. The flow field of adver-
sarial perturbations is shown in light green for both classes
C1 and C2. The anti-adversary we construct pulls a given
point x to (x + γ) by moving in the direction opposite to
that of the adversary flow field (orange arrows).

addition, empirically-evaluated robustness can be overesti-
mated if fewer efforts are invested into adaptively construct-
ing a stronger attack (Tramer et al. 2020; Carlini et al. 2019).
The lack of reliable assessments has been responsible for a
false sense of security, as several thought-to-be-strong de-
fenses against white-box adversaries were later broken with
better carefully-crafted adaptive attacks (Athalye, Carlini,
and Wagner 2018). The few defenses that have stood the
test of time usually come at the expense of costly train-
ing and performance degradation on clean samples (Tsipras
et al. 2019). Even worse, while most of these defenses are
meant to resist white-box attacks, little effort has been in-
vested into resisting the black-box counterparts, which may
be more common and practical (Byun, Go, and Kim 2021),
as online APIs such as IBM Watson and Azure tend to ab-
stain from disclosing information about the inner workings
of their models.

In this work, we propose a simple, generic, and training-
free layer that improves the robustness of both nominally-
and robustly-trained models. Specifically, given a base clas-
sifier f : Rn → Y , which maps Rn to labels in the setY , and
an input x, our layer constructs a data- and model-dependent
perturbation γ in the anti-adversary direction, i.e. the direc-
tion that maximizes the base classifier’s confidence on the
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pseudo-label f(x), as illustrated in Figure 1. The new sam-
ple (x+γ) is then fed to the base classifier f in lieu of x. We
dub this complete approach as the anti-adversary classifier
g. By conducting an extensive robustness assessment of our
classifier g on several datasets and under the full spectrum
of attacks, from black-box –arguably the most realistic– and
white-box, to adaptive attacks, we find across-the-board im-
provements in robustness over all base classifiers f .
Contributions. (i) We propose an anti-adversary layer to
improve the adversarial robustness of base classifiers. Our
proposed layer comes at marginal computational overhead
and virtually no impact on clean accuracy. Moreover, we
provide theoretical insights into the robustness enhance-
ment that our layer delivers. (ii) We demonstrate empiri-
cally under black-box attacks that our layer positively in-
teracts with both nominally trained and state-of-the-art ro-
bust models, e.g. TRADES (Zhang et al. 2019), ImageNet-
Pre (Hendrycks, Lee, and Mazeika 2019), MART (Wang
et al. 2019), HYDRA (Sehwag et al. 2020), and AWP (Wu,
Xia, and Wang 2020), on CIFAR10, CIFAR100 (Krizhevsky
and Hinton 2009) and ImageNet (Krizhevsky, Sutskever, and
Hinton 2012). Our results show that the anti-adversary layer
not only improves robustness against a variety of black-box
attacks (Ilyas, Engstrom, and Madry 2019; Ilyas et al. 2018;
Andriushchenko et al. 2020), but also that this improvement
comes at no cost on clean accuracy and does not require re-
training. (iii) We further evaluate our approach on a chal-
lenging setting, in which the attacker is granted full access
to the anti-adversary classifier, i.e. white-box attacks. Un-
der this setup, we equip the five aforementioned defenses
with our classifier and test them under the strong AutoAt-
tack benchmark (Croce and Hein 2020b). Our experiments
report across-the-board average improvements of 19% and
11% on CIFAR10 and CIFAR100, respectively.

Related Work
Adversarial Attacks. Evaluating network robustness dates
back to the works of (Szegedy et al. 2013; Goodfel-
low, Shlens, and Szegedy 2015), where it was shown that
small input perturbations, dubbed as adversarial attacks, can
change network predictions. Follow-up methods present a
variety of ways to construct such attacks, which are gen-
erally categorized as black-box, white-box and adaptive at-
tacks. Black-box attackers either carry out zeroth order opti-
mization to maximize a suitably defined loss function (Guo
et al. 2019; Uesato et al. 2018), or learn offline adversaries
that transfer well across networks (Papernot et al. 2017;
Bhagoji et al. 2018). On the other hand, and less practi-
cal, white-box attackers are assumed to have the full knowl-
edge of the network, e.g. parameters, gradients, architecture,
and training data, among others (Moosavi-Dezfooli, Fawzi,
and Frossard 2016; Madry et al. 2018). Despite that, pre-
viously proposed attackers from this family often construct
adversaries solely based on network predictions and gradi-
ents with respect to the input (Carlini and Wagner 2017;
Croce and Hein 2020a). Although this results in an over-
estimation of the worst-case robustness for networks, it has
now become the de facto standard for benchmarking robust-
ness (Croce and Hein 2020b). It was recently demonstrated

that several networks, which were shown to be robust in the
white-box setting, were susceptible to weaker black-box at-
tacks (Dong et al. 2020). Consequently, there has been sig-
nificant interest for adaptive attacks, i.e. specifically tailored
adversaries exploiting complete knowledge of the network
(not only predictions and gradients), for a reliable worst-
case robustness assessment (Tramer et al. 2020; Athalye,
Carlini, and Wagner 2018). However, while worst-case ro-
bustness is of interest through adaptive attacks, it may not
be of practical relevance. We argue that a proper robustness
evaluation should cover the full spectrum of attackers from
black-box to adaptive attacks; thus, in this paper, we evalu-
ate our method over such spectrum: black-box, white-box,
and adaptive attacks. In particular, we use Bandits (Ilyas,
Engstrom, and Madry 2019), NES (Ilyas et al. 2018) and
Square (Andriushchenko et al. 2020) for black-box attacks,
AutoAttack (Croce and Hein 2020b) which ensembles the
APGD, ADLR, FAB (Croce and Hein 2020a), and Square
attacks for the white-box evaluation, and tailor an adaptive
attack specific to our proposed approach for a worst-case ro-
bustness evaluation.

Defenses Against Adversaries. Given the security con-
cerns that adversarial vulnerability brings, a stream of works
developed models that are not only accurate but also robust
against adversarial attacks. From the black-box perspective,
several defenses have shown their effectiveness in defend-
ing against such attacks (Rakin, He, and Fan 2018). For ex-
ample, injecting Gaussian noise into activation maps dur-
ing both training and testing (Liu et al. 2017) was shown
to successfully defend against a variety of black-box attacks
(Dong et al. 2020). Moreover, SND (Byun, Go, and Kim
2021) showed that small input perturbations can enhance the
robustness of pretrained models against black-box attacks.
However, the main drawback of randomized methods is that
they can be bypassed by Expectation Over Transformation
(EOT) (Athalye et al. 2018). Once an attacker accesses the
gradients, i.e. white-box attackers, the robust accuracy of
such defenses drastically decreases. Thus, a stream of works
built models that resist white-box attacks. While several ap-
proaches were proposed, such as regularization (Cisse et al.
2017) and distillation (Papernot et al. 2016b), Adversarial
Training (AT) (Madry et al. 2018) remains among the most
effective. Moreover, recent works showed that AT can be
enhanced by combining it with pretraining (Hendrycks, Lee,
and Mazeika 2019), exploiting unlabeled data (Carmon et al.
2019), or concurrently, conducting transformations at test
time (Pérez et al. 2021). Further improvements were ob-
tained by introducing regularizers, such as TRADES (Zhang
et al. 2019) and MART (Wang et al. 2019), or combining
AT with network pruning, as in HYDRA (Sehwag et al.
2020), or weight perturbations (Wu, Xia, and Wang 2020).
While these methods improve the robustness, they require
expensive training and degrade clean accuracy. In this work,
we show how our proposed anti-adversary layer enhances
the performance of nominally trained models against realis-
tic black-box attacks and even outperforms the strong SND
defense. We show that equipping robust models with our
anti-adversary layer significantly improves their robustness
against black- and white-box attacks, in addition to showing
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Figure 2: The Anti-Adversary classifier. Our anti-adversary
layer generates γ for each x and fθ, and feeds (x+ γ) to fθ,
resulting in our anti-adversary classifier g.

worst-case robustness improvements under adaptive attacks.

Methodology
Motivation. Adversarial directions are the ones that maxi-
mize a loss function in the input, i.e. move an input x closer
to the decision boundary, resulting in reducing the predic-
tion’s confidence on the correct label. In this work, we lever-
age this fact by prepending a layer to a trained model to
generate a new input (x+γ), which moves x away from the
decision boundary, thus hindering the capacity of attackers
to successfully tailor adversaries. Before detailing our ap-
proach, we start with preliminaries and notations.

Preliminaries and Notation
We use fθ : Rn → P(Y) to denote a classifier, e.g. a neural
network, parameterized by θ, whereP(Y) refers to the prob-
ability simplex over the set Y = {1, 2, . . . , k} of k labels.
For an input x, an attacker constructs a small perturbation δ
(e.g. ∥δ∥p ≤ ϵ) such that argmaxi f

i
θ(x + δ) ̸= y, where y

is the true label for x. In particular, one popular approach to
constructing δ is by solving the following constrained prob-
lem with a suitable loss function L:

max
δ
L(fθ(x+ δ), y) s.t. ∥δ∥p ≤ ϵ. (1)

Depending on the information about fθ given to the at-
tacker when solving Problem (1), the adversary δ can gen-
erally be categorized into one of three types. (i) Black-box:
Only function evaluations fθ are available when solving (1).
(ii) White-box: Full access of the classifier fθ, e.g. ∇xfθ,
is granted when solving (1). (iii) Adaptive: The attacker is
tailored specifically to break the classifier fθ. That is to say,
unlike white-box attacks that can be generic methods for all
defenses, adaptive attacks are handcrafted to break specific
defenses with full knowledge of fθ, providing a better as-
sessment of worst-case robustness for the classifier fθ.

Anti-Adversary Layer
Analogous to the procedure used for constructing an adver-
sary by solving (1), we propose, given a classifier, to prepend
a layer that perturbs its input so as to maximize the classi-
fier’s prediction confidence at this input, hence the term anti-
adversary. Formally, given a classifier fθ, our proposed anti-
adversary classifier g (prepending fθ with an anti-adversary
layer) is given as follows:

g(x) = fθ(x+ γ),

s.t. γ = argmin
ζ

L(fθ(x+ ζ), ŷ(x)), (2)

where ŷ(x) = argmaxi f
i
θ(x) is the predicted label. Note

that our proposed anti-adversary classifier g is agnostic to
the choice of fθ. Moreover, it does not require retraining
fθ, unlike previous works (Xie et al. 2018; Byun, Go, and
Kim 2021) that add random perturbations to the input, fur-
ther hurting clean accuracy. This is because instances that
are correctly classified by fθ, i.e. instances where y =
argmaxi f

i
θ(x), will be (by construction as per optimization

(2)) classified correctly by g. As such, our anti-adversary
layer only increases the confidence of the top prediction of
fθ(x). Also, we observe that our novel layer aligns with the
recent advances in deep declarative models (Gould, Hart-
ley, and Campbell 2019; Amos and Kolter 2017; Chen et al.
2018; Bibi et al. 2019), where the output activations of a
given layer are solutions to optimization problems or differ-
ential equations. We illustrate our approach in Figure 2.

Theoretical Motivation for Robustness
Since the anti-adversary classifier g perturbs inputs towards
locations far from decision boundaries, we argue that g can
theoretically enjoy better robustness than fθ. In particular,
we study robustness under the realistic black-box adversary
setting of solving the unconstrained version of Problem (1).
We analyze the robustness of both g and fθ under the cel-
ebrated SimBA attack (Guo et al. 2019) due to its simplic-
ity and popularity. We show that SimBA requires a larger
number of queries (forward passes) to fool g than to fool
fθ, i.e. g is more robust than fθ. First, we show an equiva-
lency between SimBA and Stochastic Three Points (STP)
(Bergou, Gorbunov, and Richtárik 2020), a recently pro-
posed derivative-free optimization algorithm. All proofs are
left for the Appendix.
Proposition 1. Let SimBA (Guo et al. 2019) with a budget of
2B queries select a random direction q ∈ Q, with replace-
ment, thus updating the iterates xk+1 ← xk by selecting
the direction among {ϵq,−ϵq}2 with the maximum L. Then,
SimBA is equivalent to STP with B iterations.

Therefore, whenL is L-smooth, i.e. ∥∇xL(fθ(x+δ), y)−
∇xL(fθ(x), y)∥ ≤ L∥δ∥, we can find a lower bound for the
number of queries B required by SimBA to maximize L to
a certain precision.
Corollary 1. Let L be L-smooth, bounded above by
L(fθ(x∗), y), and the steps of SimBA satisfy 0 < ϵ < ρ/nL
while sampling directions from the Cartesian canonical ba-
sis (Q is an identity matrix here). Then, so long as:

B >
L(fθ(x∗), y)− L(fθ(x0), y)

( ρn −
L
2 ϵ)ϵ

= Kfθ ,

we have that mink=1,2,...,B E
[
∥∇L(fθ(xk), y)∥1

]
< ρ.

Corollary 1 quantifies the minimum query budget Kfθ re-
quired by SimBA to maximize L(fθ(x), y), reaching a spe-
cific solution precision ρ measured in gradient norm. Note
that SimBA requires 2 queries (evaluating fθ at xk± ϵq) be-
fore sampling a new direction q from Q; thus, with a budget

2Dropping the conditional break for loop, which is originally
introduced in SimBA for computational reasons, in Algorithm (1)
in (Guo et al. 2019) and evaluating on both ±ϵq.
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Algorithm 1: Anti-adversary classifier g
Function AntiAdversaryForward(fθ, x, α, K):

Initialize: γ0 = 0
ŷ(x) = argmaxi f

i
θ(x)

for k = 0 . . .K − 1 do
γk+1 = γk − α sign(∇γkL(fθ(x+ γk), ŷ))

end
return fθ(x+ γK)

of 2B, SimBA performs a total of B new updates to xk with
iterates ranging from k = 1 to k = B. To compare the ro-
bustness of fθ to our anti-adversary classifier g described in
Eq. (2), we derive Kg , i.e. the minimum query budget neces-
sary for SimBA to achieve a similar gradient norm precision
ρ when maximizingL(g(x), y). For ease of purposes, we an-
alyze Kg when the anti-adversary layer in g solves the mini-
mization Problem (2) with one iteration of STP with learning
rate ϵg . Next, we show that SimBA requires a larger query
budget to maximize L(g(x), y) as opposed to L(fθ(x), y),
hence implying that g enjoys improved robustness.
Theorem 1. Let the assumptions in Proposition 1 and
Corollary 1 hold. Then, the anti-adversary classifier g de-
scribed in Eq. (2), where γ is computed with a single STP
update in the same direction q as SimBA but with a learn-
ing rate ϵg = (1 − c)ϵ with c < 1, is more robust against
SimBA attacks than fθ. In particular, ∀ c ≤ 0, SimBA fails
to construct adversaries for g (i.e. Kg =∞). Moreover, for
c ∈ (0, 1), the improved robustness factor for g is:

G(c) :=
Kg

Kfθ

=
ρ
n −

Lϵ
2

( ρn −
Lϵ
2 c)c

> 1. (3)

Theorem 1 demonstrates that for any choice of c < 1, and
under certain assumptions, g is more robust than fθ under
SimBA attacks. In the case where the anti-adversary layer
employs a larger learning rate ϵg than that of SimBA (ϵ),
i.e. c ≤ 0, then SimBA attacks will never alter the predic-
tion of g, since Kg = ∞. On the other hand, when ϵg (the
learning rate of the anti-adversary) is smaller than the learn-
ing rate of SimBA, i.e. c ∈ (0, 1), SimBA will be successful
in altering the prediction of g but with a larger number of
queries compared to fθ, that is, g is more robust than fθ
under SimBA attacks. This outcome is captured by the im-
proved robustness factor G, which is a strictly decreasing
function in c ∈ (0, 1) and lower bounded by 1.

In general, we hypothesize that the stronger the anti-
adversary layer solver for Problem (2) is, the more robust
g is against all attacks (including white-box and particularly
against black-box attacks)3. To that end, and throughout the
paper, the anti-adversary layer solves Problem (2) with K
signed gradient descent iterations, zero initialization, and L
being the cross-entropy loss. Algorithm 1 summarizes the
forward pass of g. Next, we empirically validate improve-
ments in robustness over the full spectrum of adversaries.

3We leave to the Appendix a version of Theorem 1, where we
derive the improved robustness factor under the white-box setting
with the anti-adversary layer solving Eq. (2) using gradient descent.

Experiments
Evaluating robustness is an elusive problem, as it is ill-
defined without establishing the information available to the
attacker (1) for constructing the adversary δ. Prior works
usually evaluate robustness under the adaptive, black-box or
white-box settings. Here, we argue that robustness should be
evaluated over the complete spectrum of adversaries. In par-
ticular, we underscore that, while adaptive attacks can pro-
vide a worst-case robustness assessment, such assessment
may be uninteresting for real deployments. For example,
when the worst-case robustness of classifiers results in a
draw, this tie can be broken by considering their robustness
in the black-box setting, as this property increases its desir-
ability for real-world deployment.

Thus, we validate the effectiveness of our proposed anti-
adversary classifier g by evaluating robustness under adver-
saries from the full spectrum. (i) We first compare the ro-
bustness of fθ against our proposed anti-adversary classifier
g with popular black-box attacks (Bandits (Ilyas, Engstrom,
and Madry 2019), NES (Ilyas et al. 2018) and Square (An-
driushchenko et al. 2020)). We consider both cases when
fθ is nominally and robustly trained. Not only do we ob-
serve significant robustness improvements over fθ with vir-
tually no drop in clean accuracy, but we also outperform
recently-proposed defenses, such as SND (Byun, Go, and
Kim 2021). (ii) We further conduct experiments in the more
challenging white-box setting with AutoAttack (Croce and
Hein 2020b) (in particular against the strong attacks APGD,
ADLR (Croce and Hein 2020b), and FAB (Croce and Hein
2020a)), when fθ is trained robustly with TRADES (Zhang
et al. 2019), ImageNet-Pre (Hendrycks, Lee, and Mazeika
2019), MART (Wang et al. 2019), HYDRA (Sehwag et al.
2020), and AWP (Wu, Xia, and Wang 2020). (iii) We ana-
lyze robustness performance under tailored adaptive attacks,
demonstrating that the worst-case performance is lower
bounded by the robustness of fθ. In all experiments, we do
not retrain fθ after prepending our anti-adversary layer. We
set K = 2 and α = 0.15 whenever Algorithm 1 is used,
unless stated otherwise. (iv) Finally, we ablate the effect of
the learning rate α and the number of iterations K on the
robustness gains.

Robustness under Black-Box Attacks
We start by studying how prepending our proposed anti-
adversary layer to a classifier fθ can induce robustness gains
against black-box attacks. This is a realistic setting as sev-
eral commercially-available APIs, e.g. BigML, only allow
access to model predictions, and thus, they can only be tar-
geted with black-box adversaries.

Robustness when fθ is Nominally Trained. We conduct
experiments with ResNet18 (He et al. 2016) on CIFAR10
(Krizhevsky and Hinton 2009) and ResNet50 on ImageNet
(Deng et al. 2009). We compare our anti-adversary classifier
g against fθ in terms of clean and robust test accuracy when
subjected to two black-box attacks. In particular, we use the
Bandits and NES attacks with query budgets of 5k and 10k,
and report results in Table 1. In addition, we compare against
a recently proposed approach for robustness through input
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CIFAR10 ImageNet
Clean Bandits NES Clean Bandits NES

5K 10K 5K 10K 5K 10K 5K 10K

Nominal Training 93.7 24.0 17.2 5.8 4.8 79.2 65.2 58.2 22.4 21.0
+ SND (Byun, Go, and Kim 2021) 92.9 84.5 84.3 30.3 25.5 79.2 72.8 73.2 65.4 60.2

+ Anti-Adv 93.7 85.5 86.4 77.0 72.7 79.2 73.6 74.4 67.2 66.0

Table 1: Robustness of nominally trained models against black-box attacks: We present the robustness of a nominally trained
model against Bandits and NES, and how robustness is enhanced when equipping the model with SND (Byun, Go, and Kim
2021) and our anti-adversary layer (Anti-Adv). We perform all attacks with both 5k and 10k queries. Results shown are accuracy
measured in % where bold numbers correspond to best performance. Our approach outperforms SND by a significant margin
across datasets, attacks, and number of queries.

CIFAR10 Clean Bandits NES Square

TRADES 85.4 64.7 74.7 53.1
+ Anti-Adv 85.4 84.6 83.0 71.7

ImageNet-Pre 88.7 68.4 78.1 62.4
+ Anti-Adv 88.7 88.1 86.4 78.5

MART 87.6 72.0 79.5 64.9
+ Anti-Adv 87.6 86.5 85.3 78.0
HYDRA 90.1 69.8 79.2 65.0

+ Anti-Adv 90.1 89.4 87.7 78.8
AWP 88.5 71.5 80.1 66.2

+ Anti-Adv 88.5 87.4 86.9 80.7

CIFAR100 Clean Bandits NES Square

ImageNet-Pre 59.0 40.6 47.7 34.6
+ Anti-Adv 58.9 58.2 55.3 42.4

AWP 59.4 39.8 47.3 34.7
+ Anti-Adv 59.4 57.7 53.8 46.4

Table 2: Equipping robustly trained models with Anti-Adv
on CIFAR10 and CIFAR100 against black-box attacks. We
report clean accuracy (%) and robust accuracy against Ban-
dits, NES and Square attack where bold numbers correspond
to largest accuracy in each experiment. Our layer provides
across the board improvements on robustness against all at-
tacks without affecting clean accuracy.

randomization (SND (Byun, Go, and Kim 2021)). We set
σ = 0.01 for SND, as it achieves the best performance. Fol-
lowing common practice (Byun, Go, and Kim 2021), and
due to the expensive nature of evaluating Bandits and NES,
all test accuracy results in Table 1 are reported on 1000 and
500 instances of CIFAR10 and ImageNet, respectively. For
this experiment, we set α = 0.01 in Algorithm 1. Note
that SND, the closest work to ours, outperforms the best
performing defense in the black-box settings benchmarked
in (Dong et al. 2020).

As shown in Table 1, nominally trained models fθ are not
robust: their clean accuracies on CIFAR10 and ImageNet
drop from 93.7% and 79.2%, respectively, to 4.8% and

21% when under black-box attacks. Moreover, while SND
improves robustness significantly over fθ, e.g. to 25.5%
on CIFAR10 and to 60.2% on ImageNet, our proposed
anti-adversary consistently outperforms SND across attacks,
budget queries, and datasets. For instance, under the limited
5k query budget, our anti-adversary classifier outperforms
SND by 1% and 46.7% on CIFAR10 against Bandits and
NES. The robustness improvements over SND increase even
when attacks have a larger budget of 10k: on ImageNet our
anti-adversary outperforms SND by 1.2% against Bandits
and by 5.8% against NES. Further, we note that this im-
provement comes at no cost on clean accuracy. In summary,
Table 1 provides strong evidence suggesting that our pro-
posed anti-adversary classifier improves the black-box ro-
bustness of a nominally trained fθ, outperforming the recent
SND. In addition, this performance improvement does not
hurt clean accuracy nor requires retraining fθ.

Robustness when fθ is Robustly Trained. We have pro-
vided evidence that our anti-adversary layer can improve
black-box robustness of nominally trained fθ. Here, we in-
vestigate whether our anti-adversary layer can also improve
robustness in the more challenging setting when fθ is al-
ready robustly trained. This is an interesting setup as fθ
could have been trained robustly against white-box attacks
and then deployed in practice where only function eval-
uations are available to the attacker (1), and hence only
black-box robustness is of importance. Here we show we
can improve black-box robustness with our proposed anti-
adversary layer over five state-of-the-art robustly trained fθ:
TRADES, IN-Pret, MART, HYDRA, and AWP on the CI-
FAR10 and CIFAR100 datasets. Similar to the previous ex-
perimental setup, and due to computational cost, we report
robust accuracy on 1000 test set instances against Bandits
and NES. However, for the more computationally-efficient
Square attack, we report robust accuracy on the full test set.

Table 2 reports the black-box robust accuracies of
robustly-trained fθ on CIFAR10 and CIFAR100, respec-
tively. We highlight the highest scores in bold. In line with
our previous observations, prepending our anti-adversary
layer to fθ has no impact on clean accuracy. More impor-
tantly, although fθ is robustly trained and thus already en-
joys large black-box robust accuracy, our proposed anti-
adversary layer can boost its robustness further by an im-
pressive ∼ 15%. For instance, even for the top-performing
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CIFAR10 Clean APGD ADLR FAB AutoAttack Improvement

TRADES 84.92 55.31 53.12 53.55 53.11 18.60+ Anti-Adv 84.88 77.20 77.05 83.38 71.71
ImageNet-Pre 87.11 57.65 55.32 55.69 55.31 20.70+ Anti-Adv 87.11 78.76 79.02 85.07 76.01

MART 87.50 62.18 56.80 57.34 56.75 20.01+ Anti-Adv 87.50 81.07 80.54 86.52 76.76
HYDRA 88.98 60.13 57.66 58.42 57.64 18.75+ Anti-Adv 88.95 80.37 81.42 87.92 76.39

AWP 88.25 63.81 60.53 60.98 60.53 18.68+ Anti-Adv 88.25 80.65 81.47 87.06 79.21

CIFAR100 Clean APGD ADLR FAB AutoAttack Improvement

ImageNet-Pre 59.37 33.45 29.03 29.34 28.96 11.72+ Anti-Adv 58.42 47.63 45.29 53.57 40.68
AWP 60.38 33.56 29.16 29.48 29.15 10.42+ Anti-Adv 60.38 44.21 40.32 50.76 39.57

Table 3: Equipping robustly trained models with Anti-Adv on CIFAR10 and CIFAR100 against white-box attacks. We report
clean accuracy (%) and robust accuracy against APGD, ADLR, FAB and AutoAttack where bold numbers correspond to largest
accuracy in each experiment. The last column summarizes the improvement on the AutoAttack benchmark. We observe strong
results on all models and attacks when adding our anti-adversary layer, with improvements close to 19% all around.

fθ (trained with AWP with a robust accuracy of 66.2% on
CIFAR10), our anti-adversary layer improves robustness by
14.5%, reaching 80.7%. Similarly, for CIFAR100, the anti-
adversary layer improves the worst-case black-box robust-
ness of AWP by 11.7%. Overall, our anti-adversary layer
consistently improves black-box robust accuracy against all
attacks for all robust training methods on both CIFAR10
and CIFAR100.

SND + Robustly Trained fθ. Although SND (Byun, Go,
and Kim 2021) does not report performance on robustly-
trained models, we experiment with equipping AWP-trained
models with SND. We observe that SND significantly de-
grades both clean and robust accuracies of AWP: employ-
ing SND on top of AWP drops clean accuracy from 88.5%
to 70.0%, while its robust accuracy (under Square attack)
drops from 66.2% to 59.1%. These results suggest that our
proposed anti-adversary layer is superior to SND.

Other Black-Box Defenses We compare against Random
Self-Ensemble (RSE) (Liu et al. 2017) on CIFAR10 and
find that it underperforms in comparison to our approach,
both in clean accuracy, with 86.7%, and in robust accu-
racy, with 78.8% and 85.5% under NES and Bandits, respec-
tively. While RSE is more robust than robustly trained mod-
els against black-box attacks, equipping such models with
our anti-adversary layer outperforms RSE, as illustrated, for
instance, by the HYDRA+Anti-Adv row in Table 2.

Section Summary. Our proposed anti-adversary layer
can improve state-of-the-art robust accuracy in the realistic
black-box setting when combined with robustly trained fθ,
while coming at no cost to clean accuracy. The robust black-
box accuracy improvements are consistent across classifiers

fθ, both with regular or robust training.

Robustness under White-Box Attacks
In this setting, the attacker (1) has complete knowledge
about the classifier. This challenging setup is less realistic
compared to the black-box setting. Nonetheless, it is still
an interesting measure of overall robustness when more in-
formation is accessible to the attacker (1). Various prior
works (Xie et al. 2019; Zhang and Wang 2019) report ro-
bustness performance only in this setting by reporting accu-
racy under PGD (Madry et al. 2018) or AutoAttack.

Similar to the previous section, we experiment on CI-
FAR10 and CIFAR100 and assess how prepending our anti-
adversary layer to robustly trained classifiers fθ can enhance
the classifiers’ robustness. We report the full test robust
white-box accuracy against the gradient-based attacks from
AutoAttack, i.e. APGD, ADLR and FAB, and also measure
the accuracy under AutoAttack, defined as the worst-case
accuracy across these four attacks (three white-box attacks
in addition to Square attacks) under ϵ = 8/255 in (1). We
underscore that the AutoAttack ensemble is currently the
standard for benchmarking defenses, i.e. it is the de facto
strongest attack in this setting.

In Table 3, we report robust accuracies on CIFAR10 and
CIFAR100, respectively, and highlight the strongest perfor-
mance in bold. We first observe that our anti-adversary layer
improves robust accuracy by an impressive ∼ 19% on aver-
age against AutoAttack. In particular, for AWP, the strongest
defense we consider, adversarial robustness increases from
60.53% to an astounding 79.21%. We further observe sim-
ilar results for CIFAR100: Table 3 shows that the anti-
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Figure 3: Effect of varying α on clean and robust accu-
racy for AWP+Anti-Adv on CIFAR10. Dashed lines de-
pict AWP’s performance. Our layer provides substantial im-
provements on robust accuracy with different choices of α
and with no effect on clean accuracy.

adversary layer adds an average improvement of ∼ 11%.
For instance, the adversarial robustness of ImageNet-Pre in-
creases from 28.96% to over 40%. The improvement is con-
sistent across all defenses on CIFAR100, with a worst-case
drop in clean accuracy of 1%. We also compare our ap-
proach against SND under this setup (as the experiments in
SND (Byun, Go, and Kim 2021) do not study its interaction
with robust training). Notably, equipping AWP with SND
comes at a notable drop in clean accuracy (from 88.25% to
70.03%) along with a drastic drop in robust accuracy (from
60.53% to 27.04%) under AutoAttack on CIFAR10.
Section Summary. Our experiments suggest that, even in
the challenging setting where the attacker (1) is granted ac-
cess to the gradients, our anti-adversary layer still proves to
provide benefits to all defenses. For both CIFAR10 and CI-
FAR100, the anti-adversary layer seamlessly provides vast
improvements in adversarial robustness.

Adaptive Attacks: Worst-Case Performance
Here, we analyze the worst-case robustness of our proposed
anti-adversary classifier g. In particular, and under the least
realistic setting, we assume that our anti-adversary classifier
g is fully transparent to the attacker (1) when tailoring an
adversary. Following the recommendations in (Tramer et al.
2020), we explore various directions to construct an attack,
such as Expectation Over Transformation (EOT) (Athalye
et al. 2018; Tramer et al. 2020). However, since our anti-
adversary layer is deterministic, as illustrated in Algorithm
1, EOT is ineffective for improving the gradient estimate.
Nevertheless, we note that the anti-adversary layer depends
on the pseudo-label assigned by fθ to the original instance
x, i.e. ŷ(x) = argmaxi f

i
θ(x). Therefore, an attacker with

access to g’s internal structure can first design an adversary
δ such that ŷ(x+δ) ̸= y with ∥δ∥p ≤ ϵ following (1), where
y is x’s label. If δ is successfully constructed in this way, it
will cause both fθ and g to produce different predictions for
x and (x + δ). Thus, in the least realistic adversary setting,
the set of adversaries that fools fθ fools g as well. Accord-
ingly, we argue that the worst-case robust accuracy for g un-
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Figure 4: Effect of varying K on robust accuracy for
AWP+Anti-Adv on CIFAR10. The better the solver for (2)
is, the larger the robustness gains that our layer provides.

der adaptive attacks is lower bounded by the robust accuracy
of the base classifier fθ. While, as noted in previous sec-
tions, our anti-adversary layer boosts robust accuracy over
all tested datasets and classifiers fθ (nominally or robustly
trained), the worst-case robustness under the least realistic
setting (adaptive attacks) is lower bounded by the robust-
ness of fθ. This highlights our motivation that prepending
our layer is of a great value to existing robust models due to
its simplicity and having no cost on clean accuracy.

Ablations
Our proposed Algorithm 1 has two main parameters: the
learning rate, α, and the number of iterations, K. We
ablate both to assess their effect on robustness. All ex-
periments are conducted on a robustly-trained fθ (with
AWP). First, we fix K = 2 and vary α in the set
{8/255, 10/255, 0.1, 0.15, 0.2, 0.25, 0.3}. In Figure 3, we com-
pare fθ to our anti-adversary classifier g in terms of clean
and robust accuracies under a black-box (Square) and a
white-box (AutoAttack) attacks. As shown in blue, the ef-
fect of α on clean accuracy is almost non-existent. On the
other hand, while the robust accuracy varies with α, the ro-
bustness gain of g over fθ is always ≥ 10% for all α values.
Next, we study the effect of varying K ∈ {1, 2, 3} while
fixing α = 0.15. Results in Figure 4 show that all choices
of K lead to significant improvement in robustness against
all attacks, with K = 3 performing best. This confirms our
claim that the better the solver for (2), the better the robust-
ness performance of our anti-adversary classifier. Note that
while one could further improve the robustness gains by in-
creasing K, this improvement comes at the expense of more
computations. It is worthwhile to mention that the cost of
computing the anti-adversary is (K + 1) forward and K
backward passes, which is marginal for small values of K.
Finally, we leave more ablations, the implementation details,
and the rest of our experimental results to the Appendix.

Conclusion
We present the anti-adversary layer, a novel training-free and
theoretically supported defense against adversarial attacks.
Our layer provides significant improvements in network ro-
bustness against black- and white-box attacks.
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Stochastic Three Points Method for Unconstrained Smooth
Minimization. In SIAM Journal on Optimization.
Bhagoji, A. N.; He, W.; Li, B.; and Song, D. 2018. Practical
Black-box Attacks on Deep Neural Networks using Efficient
Query Mechanisms. In Proceedings of the European Con-
ference on Computer Vision (ECCV).
Bibi, A.; Ghanem, B.; Koltun, V.; and Ranftl, R. 2019. Deep
Layers as Stochastic Solvers. International Conference on
Learning Representations (ICLR).
Brendel, W.; Rauber, J.; and Bethge, M. 2018. Decision-
Based Adversarial Attacks: Reliable Attacks Against Black-
Box Machine Learning Models. In International Conference
on Learning Representations (ICLR).
Byun, J.; Go, H.; and Kim, C. 2021. Small Input Noise
is Enough to Defend Against Query-based Black-box At-
tacks. https://openreview.net/forum?id=6HlaJSlQFEj. Ac-
cessed: 2021-01-12.
Carlini, N.; Athalye, A.; Papernot, N.; Brendel, W.; Rauber,
J.; Tsipras, D.; Goodfellow, I.; Madry, A.; and Ku-
rakin, A. 2019. On Evaluating Adversarial Robustness.
arXiv:1902.06705.
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP).
Carmon, Y.; Raghunathan, A.; Schmidt, L.; Duchi, J. C.;
and Liang, P. S. 2019. Unlabeled data improves adversarial
robustness. In Advances in Neural Information Processing
Systems (NeurIPS).
Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; and Duve-
naud, D. 2018. Neural Ordinary Differential Equations.
In Advances in Neural Information Processing Systems
(NeurIPS). Curran Associates Inc.

Cisse, M.; Bojanowski, P.; Grave, E.; Dauphin, Y.; and
Usunier, N. 2017. Parseval networks: Improving robustness
to adversarial examples. International Conference on Ma-
chine Learning (ICML).
Croce, F.; and Hein, M. 2020a. Minimally distorted Adver-
sarial Examples with a Fast Adaptive Boundary Attack. In
International conference on machine learning (ICML).
Croce, F.; and Hein, M. 2020b. Reliable evaluation of adver-
sarial robustness with an ensemble of diverse parameter-free
attacks. In International Conference on Machine Learning
(ICML).
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition (CVPR).
Dong, Y.; Fu, Q.-A.; Yang, X.; Pang, T.; Su, H.; Xiao, Z.;
and Zhu, J. 2020. Benchmarking Adversarial Robustness
on Image Classification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and harnessing adversarial examples. International Con-
ference on Learning Representations (ICLR).
Gould, S.; Hartley, R.; and Campbell, D. 2019. Deep Declar-
ative Networks: A New Hope. CoRR, abs/1909.04866.
Guo, C.; Gardner, J.; You, Y.; Wilson, A. G.; and Wein-
berger, K. 2019. Simple Black-box Adversarial Attacks. In
International Conference on Machine Learning (ICML).
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Hendrycks, D.; Lee, K.; and Mazeika, M. 2019. Using Pre-
Training Can Improve Model Robustness and Uncertainty.
International Conference on Machine Learning (ICML).
Ilyas, A.; Engstrom, L.; Athalye, A.; and Lin, J. 2018.
Black-box adversarial attacks with limited queries and infor-
mation. In International Conference on Machine Learning.
(ICML).
Ilyas, A.; Engstrom, L.; and Madry, A. 2019. Prior Con-
victions: Black-box Adversarial Attacks with Bandits and
Priors. In International Conference on Learning Represen-
tations (ICLR).
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. In University of Toronto,
Canada.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS).
Liu, X.; Cheng, M.; Zhang, H.; and Hsieh, C. 2017. Towards
Robust Neural Networks via Random Self-ensemble. CoRR,
abs/1712.00673.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2018. Towards deep learning models resistant to
adversarial attacks. International Conference on Learning
Representations (ICLR).

5999



Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neu-
ral networks. In IEEE conference on computer vision and
pattern recognition (CVPR).

Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik,
Z. B.; and Swami, A. 2016a. Practical black-box attacks
against deep learning systems using adversarial examples.
arXiv:1602.02697.

Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik,
Z. B.; and Swami, A. 2017. Practical Black-Box Attacks
against Machine Learning. In Asia Conference on Computer
and Communications Security.

Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A.
2016b. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on Secu-
rity and Privacy (SP).
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