
Programmatic Modeling and Generation of Real-Time Strategic Soccer
Environments for Reinforcement Learning

Abdus Salam Azad*, Edward Kim*, Qiancheng Wu, Kimin Lee,
Ion Stoica, Pieter Abbeel, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia

University of California, Berkeley

Abstract

The capability of a reinforcement learning (RL) agent heav-
ily depends on the diversity of the learning scenarios gener-
ated by the environment. Generation of diverse realistic sce-
narios is challenging for real-time strategy (RTS) environ-
ments. The RTS environments are characterized by intelli-
gent entities/non-RL agents cooperating and competing with
the RL agents with large state and action spaces over a long
period of time, resulting in an infinite space of feasible, but
not necessarily realistic, scenarios involving complex inter-
action among different RL and non-RL agents. Yet, most of
the existing simulators rely on randomly generating the envi-
ronments based on predefined settings/layouts and offer lim-
ited flexibility and control over the environment dynamics
for researchers to generate diverse, realistic scenarios as per
their demand. To address this issue, for the first time, we for-
mally introduce the benefits of adopting an existing formal
scenario specification language, SCENIC, to assist researchers
to model and generate diverse scenarios in an RTS environ-
ment in a flexible, systematic, and programmatic manner. To
showcase the benefits, we interfaced SCENIC to an existing
RTS environment Google Research Football(GRF) simulator
and introduced a benchmark consisting of 32 realistic scenar-
ios, encoded in SCENIC, to train RL agents and testing their
generalization capabilities. We also show how researchers/RL
practitioners can incorporate their domain knowledge to ex-
pedite the training process by intuitively modeling stochastic
programmatic policies with SCENIC.

Introduction
Deep reinforcement learning (RL) has emerged as a pow-
erful method to solve a variety of sequential decision-
making problems, including board games (Silver et al. 2017,
2018), video games (Mnih et al. 2015; Vinyals et al. 2019),
and robotic manipulation (Kalashnikov et al. 2018). These
successes rely heavily on widely-used simulation environ-
ments (Bellemare et al. 2013; Brockman et al. 2016) and
benchmarks (Cobbe et al. 2020; Duan et al. 2016; Tassa
et al. 2018). However, regardless of a long history of RL
benchmarks, the existing RL environments/simulators are
insufficient to properly train, test, and benchmark RL al-
gorithms for real-time strategy (RTS) environments such as

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Starcraft (Vinyals et al. 2017), Dota2 (OpenAI et al. 2019),
and soccer (Kurach et al. 2020), due to their lack of sup-
port for modeling diverse scenarios involving sophisticated
interactive behaviors.

These RTS environments are characterized by unique
characteristics that require special support for modeling. The
environments involve intelligent entities/non-RL agents co-
operating and competing with the RL agents with large state
and action spaces over a long horizon. This opens up ex-
tremely diverse strategies consisting of numerous interac-
tive behaviors. Yet, most of the existing simulators rely on
randomly generating the environments based on predefined
settings/layouts and offer limited flexibility and control to
the researchers over the environment dynamics to gener-
ate diverse realistic scenarios. As a result RL research face
at least two fundamental challenges: (i) the lack of diverse
and realistic training data often leads to lack of generaliza-
tion (Cobbe et al. 2019, 2020; Lee et al. 2020a,b), and (ii) the
lack of flexibility and control over the environment dynam-
ics makes it hard to generate realistic evaluation scenarios to
comprehensively test generalization in these complex RTS
environments.

To address this issue, for the first time to the best of our
knowledge, we introduce the benefits of adopting an exist-
ing formal scenario specification language, SCENIC, to as-
sist researchers to model and generate diverse realistic sce-
narios in an RTS environment in a flexible, systematic, and
programmatic manner. Each SCENIC program represents a
Markov Decision Process (MDP) and provides high-level
syntax and semantics, backed by its own compiler, to in-
tuitively and quickly model diverse and complex interactive
scenarios to train RL agents and test their generalization ca-
pabilities. Furthermore, it allows researchers/RL practition-
ers to incorporate their domain knowledge into the train-
ing process by generating offline data with stochastic pro-
grammatic policies written in high-level intuitive syntax of
SCENIC. To demonstrate the benefits, we interfaced SCENIC
to an existing RTS environment, Google Research Football
(GRF) (Kurach et al. 2020).

Our contributions are as follows:

• For the first time, we introduce the benefits of adopting a
scenario specification language to (1) flexibly model in-
teractive scenarios to train RL agents, (2) test their gener-
alization capability, and (3) program stochastic RL poli-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6028



cies to generate demonstration data.
• We open-sourced our SCENIC’s interface to GRF en-

vironment along with our 32 scenarios, 5 stochastic
policies, and libraries encoded in SCENIC to assist re-
searchers to build upon them to easily model diverse and
sophisticated scenarios.

Related Work
Environment Generation in RL: In literature, several tech-
niques have been adopted to generate a rich variation of
learning scenarios, primarily to promote or, ensure general-
ization. Techniques such as changing background with natu-
ral videos (Zhang, Wu, and Pineau 2018), introducing sticky
actions (Machado et al. 2018) have been attempted, but
are not robust enough. To ensure generalization, (Lee et al.
2020b) and (Seo et al. 2020) generated training and testing
scenarios by randomly sampling from different regions of
parameter space. Similar to supervised learning, the use of
separate train and test sets have also been adopted (Nichol
et al. 2018; Cobbe et al. 2020, 2019; Justesen et al. 2018),
typically using techniques such as Procedural Content Gen-
eration (Hendrikx and et al 2013), which has traditionally
been used to automatically generate levels in video games.
However, most of these focus on discrete domain, typically
the dataset generation process is opaque, and it can be dif-
ficult to quantify or, reason about how different (or, similar)
these train and test sets are, because the generation process
often use random numbers to generate different configura-
tions.

On the contrary, a few manually scripted scenario bench-
marks are proposed with respect to a few RTS RL environ-
ments with limitations. For StarCraft (Vinyals et al. 2017),
only two benchmark scenarios (Uriarte and Ontañón 2021;
Samvelyan and et al 2019) have been proposed. Both of
these model different initial states but leave the behavior
generation to either a learned RL agent or AI bots that are
provided by the StarCraft environment, which are consid-
ered as blackbox agents. As a result, a sophisticated mod-
eling and control over the behaviors of non-RL agents to
create specific types of scenarios is not possible, severely
restricting the diversity of the scenarios. For soccer domain,
Stone and et al (2006) presented one benchmark scenario on
keepaway tactical scenario and later extended to more gen-
eral half-field offense scenario (Hausknecht and et al 2016)
and provided a library of APIs relating to behaviors (e.g.
mark player, defend goal) of players, which helps users to
model scenarios. However, SCENIC provides further bene-
fits that are not covered in this work. SCENIC provides high-
level syntax and semantics to (i) easily write spatial relations
for intutively modeling initial states, (ii) assign distributions
over both initial states and behaviors to generate variations
of environments for robust training and testing generaliza-
tion, and (iii) specify priorities over interaction conditions
over behaviors to model more sophisticated types of higher
level behavior (for more detail refer to Section Modeling
Scenarios with SCENIC).

Formal Scenario Specification Languages for Environ-
ment Modeling and Generation A few scenario specifica-

tion languages have been proposed in the autonomous driv-
ing domain including SCENIC. Paracosm language (Ma-
jumdar et al. 2019) models dynamic scenarios with reac-
tive and synchronous model of computation. The Measur-
able Scenario Description Language (M-SDL) (Foretellix
2020) shares common features as SCENIC to model inter-
active scenarios. In contrast, however, SCENIC provides a
much higher-level, probabilistic, declarative way of mod-
eling. Furthermore, unlike other scenario specification lan-
guages, SCENIC has demonstrated its generality over dif-
ferent domains such as autonomous driving, robotics, and
aviation (Fremont, Kim, and et al 2020). For these reasons,
we chose SCENIC in this paper for demonstration of benefits
that a scenario specification language can provide to RL.

Background

Google Research Football Simulator

The Google Research Football (GRF) simulator (Kurach
et al. 2020) provides a realistic soccer environment to train
and test RL agents. The setting, the rules, and the objective
of the environment are the same as defined by Fédération
Internationale de Football Association (FIFA 2021). The en-
vironment setup is as the following. All the players on the
field are controlled by (1) GRF’s built-in, rule-based AI bots
and (2) RL agents. The simulator dynamically determines
which of the RL team players are to be controlled by RL
agents based on their vicinity to the ball. GRF provides 11
offense scenarios to train and test RL agent performance and
it provides trained RL agent checkpoints for a subset of its
scenarios.

Scenario Specification Language: SCENIC

SCENIC (Fremont, Dreossi, and et al 2019; Fremont, Kim,
and et al 2020) is an object-oriented, probabilistic program-
ming language whose syntax and semantics are designed to
intuitively model and generate scenarios. A SCENIC pro-
gram represents an abstract scenario, which models a distri-
bution over initial states and behaviors of players in the sce-
nario. For each scenario generation, an initial state is sam-
pled from the program at the beginning of a simulation and
interactive behaviors are sampled during simulation runtime.
Therefore, with a single SCENIC program, users can gener-
ate a distribution of concrete scenarios.

SCENIC requires action and model libraries, which are
imported and compiled with a user’s SCENIC program for
execution. The action library defines the action space which
is determined by the simulator. The model library defines
objects and their attributes (e.g. position, heading). We can
assign prior distributions over these attributes. For exam-
ple, a goalkeeper’s position can be uniformly randomly dis-
tributed over the penalty box region. If a user simply instan-
tiates a goalkeeper in a SCENIC program but does not spec-
ify any condition over its attributes, then they are sampled
from the prior distributions by default. These prior distribu-
tions can be overwritten in the user’s SCENIC program.

6029



(a) a bird-eye view of the
scenario

(b) a snapshot of GRF envi-
ronment

(c) GRF’s scenario program

(d) SCENIC program of generalized pass-and-shoot scenario with distribution over players’ initial
condition and behaviors

Figure 1: Programs encoding the Google Research Football’s (GRF) pass-and-shoot scenario

Scenario Specification Language for RL
Benefits of Scenario Specification Language for RL
The objective of this paper is to introduce the benefits of the
use of scenario specification language for modeling and gen-
erating scenarios, specifically for RTS environments for RL.
Using a scenario specification language whose syntax and
semantics are carefully designed to intuitively model sce-
narios have the following benefits:

1. Easily Model Interactive Environments on User-
demand to Train and Test RL Agents: The intuitive
syntax and semantics, which abstracts away the imple-
mentation details and allows users to reason solely at
high-level semantics, makes it easy to model complex
spatial relations among multiple agents, their behaviors
and conditions on how these behaviors should interact. It
should be noted that, it requires a considerable amount
of research and engineering effort to design and imple-
ment a formal scenario modeling language and its com-
piler from scratch.

2. Program Stochastic Policies: These programmed
agents can serve two purposes: (i) allow developers to in-

corporate domain knowledge, e.g., generate demonstra-
tion data for offline training and (ii) provide performance
baseline for trained RL agents.

3. Interpretability and Transparency: The intuitive syn-
tax and semantics make scenario programs interpretable
and transparent. Therefore, users can reason about the
difference/similarity of train and test environments by
comparing their scenario programs.

4. Reusability of Existing Scenarios: The interpretability
of scenario programs facilitates easy modification or re-
use of existing SCENIC programs, models, and behaviors
to quickly model new scenarios. This facilitates building
a community around designing and sharing scenario pro-
grams, by building upon each other’s scenarios.

Modeling Scenarios with SCENIC

Formally, a scenario is a Markov Decision Process
(MDPs) (Sutton and Barto 2018) defined as a tuple
(S,A, p, r, ρ0), with S denoting the state space, A the ac-
tion space, p (s′|s, a) the transition dynamic, r (s, a) the re-
ward function, and ρ0 the initial state distribution. Given the

6030



(a) generalization test scenario
for the scenario in Fig. 1a

(b) 3 vs 3 left mid-fielder crosses
to either player in penalty box

(c) 11 vs 11 open player scenario (d) mirrored Fig. 2c scenario

Figure 2: Examples of a new defense scenarios with specific assigned behaviors (a), a test scenario to assess generalization (b),
and two full game scenarios (c,d) we used for training and testing. The RL team is yellow and the opponent, blue. The assigned
opponent behaviors are highlighted with light blue arrows. Uniformly random distribution is assigned over a specific region for
each player. These regions are highlighted boxes.

Figure 3: A snippet of a SCENIC program specifying behav-
iors for players Fig. 2b

state and action spaces as defined by the GRF environment,
a SCENIC program defines (i) the initial state distribution,
(ii) the transition dynamics (specifically players’ behaviors),
and (iii) the reward function. Hence, users can exercise ex-
tensive control over the environment with SCENIC.

Modeling Initial State Distribution Users can intuitively
specify initial state distributions with SCENIC’s high-level
syntax that resembles natural English. For example, refer to
the full SCENIC program in Fig. 1(d) which describes a more
generalized version of GRF’s Pass and Shoot scenario as vi-
sualized in Fig. 1(a,b). In line 12-22, the initial state distri-
bution is specified. The SCENIC syntax for modeling spatial
relations among players are highlighted in yellow. In addi-
tion, SCENIC supports about 20 different syntax to support
modeling complex spatial relations (Fremont, Kim, and et al
2020). Rather than having to hand-code positions for a con-
crete scenario as in the GRF’s scenario 1(c), users can much
more intuitively and concisely model a distribution of initial
states. Here, Left represents the yellow team, Right the
blue, and the two following abbreviated capital letters indi-
cate the player role.

Modeling Transition Dynamics One can flexibly mod-
ify transition dynamics of the environment by specifying the
behaviors of non-RL players using SCENIC. Take the same
example SCENIC program in Fig. 1(d) as above. Line 1-10

models two new behaviors. A behavior can invoke another
behavior(s) with syntax do, succinctly modeling a behav-
ior in a hierarchical manner. Users can assign distribution
over behaviors as in line 2. The interactive conditions are
specified using try/interrupt block as in line 5-10. Seman-
tically, the behavior specified in the try block is executed
by default. However, if any interrupt condition is satisfied,
then the default behavior is paused and the behavior in the
interrupt block is executed until completion and then the de-
fault behavior resumes. These interrupts can be nested with
interrupt below has higher priority. In such case, the same
semantics is consistently applied.

Rewards SCENIC has a construct called monitor,
which can be used to specify reward functions. The reward
conditions in the monitor is checked at every simulation
step and updates the reward accordingly.

Termination Conditions Users can also specify termina-
tion conditions which are monitored at every simulation time
step.

On Interfacing SCENIC to a Simulator
Interfacing SCENIC to other simulators is straight-forward.
In fact, SCENIC is already interfaced with five other simula-
tors (Daniel Fremont 2021) in domains such as autonomous
driving, aviation, and robotics. To interface SCENIC with a
simulator, one needs define the model, action, and behavior
libraries. These libraries expedites modeling complex sce-
narios by helping users re-use the set of models, actions, and
behaviors in the libraries, rather than having to write a sce-
nario from scratch.

The model library defines the state space. It defines play-
ers with distribution over their initial state according to their
roles and GRF’s AI bot is assigned by default to all player
behavior. These prior distribution over the initial state and
behavior can be overwritten in the SCENIC program. The
model library also defines region objects such as goal and
penalty box regions as well as directional objects in com-
pass directions. The action library defines the action space
as determined by the GRF simulator. These action space

6031



Figure 4: Interface Architecture between SCENIC and GRF

consists of movement actions in eight compass directions,
long/short/high pass, shoot, slide, dribble, and sprint.

The behavior library consists of behaviors and helper
functions that represent widely used basic skills in soccer.
These behaviors include give-and-go, evasive zigzag drib-
ble to avoid an opponent’s ball interception, dribbling to a
designated point and shooting, shooting towards the left or
right corner of the goal, etc. Additionally, the behavior li-
brary also include useful helper functions such as identifying
nearest opponent or teammate, whether there is an opponent
near the running direction of a dribbler, etc. Please refer to
our open-sourced repository for more details.

Interface Architecture Figure 4 shows an overview of
our overall architecture. The architecture can be divided
into two parts: i) RL interface, through which the RL al-
gorithms interact with SCENIC and ii) the SCENIC Server,
which executes a SCENIC program and governs the simula-
tion by interacting with the underlying simulator. We follow
the widely used OpenAI Gym API (Brockman et al. 2016)
as our interface, which allows our interface to be used seam-
lessly with all the existing standard RL frameworks.

For each simulation/episode, the SCENIC server first sam-
ples an initial state from the SCENIC program to start a new
scenario in the GRF simulator and updates its internal model
of the world (e.g., player and ball positions). From then on,
a round of communication occur between the RL algorithm
and SCENIC server, with the RL interface at the middle. At
each timestep, the gym interface takes in the action(s) for
the RL agent and passes them to the SCENIC server. The
SCENIC server in turn computes actions for all the remain-
ing non-RL players—the players not controlled by the RL
agent—and then executes all these actions (of both the RL
and non-RL players) in the simulator. The SCENIC server
then receives the observation and reward from the simula-
tor, updates the internal world state, and then passes them
back to the RL algorithm. This interaction goes on till any
terminating conditions as specified in the scenario script is
satisfied.

Evaluation
In this section, we demonstrate four use cases of SCENIC
in RL. First, we present and benchmark a set of 13 realis-
tic mini-game scenarios encoded in SCENIC with a varying
level of difficulty. Second, we test the generalization capa-
bilities of the trained RL agents on unseen, yet intuitively
similar scenarios. Next, we show how developers can “de-
bug” their agents for failure scenarios of interest. At last,
we show how probabilistic SCENIC policies can be used to
generate offline data and endow domain knowledge into the
learning process for faster training, which we believe to be

very important for applying RL in practice.

Experimental Setup
We run PPO (Schulman et al. 2017) on a single GPU ma-
chine (NVIDIA T4) with 16 parallel workers on Amazon
AWS. Unless otherwise specified, all the PPO training are
run for 5M timesteps and repeated for 10 different seeds.
All the evaluation has been done for 10000 timesteps. For
all the experiments, we use the stacked Super Mini Map rep-
resentation for observations —a 4x72x96 binary matrix rep-
resenting positions of players from both team, the ball, and
the active player—and the scores as rewards, i.e., +1 when
scoring a goal and −1 upon conceding, from (Kurach et al.
2020). Similar to the academy scenarios from (Kurach et al.
2020), we also terminate a game when one of the follow-
ing happens: either of the team scores, ball goes out of the
field, or, the ball possession changes. For further details, in-
cluding hyperparameters and network architecture, we refer
readers to the Supplementary Materials (Section Details on
Experimental Setup and Training).

Mini-game Scenario Benchmark
Training an RL agent to solve a full soccer game involving
22 players is very challenging and may take days even with
distributed algorithms. For example, Kurach et al. (2020)
showed even the easy version of GRF’s 11 vs 11 game can-
not be solved with 50M samples. To allow researchers to it-
erate their ideas with a reasonable amount of time and com-
pute, we present a set of 13 mini-game scenarios. All these
scenarios are inspired from common situations occurring in
real soccer games but involves fewer number of players to
make them amenable to be faster training.

Nine of our proposed mini-game scenarios are defense
scenarios, which are nice complement to GRF’s offense-
only scenarios (refer to Sec. ), along with four new offense
scenarios. Most of these scenarios are initialized from a dis-
tribution, rather than fixed locations. By default all the oppo-
nent players are controlled by GRF’s built-in AI bot (refer to
Sec. ). However, for the scenarios where the AI bot does not
exhibit our desired behavior, we model the opponent behav-
iors using SCENIC. For example, in the 3vs3 cross scenario
as shown in Fig. 2b, the opponent AI bots tried to pass the
ball around instead of crossing. Therefore, we modelled and
assigned behaviors such that the blue player on the leftmost
side of the field would run up the field and cross the ball.
Meanwhile, the two blue players in the center run into the
penalty box area to receive the cross and shoot. These mod-
elled behaviors are shown in Fig. 3.

We benchmark our mini-game scenarios by training
agents with PPO. Figure 5 shows the average goal differ-
ences for all the scenarios. For these mini-game scenarios,
we end the game if one of the teams score. Hence, the goal
difference can range between -1 to +1. For the offense sce-
narios, a well trained agent is supposed to score consistently
achieving an average goal difference close to +1. On the
other hand, a well-trained agent should achieve a goal dif-
ference close to 0 for successfully defending the opponents
in the defense scenarios. From the graph it can be seen that
the proposed scenarios offer a varied levels of difficulties.

6032



Figure 5: Average Goal Difference of PPO agents on the proposed mini-game scenario benchmark. The error bars represent
95% bootstrapped confidence intervals

For example, PPO consistently achieves goal difference of
around 0.5 for the EASY CROSSING scenario, but barely
learns anything for HARD CROSSING. In case of the defense
scenarios, the results also show a varied range of difficulty,
GK VS OPPONENT scenario being be easiest.

Testing for Generalization
We provide scripts to test generalization of all of our 13
new benchmark scenarios along with 5 scenarios provided
by GRF. We changed the distribution over the initial state
while keeping the formation of players and their behaviors
in each scenario intact. For example, for testing generaliza-
tion of an RL agent trained in the Pass and Shoot scenario
(Fig. 1a), we instantiated the yellow and the blue players on
the symmetric right side of the field instead of the left and
kept the other initial state distribution the same (Figure 2a).

Fig. 6 compares the trained agents’ performance in train-
ing and test scenarios. As expected, we observe a noticeable
drop of performance in most of the GRF’s academy and of-
fense scenarios (Fig. 6a). For example, the Pass and Shoot
scenario (Figure 1a), which achieved around 0.6 in train-
ing, failed to generalize for the test scenario. However, for
the defense scenarios, the drop in performance was not as
noticeable. We conjecture that this distinction comes from
the differences in the offense and defense training scenarios,
where the defense scenarios tend to contain larger distribu-
tion over the initial state than those of the offense scenar-
ios (refer to Supplement). Consequently, larger variations of
scenarios introduced during training may have contributed
to better generalization for defense scenarios.

Debugging Agents on 11v11 Failure Scenario
For this experiment, we evaluate and debug an RL check-
point provided by GRF, which was trained on their 11 vs 11
easy stochastic scenario, i.e., easy version of their full-game
scenario. This agent achieves an impressive average goal dif-

ference of 6.99 per full-game1, scoring up to 14 goals in
the training scenario during our experiments. We modelled a
scenario, as visualized in Figure 2c, to test the agent’s abil-
ity to quickly perceive open teammates near the opponent
goal to advance the ball forward and score—a crucial skill
for soccer. When we assigned GRF’s built-in AI bots to con-
trol the open players on the left side of the field, the players
ran straight toward the ball, instead of taking advantage of
the closeness to the opponent goal without being marked.
Hence, we modelled a behavior for open players in SCENIC
so that they would stay close to the goal while abiding by
the offside rule.

Although obvious to humans, the trained checkpoint per-
forms poorly in this scenario with an average goal difference
of 0.1. To ‘debug’ the agent, we then fine-tune the agent on
a ‘mirrored’ scenario, as shown in Figure 2d, with PPO for
5M timesteps. The fine-tuned agent improved noticeably on
the original scenario, achieving an average goal difference
of 0.67. This showcases the usefulness of SCENIC to easily
model and generate scenarios of interest using one’s domain
knowledge, which may have been difficult with blackbox
agents (e.g. built-in AI bots, or trained RL agents), to test
and debug certain capabilities of an RL agent.

Facilitating Training with Probabilistic SCENIC
Policies
In the section, we show how RL practitioners can incor-
porate their domain knowledge by writing probabilistic
SCENIC policies for faster training. We wrote simple semi-
expert RL policies for five different scenarios, where the
agent suffers to learn, and generated 8K samples of demon-
stration data for per scenario. To facilitate training on those
scenarios, we first pre-train an agent via behavior cloning
with the generated offline data and then fine-tune the agent

1Evaluated on 100K timesteps

6033



(a) Offense and select GRF academy scenarios

(b) Defense scenarios

Figure 6: Evaluation of PPO agents’ generalization against varying initial conditions. For most of the academy and offense
scenarios we observe a significant drop in performance. However, for several defense scenarios the difference in train and test
scenarios is not that significant.

Figure 7: Performance of PPO agents trained with and without any demonstration data, along with the performance of corre-
sponding behavior-cloned and SCENIC policies. We see significantly better performance on three of the scenarios, while the
rest two achieves comparable performance, highlighting the usefulness of the proposed SCENIC policies.

using PPO for 5M timesteps. All the experiments were re-
peated for three different seeds. Figure 7 compares the train-
ing performance of these agents against the agents that were
trained with PPO only. We notice that, even with such a
low volume of demonstration data, we can train much bet-
ter agents and can solve scenarios which were otherwise un-
solved. The experimental results thus suggests, with stochas-
tic SCENIC policies we can generate rich quality demon-
stration data to substantially enhance training performance,
which can be particularly useful in practice for environments
like GRF which requires a heavy compute resource.

Conclusion & Future Work

We introduced and demonstrated the benefits of adopting a
scenario specification language to train RL agents and test
their generalization capabilities in various realistic scenarios
generated by SCENIC programs, which succinctly capture
distributions of initial states and behaviors. We also show-
cased modeling domain knowledge via stochastic SCENIC
policies by generating demonstration data to facilitate train-
ing in GRF, a complex real-time strategy environment. We
hope our work could gather an interest to support systematic
modeling of RTS environments.

6034



Acknowledgements
This work was supported in part by National Science Foun-
dation grants CNS-1730628, CNS-1545126 (VeHICaL),
CNS-1739816, and CCF-1837132, by DARPA contracts
FA8750-16-C0043 (Assured Autonomy) and FA8750-20-
C-0156 (Symbiotic Design of Cyber-Physical Systems), by
Berkeley Deep Drive, by Toyota through the iCyPhy center,
by the Toyota Research Institute, and by the Berkeley Arti-
ficial Intelligence Research (BAIR) Commons program.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253–279.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2020.
Leveraging procedural generation to benchmark reinforce-
ment learning. In International conference on machine
learning.
Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; and Schulman, J.
2019. Quantifying generalization in reinforcement learning.
In International Conference on Machine Learning.
Daniel Fremont, E. K. 2021. SCENIC interfaced simula-
tors. https://scenic-lang.readthedocs.io/en/latest/simulators.
html. Accessed: 2021-10-01.
Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and
Abbeel, P. 2016. Benchmarking deep reinforcement learn-
ing for continuous control. In International conference on
machine learning.
FIFA. 2021. Laws of the Game. https://ussoccer.app.
box.com/s/xx3byxqgodqtl1h15865/file/850765570638. Ac-
cessed: 2021-10-01.
Foretellix. 2020. Measurable Scenario Description Lan-
guage. https://www.foretellix.com/wp-content/uploads/
2020/07/M-SDL LRM OS.pdf. Accessed: 2021-10-01.
Fremont, D.; Dreossi, T.; and et al. 2019. Scenic: a language
for scenario specification and scene generation. In PLDI,
63–78. ACM.
Fremont, D.; Kim, E.; and et al. 2020. Scenic: A Language
for Scenario Specification and Data Generation. CoRR,
abs/2010.06580.
Hausknecht, M.; and et al. 2016. Half Field Offense: An En-
vironment for Multiagent Learning and Ad Hoc Teamwork.
In AAMAS Adaptive Learning Agents (ALA) Workshop.
Hendrikx, M.; and et al. 2013. Procedural content generation
for games: A survey. In ACM Transactions on Multimedia
Computing, Communications, and Applications, volume 9.
Justesen, N.; Torrado, R. R.; Bontrager, P.; Khalifa, A.; To-
gelius, J.; and Risi, S. 2018. Illuminating generalization in
deep reinforcement learning through procedural level gener-
ation. arXiv preprint arXiv:1806.10729.

Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.;
Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Van-
houcke, V.; et al. 2018. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. In Confer-
ence on Robot Learning.
Kurach, K.; Raichuk, A.; Stańczyk, P.; Zajac, M.; Bachem,
O.; Espeholt, L.; Riquelme, C.; Vincent, D.; Michalski, M.;
Bousquet, O.; et al. 2020. Google research football: A novel
reinforcement learning environment. In AAAI Conference
on Artificial Intelligence.
Lee, K.; Lee, K.; Shin, J.; and Lee, H. 2020a. Network ran-
domization: A simple technique for generalization in deep
reinforcement learning. In International Conference on
Learning Representations.
Lee, K.; Seo, Y.; Lee, S.; Lee, H.; and Shin, J. 2020b.
Context-aware dynamics model for generalization in model-
based reinforcement learning. In International Conference
on Machine Learning.
Machado, M. C.; Bellemare, M. G.; Talvitie, E.; Veness, J.;
Hausknecht, M.; and Bowling, M. 2018. Revisiting the ar-
cade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelli-
gence Research, 61: 523–562.
Majumdar, R.; Mathur, A.; Pirron, M.; Stegner, L.; and Zuf-
ferey, D. 2019. Paracosm: A Language and Tool for Testing
Autonomous Driving Systems. arXiv:1902.01084.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529.
Nichol, A.; Pfau, V.; Hesse, C.; Klimov, O.; and Schulman,
J. 2018. Gotta learn fast: A new benchmark for generaliza-
tion in rl. arXiv preprint arXiv:1804.03720.
OpenAI; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.;
Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.; Pachocki,
J.; Petrov, M.; d. O. Pinto, H. P.; Raiman, J.; Salimans, T.;
Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, I.; Tang, J.;
Wolski, F.; and Zhang, S. 2019. Dota 2 with Large Scale
Deep Reinforcement Learning. arXiv:1912.06680.
Samvelyan, M.; and et al. 2019. The StarCraft Multi-Agent
Challenge. In Workshop on Deep Reinforcement Learning
at the 33rd Conference on Neural Information Processing
Systems.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Seo, Y.; Lee, K.; Clavera, I.; Kurutach, T.; Shin, J.; and
Abbeel, P. 2020. Trajectory-wise Multiple Choice Learn-
ing for Dynamics Generalization in Reinforcement Learn-
ing. arXiv preprint arXiv:2010.13303.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.

6035



Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature, 550(7676): 354.
Stone, P.; and et al. 2006. Keepaway Soccer: From Machine
Learning Testbed to Benchmark. In RoboCup 2005: Robot
Soccer World Cup IX, 93–105. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT Press.
Tassa, Y.; Doron, Y.; Muldal, A.; Erez, T.; Li, Y.; Casas, D.
d. L.; Budden, D.; Abdolmaleki, A.; Merel, J.; Lefrancq,
A.; et al. 2018. Deepmind control suite. arXiv preprint
arXiv:1801.00690.
Uriarte, A.; and Ontañón, S. 2021. A Benchmark for Star-
Craft Intelligent Agents. In Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, volume 11, 22–28.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou,
J.; Schrittwieser, J.; Quan, J.; Gaffney, S.; Petersen, S.; Si-
monyan, K.; Schaul, T.; van Hasselt, H.; Silver, D.; Lillicrap,
T.; Calderone, K.; Keet, P.; Brunasso, A.; Lawrence, D.; Ek-
ermo, A.; Repp, J.; and Tsing, R. 2017. StarCraft II: A New
Challenge for Reinforcement Learning. arXiv:1708.04782.
Zhang, A.; Wu, Y.; and Pineau, J. 2018. Natural environ-
ment benchmarks for reinforcement learning. arXiv preprint
arXiv:1811.06032.

6036


