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Abstract

Deep neural networks are vulnerable to input deformations in
the form of vector fields of pixel displacements and to other pa-
rameterized geometric deformations e.g. translations, rotations,
etc. Current input deformation certification methods either (i)
do not scale to deep networks on large input datasets, or (ii) can
only certify a specific class of deformations, e.g. only rotations.
We reformulate certification in randomized smoothing setting
for both general vector field and parameterized deformations
and propose DEFORMRS-VF and DEFORMRS-PAR, respec-
tively. Our new formulation scales to large networks on large
input datasets. For instance, DEFORMRS-PAR certifies rich
deformations, covering translations, rotations, scaling, affine
deformations, and other visually aligned deformations such
as ones parameterized by Discrete-Cosine-Transform basis.
Extensive experiments on MNIST, CIFAR10, and ImageNet
show competitive performance of DEFORMRS-PAR achieving
a certified accuracy of 39% against perturbed rotations in the
set [−10◦, 10◦] on ImageNet.

Introduction
1Deep Neural Networks (DNNs) are susceptible to small ad-
ditive input perturbations, i.e. a DNN that correctly classifies
x can be fooled into misclassifying (x+δ), even when δ is so
small that x and (x+ δ) are imperceptibly different (Szegedy
et al. 2014; Goodfellow, Shlens, and Szegedy 2015a). Even
worse, DNNs were shown to be vulnerable to input deforma-
tions (Alaifari, Alberti, and Gauksson 2019) such as input
rotations and scaling, where such deformations, unlike ad-
ditive perturbations, can exist due to a slight change in the
physical world. This raises a critical concern especially since
DNNs are now deployed in safety critical applications, e.g.
self-driving cars. To address the nuisance of sensitivity to
input deformations, one would ideally seek to train DNNs
that are certifiably free from such adversaries. While there
has been impressive progress towards this goal, i.e. certify-
ing input deformations, prior art suffers from the limitation
of only being able to certify an individual set of deforma-
tions, e.g. only rotations or only translations etc., or a small
composition set of them (Singh et al. 2019; Balunovic et al.
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2019; Mohapatra et al. 2020). Only recently has a certifica-
tion approach been developed for the richer class of smooth
vector fields (general displacement of pixels) (Ruoss et al.
2021). However, all previous approaches require solving a
mixed-integer or linear program, thus limiting their appli-
cability to small DNNs on small datasets. On the contrary,
the only certification methods that scale to larger networks
on large datasets (e.g. ImageNet) are based on randomized
smoothing (Cohen, Rosenfeld, and Kolter 2019). However,
such approaches (Fischer, Baader, and Vechev 2020a; Li et al.
2020), similar to many others, are limited to individual defor-
mations, e.g. only translations, or to deformations that ought
to be resolvable limiting the class of certifiable deformations.

In this paper, we revisit the problem of certifying the
parameterization of a general class of input deformations
through randomized smoothing. Our approach, dubbed DE-
FORMRS, is general, and it allows for the certification of
vector field and parameterized deformations. For the class of
parameterized deformations, DEFORMRS certifies general
affine deformations that cover translation, rotations, scaling,
sheering, etc., and any composition of them. Moreover, we
show that if the parameterized deformation is represented
by the low frequency components of the Discrete Cosine
Transform (DCT), DEFORMRS allows for the certification
of a set of visually aligned and plausible deformations. Fig-
ure 1 presents several examples of the class of deformations
DEFORMRS certifies at scale. Our contributions can be sum-
marized as follows. (i) DEFORMRS-VF. We extend the for-
mulation of randomized smoothing from pixel intensities to
vector field deformations and derive a certification radius R
for the deformation vector field. That is to say, DEFORMRS-
VF resists all deformations having a vector field with a norm
that is smaller than R. (ii) DEFORMRS-PAR. We specialize
our analysis for parametrizable deformations and propose
DEFORMRS-PAR, which grants certification to popular de-
formations, e.g. translation, rotation, scaling, and any compo-
sition subset of them, in addition to the general affine class
of deformations. We also specialize DEFORMRS-PAR for
the set of deformations parameterized by the low-frequency
components of DCT, thus certifying a richer class of visu-
ally aligned deformations that were not explored in earlier
works. (iii) We demonstrate the effectiveness of our proposed
approach by conducting extensive experiments on MNIST
(LeCun 1998), CIFAR10 (Krizhevsky 2012), and ImageNet
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Figure 1: Examples of deformations. We show examples of deformations accompanied with their respective vector fields. First
row: Gaussian random deformations. Second row: rotation, translation, scaling, and sheering. Third row: affine deformations.
Last row: DCT deformations.

(Russakovsky et al. 2015). DEFORMRS-VF is capable of
providing networks that are certifiably robust against general
input deformations. Moreover, DEFORMRS-PAR achieves
a certified accuracy of 96.8%, 91.8% and 39% against all
rotations in the set [−30◦, 30◦] for MNIST and [−10◦, 10◦]
on CIFAR10 and ImageNet, respectively. In comparison, a
recent work (Mohapatra et al. 2020) achieves a certified ac-
curacy of 21.8% on CIFAR10 under the same rotation pertur-
bation set.

Related Work
Certifying Additive Perturbations. Due to the vulnera-
bility of DNNs to adversarial attacks (Goodfellow, Shlens,
and Szegedy 2015b), a stream of work was developed to
build models that are certifiable against ℓp bounded additive
adversaries. This includes methods based on Satisfiability
Modulo Theory solvers (Ehlers 2017; Katz et al. 2017; Bunel
et al. 2017), interval bound propagation (Gowal et al. 2018),
and semi-definite programming (Raghunathan, Steinhardt,
and Liang 2018), among many others (Ehlers 2017; Huang
et al. 2017). This class of approaches is generally computa-
tionally expensive for certifying deeper networks on large
dimensional inputs (Tjeng, Xiao, and Tedrake 2019) let alone
for using them as part of a training routine (Weng et al. 2018).
Recently, randomized smoothing (Lecuyer et al. 2019; Co-
hen, Rosenfeld, and Kolter 2019) demonstrated to be an
effective and scalable approach for probabilistic certifica-
tion of additive perturbations. Followed by various improve-
ments through incorporating adversarial training (Salman
et al. 2019), regularization (Zhai et al. 2020), smoothing dis-
tribution optimization (Alfarra et al. 2020; Eiras et al. 2021),

randomized smoothing achieved state-of-the-art performance
in constructing highly accurate and certifiable networks. Fol-
lowing the favorable properties of randomized smoothing,
we leverage it for input deformation certification.

Certifying Image Deformations. In addition to additive
input perturbations, DNNs were shown to be susceptible to
input deformations. For instance, it was shown that DNNs
can be fooled into mispredicting inputs undergoing small
imperceptible vector field deformations (pixel displacements)
(Alaifari, Alberti, and Gauksson 2019). This was followed
by several works that aim to provide empirical evaluation
of robustness against such deformations, e.g. input transla-
tions and rotations, including attacks and defenses (Kanbak,
Moosavi-Dezfooli, and Frossard 2017; Wong, Schmidt, and
Kolter 2020; Engstrom et al. 2019). Unlike certification of ad-
ditive input perturbations, certifying input deformations only
recently started gaining attention. One of the earliest work
performs an abstract interval bound propagation for certifica-
tion (Singh et al. 2019), which was later followed by a tighter
linear program formulation (Balunovic et al. 2019), which
certifies geometric transformations such as translation and ro-
tation. Recently, several popular geometric transformations as
well as other transformations, such as intensity contrast, were
formulated as a piece-wise nonlinear layer (Mohapatra et al.
2020), thus allowing for exact certification based on a tighter
formulation of classical ℓp certification solvers commonly
used for additive perturbations. Moreover, recent work (Ru-
oss et al. 2021) generated optimal intervals and certify them
for general vector fields deformations. However, all previous
methods either inherently suffer from scalability limitations,
or that they cannot certify a composition of transformations
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jointly. Alleviating the scalability constraints, randomized
smoothing was deployed to certify image transformations
that are invariant to interpolation (Levine and Feizi 2019);
however, the proposed formulation was restricted to individ-
ual transformations like rotation and translation. This was
followed by the work of (Li et al. 2020), where networks were
verified against individual resolvable transformations by esti-
mating their Lipschitz upper bound. We extend prior art to
allow for scalable certification of vector field deformations.

Certifying Deformations with Randomized
Smoothing

Background. Randomized smoothing constructs a provably
robust classifier g : Rn → P(Y) from any classifier f :
Rn → P(Y), where P(Y) is a probability simplex over the
set of labels Y . For some distribution D, g is defined as:

g(x) = Eϵ∼D [f(x+ ϵ)] .

Suppose that g assigns the class cA for an input x, we define:

pA = gcA(x, p) and pB = max
i̸=cA

gi(x, p),

where gi(x) is the ith element of g(x). Then, for Gaussian
smoothing, i.e. D = N (0, σ2I), g outputs a fixed prediction,
i.e. g(x) = g(x+δ), for any perturbation δ satisfying ∥δ∥2 ≤
σ
2 (Φ

−1(pA)−Φ−1(pB)) (Zhai et al. 2020). Here, Φ−1 is the
inverse CDF of the standard Gaussian. Moreover, for uniform
smoothing, i.e. D = U [−λ, λ]n, then g(x) = g(x + δ) for
any perturbation δ satisfying ∥δ∥1 ≤ λ(pA − pB) (Yang
et al. 2020). While there has been tremendous progress in
robustifying networks against ℓp additive attacks, there has
been far less progress towards robustness against non-additive
perturbations (e.g. shadowing, input deformations, etc.).

Threat Model. We focus on the rich class of spatial de-
formations, i.e. perturbations to the pixel coordinates, which
cover as a special case translation, rotation, scaling, sheering,
etc. Given an input x and a function parametrized by κ that
transforms x into x′, the threat model aims at finding param-
eters κ that causes f to mispredict x′. Formally, as proposed
earlier (Mohapatra et al. 2020), the threat model solves:

min
κ

(
f cA(x′)−max

c
f c̸=cA(x′)

)
< 0, s.t. dκ(x, x

′) < ρ,

(1)
where dκ(x, x′) measures the distance in the parameter space
κ (e.g. rotation angle). In this setup, the threat model can
only access the parameters of the transformation function
for a given input x. This important formulation is studied
earlier in the literature as it reformulates adversarial attacks to
simulators and face recognition systems (e.g. attacking pose
of a face) (Wu et al. 2020; Hamdi, Mueller, and Ghanem
2020). Here, we leverage randomized smoothing to provide
simple general scalable certificates against this threat model.

DEFORMRS-VF: Certifying Vector Fields
Deformations. Let the discrete grid ΩZ ⊂ Z2, where Z is
the set of integers, represent the domain of images I : ΩZ →
[0, 1]c, where c is the number of channels in the image. Then,

a domain deformation is defined as T : ΩZ → R2, such that
for a pixel coordinate p ∈ ΩZ, we can write T (p) = p+v(p),
where v : ΩZ → R2 represents the vector field. Since the
deformation T maps pixel coordinates to R2, one needs to
define an associated interpolation function for a deformed
image x ∈ [0, 1]n, where n = c × |ΩZ|, as IT : [0, 1]n ×
R2|ΩZ| → [0, 1]n. As such, when T (p) = p ∀p ∈ ΩZ, then
we have IT (x, T (p)) = x. For ease of notation, we use p
to denote the complete set of the discrete grid ΩZ. First,
we extend the definition of smoothed classifiers to domain
deformation smoothed classifiers.
Definition 1. Given a classifier f : Rn → P(Y) and an
interpolation function IT : [0, 1]n × R2|ΩZ| → [0, 1]n, we
define a deformation smoothed classifier as:

ĝ(x, p) = Eϵ∼D [f (IT (x, p+ ϵ))] .

Note that contrary to g, which smooths the predictions
of f under additive pixel perturbations, ĝ smooths predic-
tions of f under pixel coordinate deformations. Similar in
spirit to earlier results on randomized smooth for additive
perturbations (Cohen, Rosenfeld, and Kolter 2019; Zhai et al.
2020), we can show that ĝ is certifiable as per the following
Theorem. We leave all proofs to the Appendix.
Theorem 1. Suppose that ĝ assigns the class cA for an input
x, i.e. cA = argmaxc ĝ

c(x, p) with:

pA = ĝcA(x, p) and pB = max
i̸=cA

ĝi(x, p)

then argmaxc ĝ
c(x, p + ψ) = cA for vector field perturba-

tions satisfying:

∥ψ∥1 ≤ λ (pA − pB) for D = U [−λ, λ],

∥ψ∥2 ≤ σ

2

(
Φ−1(pA)− Φ−1(pB)

)
for D = N (0, σ2I),

(2)
Theorem 1 states that as long as the ℓ1 and ℓ2 norms of

the deformation characterized by the vector field ψ are suffi-
ciently small, then ĝ enjoys a constant prediction. Note that
the ℓ1 and ℓ2 certificates are agnostic to the structure of the
deformation vector field ψ. That is to say, ĝ resists all domain
deformations, e.g. translation, rotation, scaling, etc., as long
as (2) is satisfied. This includes patch level deformations, i.e.
when ψ is an all zero vector field except for a set of indices
representing a patch (e.g. a rotation of a patch in the image).

DEFORMRS-PAR: Certifying Parametrizable
Deformations
Note that the dimensionality of the deformation vector field
ψ is twice (two dimensions of the image) the number of pixel
coordinates, i.e. 2|ΩZ|, where |ΩZ| = 32× 32 in CIFAR10.
As such, the set of deformation vector fields ψ of this large di-
mensionality satisfying the conditions in (2) might be limited
to a set of imperceptible deformations, i.e. x and IT (x, p+ψ)
are indistinguishable 2. However, many popular deformations
are parameterized by a much smaller set of parameters. In

2Certifying imperceptible deformations is important since adver-
saries can take this form (Alaifari, Alberti, and Gauksson 2019).
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general, consider the deformation Tϕ(p) = p+ vϕ(p), where
the dimension of ϕ is much lower than vϕ(p), where vϕ is an
element wise function. For example, when the vector field vϕ
characterizes a translation or a rotation, the parameterization
ϕ is of dimensions 2 and 1, respectively. In that regard, we
show that a close relative to Theorem 1 also holds for pertur-
bations in the parameters characterizing deformations. We
first define a parametric deformation smoothed classifier.

Definition 2. Given a classifier f : Rn → P(Y) and an
interpolation function IT : [0, 1]n ×R2|ΩZ| → [0, 1]n, we de-
fine a parametric deformation smoothed classifier as follows:

g̃ϕ(x, p) = Eϵ∼D [f (IT (x, p+ vϕ+ϵ(p)))] .

Unlike Definition 1, g̃ϕ smooths the prediction of f under
a specific class of deformations by perturbing the parameteri-
zation ϕ. Next, we analyze the robustness of g̃ϕ.

Corollary 1. Suppose that g̃ assigns the class cA for an input
x, i.e. cA = argmaxc g̃ϕ(x, p) with:

pA = g̃cAϕ (x, p) and pB = max
i̸=cA

g̃iϕ(x, p),

then argmaxc g̃ϕ+ξ(x, p) = cA for all parametric domain
perturbations satisfying:

∥ξ∥1 ≤ λ (pA − pB) for D = U [−λ, λ],

∥ξ∥2 ≤ σ

2

(
Φ−1(pA)− Φ−1(pB)

)
for D = N (0, σ2I).

Corollary 1 specializes the result of Theorem 1 to the
family of parametric deformations. It states that as long as
the norm of the perturbations to the deformation parameters
is sufficiently small, g̃ϕ enjoys a constant prediction. Next,
we show the parametrization of several popular deformations.
Let the pixel grid ΩZ be the grid of an image of size N ×
M , where pn,m = (n,m) ∈ ΩZ is a pixel location and
vϕ(pn,m) = (un,m, vn,m) represents the field at pn,m.

Translation. Image translation is only parameterized by
two parameters ϕ = {tv, tv}, namely vϕ(pn,m) =
(tu, tv) ∀p ∀n,m as per Definition 2 and Corollary 1.

Rotation. 2D rotation is only parameterized by the rotation
angle ϕ = {θ}, where un,m = n(cos(θ) − 1) − msin(θ)
and vn,m = nsin(θ) +m(cos(θ)− 1).

Scaling. Similar to rotation, scaling is parametrized with
one parameter; the scaling factor ϕ = {α}, where un,m =
(α − 1)n and vn,m = (α − 1)m ∀n,m. That is to say, the
vector field has the form vα(p) = ((α− 1)n, (α− 1)m) ∀p.

Affine. Our formulation for the certification of the paramet-
ric family of deformations is general and covers all affine vec-
tor fields as special cases. In particular, affine vector fields are
parameterized by 6 parameters, namely ϕ = {a, b, c, d, e, f},
where un,m = an+ bm+ e and vn,m = cn+ dm+ f . Note
that this class naturally covers composite deformations, such
as scaling and translation jointly.

Beyond Affine: DCT- Basis. To address deformations be-
yond affine vector fields, we also consider certifying a class of
deformations represented by the Discrete Cosine Transform
(DCT) basis. In particular, we consider the low-frequency
component truncated DCT of the vector field un,m and vn,m
with a window size of k× k (as opposed to the complete size
of N ×M ), where the set is characterized by 2k2 parameters.

Experiments
We validate the certified performance of DEFORMRS follow-
ing Theorem 1 and Corollary 1, respectively. The goal of this
section is to show that (i) DEFORMRS-PAR improves certi-
fied accuracy against individual deformations that are parame-
terizable, e.g. rotation as compared to (Mohapatra et al. 2020)
(MOH), in addition to comparisons against several other
individual deformations on several datasets. (ii) DEFORMRS-
PAR can certify the general class of affine deformations al-
lowing for the certification of a composition of deformations,
e.g. rotation and sheering jointly. (iii) DEFORMRS-PAR can
certify deformations that are parameterized by truncated DCT
coefficients, a more general class of deformations that can
represent visually aligned deformations. (iv) Following The-
orem 1, DEFORMRS-VF certifies general vector field defor-
mations that are generally imperceptible. Here, we note that
while our work directly compares to MOH in terms of setup
and formulation (certifying parameter perturbations as per
the threat model in Objective 1), we include other geometric
certification approaches, i.e. (Li et al. 2020) (LI),(Balunovic
et al. 2019) (BAL), and (Fischer, Baader, and Vechev 2020b)
(FBV), that are not directly comparable to ours due to a
different threat model for full completeness.

Setup. We follow standard practices prior art, e.g. LI and
FBV, and conduct experiments on MNIST (LeCun 1998),
CIFAR10 (Krizhevsky 2012), and ImageNet (Russakovsky
et al. 2015) datasets. For experiments on MNIST and CI-
FAR10, we certify ResNet18 (He et al. 2016) trained for 90
epochs with a learning rate of 0.1, momentum of 0.9, weight
decay of 10−4, and learning rate decay at epochs 30 and 60
by a factor of 0.1. For ImageNet experiments, we certify a
fine-tuned pretrained ResNet50 for 30 epochs using SGD
with a learning rate of 10−3 that decays at every 10 epochs
by a factor of 0.1. All networks are trained with data aug-
mentation sampled from the respective deformations that are
being certified, so as to attain a highly accurate base classifier
f under such deformations. Following randomized smooth-
ing methods (Salman et al. 2019; Zhai et al. 2020; Alfarra
et al. 2020) and using publicly available code (Cohen, Rosen-
feld, and Kolter 2019), all our results are certified with 100
Monte Carlo samples for the selection of the top prediction
cA and 100, 000 samples for the estimation of a lower bound
to the prediction probability pA with a failure probability of
0.001. Throughout all experiments, we choose IT to be a
bi-linear interpolation function. Moreover, since image di-
mensions vary across datasets (square images of sizes 28, 32,
224 for MNIST, CIFAR10 and ImageNet, respectively), we
normalize all image dimensions to [−1, 1]× [−1, 1]. While
our certificate has a probabilistic nature, we compare against
both mixed integer and linear program based certification
methods (BAL, MOH), as well as randomized smoothing
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Certification MNIST CIFAR-10
R(30◦) S(20%) T(∥ψ∥2 ≤ 5) R(10◦) S(20%) T(∥ψ∥2 ≤ 5)

(BAL,MOH) 87.80(BAL) - 77.00(a)(BAL) 87.80 (BAL), 21.80 (MOH) - -
(FBV) 72.75(c) - 95.00(d) 42.00(b) - -

(LI) 95.60 96.80 96.80 63.80 58.40 84.80
DEFORMRS-PAR 96.85, 96.10(c) 98.70 99.20 91.82 90.30 88.80

Table 1: Certifying individual deformations on MNIST and CIFAR10. We compare the certified accuracy of DEFORMRS-PAR
against (R)otation, (S)caling and (T)ranslation with that of prior art. We define ∥ψ∥2 = (t2u + t2v)

1/2 for translation. (a) and (d):
Certified accuracy at T(∥ψ∥2 ≤ 2) and T(∥ψ∥2 ≤ 2.41), respectively; we adopt these settings from BAL and FBV. (b) and
(c): Certified accuracy at R(6.79◦) and R(38.24◦), respectively; we adopt these settings from FBV. Note that DeformRS-Par
achieves a higher certified accuracy than (a, b, d) at a higher radius. Best certified accuracies are highlighted in bold.

Certification ImageNet
R(10◦) S (15%) T(∥ψ∥2 ≤ 5)

(FBV) 17.25(e) - -
(LI) 33.00 31.00 63.30

DEFORMRS-PAR 39.00 42.80 48.20

Table 2: Certifying individual deformations on ImageNet. We
compare the certified accuracy of DEFORMRS-PAR against
(R)otation, (S)caling and (T)ranslation with prior art. (e):
Certified accuracy at R(1.86◦) (adopted from FBV).

based approaches (FBV, LI) for comprehension.
Evaluation metrics. Following prior art (FBV, LI), we

use certified accuracy to compare networks. The certified
accuracy at a radius R is the percentage of the test set that is
both correctly classified and has a certification radius of at
least R. Note that R is computed following Corollary 1 for
DEFORMRS-PAR and Theorem 1 for DEFORMRS-VF. We
report the Average Certified Radius (ACR) (Zhai et al. 2020).

Compute Power. In all of our training experiments, we
used a single NVIDIA 1080-TI for CIFAR10 and MNIST
experiments while we used 2 NVIDIA V100 to fine tune
ImageNet models. For the certification experiments, we use a
single GPU per experiment (NVIDIA 1080-TI for CIFAR10
and MNIST and NVIDIA V100 for ImageNe).

DEFORMRS-PAR - Paramterizable Deformations 3

Rotation. Rotation deformations are parameterized with a
bounded scalar representing the rotation angle θ ∈ [−π, π].
Therefore, we use the Uniform smoothing variant of Corol-
lary 1 resulting in a certification of the form |θ| ≤ λ(pA−pB).
We train several networks with λ ∈ {π/10, 2π/10, . . . , π},
where each trained network is certified with the correspond-
ing λ used in training. We compare the rotation certified ac-
curacy of DEFORMRS-PAR against that of prior work (BAL,
FBV, LI, and MOH) on MNIST and CIFAR10 in Table 1 and
on ImageNet in Table 2. Following the common practice in
randomized smoothing literature (Salman et al. 2019; Zhai

3Certifying deformations lack standard benchmarks and evalua-
tion protocols. This is why there are several superscripts in Tables 1
and 2 as methods report certified accuracies at different radii.

et al. 2020), Tables 1 and 2 report the best certified accuracies
for DEFORMRS-PAR cross-validated over λ.

In particular, and as shown in Table 1, DEFORMRS-PAR
outperforms its best competitor by 1.25% and 4% on MNIST
and CIFAR-10 at rotation radii of 30◦ (i.e. R(30◦)) and 10◦

(i.e. R(10◦)), respectively. Interestingly, on CIFAR10, the
certified accuracy of DEFORMRS-PAR at radius 10◦ is even
better than the accuracy of FBV reported at the smaller an-
gle radius of 6.79◦. The improvement is consistent on Ima-
geNet, where DEFORMRS-PAR outperforms the randomized
smoothing based approach of LI by 6%, as reported in Table
2. Further, we report an improvement of 70% on the certi-
fied accuracy on CIFAR10 at radius 10◦ against MOH that
shares the same threat model to our formulation. We believe
that DEFORMRS-PAR outperforms mixed-integer and linear
program rotation certification methods due to their high com-
putational cost that results in prohibitive explicit training for
improved certification (BAL, MOH). We plot in the first col-
umn of Figure 2 the certified accuracy of DEFORMRS-PAR
over a subset λ used for training and certification. We leave
the rest of the ablations of λ to the Appendix. We observe
that the certified accuracies of DEFORMRS-PAR at the radii
reported in the previous tables are indeed insensitive to the
choice of λ. Moreover, we note that DEFORMRS-PAR attains
a certified accuracy of at least 80% on both MNIST and CI-
FAR10 at a radius of 100◦. In addition, when λ = 90◦ on
MNIST, DEFORMRS-PAR attains an ACR of 85◦, i.e. the
average certified rotation is 85◦.

Scaling. Scaling deformations are parameterized by α ≥ 0.
Note that a scaling α can either be a zoom-out (α > 1) or
a zoom-in (0 < α < 1). For ease, we consider the bounded
scaling factor α − 1 instead such that |α − 1| < 0.7. Thus,
an appropriate smoothing distribution in Corollary 1 is uni-
form with λ ∈ {0.1, 0.2, . . . , 0.7} granting a certificate of the
form |α− 1| ≤ λ(pA− pB). We report the certified accuracy
at the scale factor of 20% (i.e. 0.8 ≤ α ≤ 1.20) in Table
1 for MNIST and CIFAR10, and at a scale factor of 15%
(i.e. 0.85 ≤ α ≤ 1.15) for ImageNet in Table 2. The best
certified accuracy cross validated over λ for DEFORMRS-
PAR outperforms its best competitor (LI) by 1.9% on MNIST,
31.9% on CIFAR10, and 11.8% on ImageNet. Moreover, we
plot the certified accuracy in the second column of Figure 2
showing the insensitivity of DEFORMRS-PAR to λ. More-
over, DEFORMRS-PAR enjoys a certified accuracy of at least

6005



0 20 40 60 80 100
| θ |

0

20

40

60

80

100
C

er
tif

ie
d 

Ac
cu

ra
cy

 (%
)

Rotation-MNIST

λ=54°, ACR=52.14
λ=90°, ACR=85.04
λ=108°, ACR=98.48

0.0 0.2 0.4 0.6 0.8
| α−1 |

0

20

40

60

80

100

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Scaling-MNIST

λ=0.1, ACR=0.1
λ=0.5, ACR=0.49
λ=0.9, ACR=0.81

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
 √ t2u + t2v  

0

20

40

60

80

100

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Translation-MNIST

σ=1.4, ACR=5.23
σ=2.8, ACR=10.01
σ=7.0, ACR=12.48

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 √a2+ b2+ c2+ d2+ e2+ f2  

0

20

40

60

80

100

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Affine-MNIST

σ=0.1, ACR=0.37
σ=0.2, ACR=0.56
σ=0.4, ACR=0.49

0 20 40 60 80 100 120 140 160
| θ |

0

20

40

60

80

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Rotation-CIFAR10

λ=54°, ACR=47.17
λ=108°, ACR=90.7
λ=162°, ACR=132.3

0.0 0.2 0.4 0.6 0.8
| α−1 |

0

20

40

60

80
C

er
tif

ie
d 

Ac
cu

ra
cy

 (%
)

Scaling-CIFAR10

λ=0.1, ACR=0.09
λ=0.5, ACR=0.44
λ=0.9, ACR=0.67

0 5 10 15 20 25
 √ t2u + t2v  

0

20

40

60

80

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Translation-CIFAR10

σ=1.6, ACR=5.25
σ=4.8, ACR=12.71
σ=8.0, ACR=14.39

0.0 0.2 0.4 0.6 0.8 1.0 1.2
 √a2+ b2+ c2+ d2+ e2+ f2  

0

20

40

60

80

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Affine-CIFAR10

σ=0.1, ACR=0.3
σ=0.3, ACR=0.46
σ=0.5, ACR=0.4

0 20 40 60 80 100 120 140 160
| θ |

0
5

10
15
20
25
30
35
40

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Rotation-ImageNet

λ=108°, ACR=32.73
λ=126°, ACR=36.36
λ=162°, ACR=45.08

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
| α−1 |

0

10

20

30

40

50

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Scaling-ImageNet

λ=0.1, ACR=0.05
λ=0.4, ACR=0.16
λ=0.7, ACR=0.2

0 5 10 15 20 25
 √ t2u + t2v  

0

10

20

30

40

50

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Translation-ImageNet

σ=2.24, ACR=3.48
σ=4.48, ACR=6.45
σ=6.72, ACR=9.62

0.00 0.05 0.10 0.15 0.20 0.25
 √a2+ b2+ c2+ d2+ e2+ f2  

0

10

20

30

40

50

C
er

tif
ie

d 
Ac

cu
ra

cy
 (%

)

Affine-ImageNet

σ=0.03, ACR=0.04
σ=0.04, ACR=0.06
σ=0.06, ACR=0.08

Figure 2: Certified performance of DEFORMRS-PAR. We show the effect of varying the smoothing parameters (λ, σ) on the
certified accuracy of DEFORMRS-PAR against rotation, scaling, translation, and affine deformations.

(90%, 80%, 40%) at the larger scaling factors of (0.5, 0.4,
0.2) on MNIST, CIFAR10 and ImageNet, respectively.

Translation. Translation deformations are parameterized
by two parameters (tu, tv) that can generally be of any value.
Thus, we employ two dimensional Gaussian smoothing as
per Corollary 1, where σ ∈ {0.1, 0.2, . . . , 0.5} for MNIST
and CIFAR10, and σ ∈ {0.02, 0.03, . . . , 0.06} for Ima-
geNet. In this case, the granted certificate is of the form
(t2u + t2v)

1/2 ≤ σ/2(Φ−1(pA) − Φ−1(pB)). We compare
against BAL, MOH, and LI and report the certified accu-
racy at a certification radius of at most 5 pixels. 4 As ob-
served from Table 1, DEFORMRS-PAR outperforms its best
competitor by 2% and 4% on MNIST and CIFAR10, respec-
tively. However, we observe that DEFORMRS-PAR under-
performs on ImageNet attaining 48.2% certified accuracy
compared to 63.3% by LI as reported in Table 2. We be-
lieve that DEFORMRS-PAR performs worse on ImageNet
due to the suboptimal training of the base classifier f on Ima-
geNet. This is evident in the third column of Figure 2, which
plots the certified accuracy over a range of different radii
for several smoothing σ. Note that the certified accuracy of
DEFORMRS-PAR is ∼ 52% at radius 0 over all σ. That is to
say, the accuracy of DEFORMRS-PAR is already worse than

4Since the image dimensions in our setting are normalized to
[−1, 1], we unnormalize the radius results to pixels in the original
image for comparison and ease of interpretation in Figure 2.

the certified accuracy at radius 5 reported by LI. However,
the certified accuracy of DEFORMRS-PAR for MNIST and
CIFAR10 at radii of 7 and 8 pixels are at least 90% and 80%
on MNIST and CIFAR10, respectively.

DEFORMRS-PAR against Affine Deformations
Attaining high certified accuracy for individual deforma-
tions, as discussed earlier, requires the training of networks
for these particular deformations. Thus, we train a sin-
gle DEFORMRS-PAR network against affine deformations,
where we certify it against several specializations of the
affine certificate. Recall that the affine deformation is pa-
rameterized by 6 parameters. Since generally, there are no
restrictions on the values of the affine parameters, we use
Gaussian smoothing in Corollary 1 to sample {a, b, c, d, e, f}
with σ ∈ {0.1, 0.2, . . . , 0.5} for MNIST and CIFAR10
and σ ∈ {0.02, 0.03, . . . , 0.06} on ImageNet. The certifi-
cate is thus in the form

√
a2 + b2 + c2 + d2 + e2 + f2 ≤

σ/2(Φ−1(pA)−Φ−1(pB)). The last column of Figure 2 sum-
marizes the certified accuracy of DEFORMRS-PAR on all
three datasets. Note, the certified accuracy of DEFORMRS-
PAR at affine radius of 0.3 on MNIST is 90%. This is equiva-
lent, under specialization to a translation (i.e. a = b = c =
d = 0), to a certified accuracy of 90% for all translations of
radius 0.15× 28 = 4.2 pixels (after unnormalization).

Composition of deformations. We specialize the certifi-
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Figure 3: Performance of DEFORMRS-VF and DEFORMRS-PAR. We plot the certified accuracy curves of DEFORMRS-PAR
against truncated DCT deformations (left) and DEFORMRS-VF against general vector field deformations (right).

Figure 4: Examples of certified affine deformations. We sam-
ple affine parameters satisfying the certification inequality.

cate to a composition of several deformations and compare
against the only work certifying deformation compositions
(BAL). Following BAL, we consider the composition of
shearing with a factor of s followed by rotation with angle θ.
The vector field is given as follows:(
un,m
vn,m

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
︸ ︷︷ ︸

rotation

(
1 s
0 1

)
︸ ︷︷ ︸

shear

(
n
m

)
−

(
n
m

)
.

Note that this composition can be formulated as an
affine deformation with a = cos(θ) − 1, b = s cos(θ) −
sin(θ), c = sin(θ), d = s sin(θ) + cos(θ) − 1, and e =
f = 0. Therefore, Corollary 1 grants the following cer-
tificate

√
s2 − 2s sin(θ)− 4cos(θ) + 4 ≤ σ/2(Φ−1(pA) −

Φ−1(pB)). We compare against BAL, which achieves a cer-
tified accuracy of 54.2% on CIFAR10 under the setting
|θ| ≤ 2◦ and 0 ≤ s ≤ 2%. To compute the certified accuracy
of DEFORMRS-PAR, note that the left hand side achieves its
maximum of 0.0651 at θ∗ = −2◦ and s∗ = 0.02; thus, the
certified accuracy of DEFORMRS-PAR is the percentage of
the test set classified correctly with a radius of at least 0.0651.
DEFORMRS-PAR achieves a certified accuracy of 91.28%
on CIAFR10 and 43.6% on ImageNet as per the last column
in Figure 2, thus outperforming BAL by 37%. Note that, our
affine certification allows for the seamless certification of all
considered deformations in the literature. This surpasses any
need to specialize a certificate for every deformation family
of an affine nature. In fact, with a single network trained with
DEFORMRS-PAR against affine deformations, we achieve
non-trivial certified accuracies against several specialized
deformations. Moreover, we consider certifying the same

DEFORMRS-PAR network under the composition of a ro-
tation of angle θ, followed by scaling by a factor α, and a
translation of parameters (tu, tv). The vector field is given as
follows:(

un,m
vn,m

)
=

(
α 0
0 α

)
︸ ︷︷ ︸

scaling

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
︸ ︷︷ ︸

rotation

(
n
m

)

+

(
tu
tv

)
︸ ︷︷ ︸

translation

−
(
n
m

)
.

Under such a setting, we have a = α cos(θ) − 1, b =
−α sin(θ), c = α sin(θ), d = α cos(θ) − 1, e = tu,
and f = tv. Therefore, this grants the following certifi-
cate

√
2 + 2α2 − 4α cos(θ) + t2u + t2v ≤ σ/2(Φ−1(pA) −

Φ−1(pB)). We consider certifying DEFORMRS-PAR under
the composite deformation of |θ| ≤ 10◦, 0.8 ≤ α ≤ 1.2,
and t2u + t2v ≤ 0.1, where 0.1 corresponds to a radius of
4 and 5 pixels of translation for images in MNIST and CI-
FAR10, respectively. To that end, we observe that the left
hand side of the certificate attains a maximum of 0.503,
at which DEFORMRS-PAR enjoys a certified accuracy of
79.78% on MNIST and 50.41% on CIFAR10 as per the last
column in Figure 2. To the best of our knowledge, this work
is the first to consider such a composite deformation. In Fig-
ure 4, we sample several certifiable affine deformations that
satisfy the certificate inequality and apply them to MNIST
and ImageNet images. We can observe the richness of the
certifiable affine maps in both datasets.

DEFORMRS-PAR - Truncated DCT Deformations
We go beyond affine deformations in this section to cover
parameterized truncated DCT deformations; particularly, the
class of vector field deformations generated by taking the in-
verse DCT transform of a truncated window of size k×k×2.
We observe that this class of deformations can generate visu-
ally aligned deformations, which are generally not affine,
as shown in Figure 1. Since the k × k × 2 DCT coeffi-
cients can take any values, we use Gaussian smoothing with
σ ∈ {0.1, 0.2, . . . , 0.5} as per Corollary 1. This grants a
certificate of the form ∥ξ∥2 ≤ σ/2(Φ−1(pA) − Φ−1(pB)),
where ξ is the perturbation in the DCT coefficients. For sim-
plicity, we set k = 2 for all the experiments in this section. As
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Figure 5: Examples of certified truncated DCT. We sample
DCT coefficients satisfying the certification inequality.

per Figure 3, DEFORMRS-PAR certifies perturbations in the
DCT coefficients with a certified accuracy of 90% and 80%
at radius 0.2 on MNIST and CIFAR10, respectively. Unlike
individual deformations or their compositions, it is generally
difficult to interpret the certified class of DCT deformations;
we instead visualise samples from the certified region of
DCT coefficients in Figure 5. We observe interesting certified
deformations that are visually aligned resembling different
hand written digits in MNIST or ripples in CIFAR10.

DEFORMRS-VF - Vector Field Deformations
We leverage Theorem 1 to certify against a general vector
field deformation ψ. Note that such vector fields are in gen-
eral of size N × M × 2 and can take any values. Thus,
Gaussian smoothing is an appropriate choice, where we set
σ ∈ {0.1, 0.2, . . . , 0.5}. We plot in the second row of Figure
3 the certified accuracy of DEFORMRS-VF for an unnormal-
ized vector field. We observe that DEFORMRS-VF achieves
a certified accuracy of 90% and 60% at a radius of 2 pixels on
MNIST and CIFAR10, respectively. Note that while vector
field deformations can specialize to all previously considered
deformations as special cases (e.g. rotations), they suffer from
the curse of dimensionality (ψ is of size 2NM ) granting cer-
tification to only imperceptible deformations (as shown in
Figure 6). For instance, consider the vector field generated
from a parameterized translation such that (t2u + t2v)

1/2 ≤ 2.
The corresponding vector field will have an energy of at most√
2MN . That is to say, to certify vector field deformations

representing translations of 2 pixels in ℓ2, the certification
radius of the vector field should be at least

√
2MN , which is

significantly larger than the radius 2 with the earlier reported
accuracy. This is a classical trade-off between the generality
of the deformation family and the imperceptibility of the
certifiable deformation. We leave the rest of the experiments
for the Appendix.

Conclusion
We propose DEFORMRS-VF DEFORMRS-PAR to certi-
fying networks against general vector fields and any parame-
terizable set of deformations, respectively. The parameteriz-
able set of deformations that are certifiable is rich covering
individual deformations, e.g. rotations, and several compo-
sitions, affine deformations and the deformations character-
ized by truncated DCT coefficients. Both DEFORMRS-VF

Figure 6: Examples of certified vector field deformations. We
sample vector fields satisfying the certification inequality of
DeformRS-VF.

DEFORMRS-PAR rely on the basic idea that smoothing,
through randomized smoothing, the parameterizable space re-
sults in a function that is Lipschitz and thus certifiably robust.
We conduct several experiments comparing against prior art
under against a specific class of deformations. Moreover,
we certify against several other composite deformations, i.e.
shear and rotations, that follow directly from parameterizable
affine defomration certification of DEFORMRS-PAR.
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