
A Fast Algorithm for PAC Combinatorial Pure Exploration

Noa Ben-David and Sivan Sabato
Department of Computer Science Ben-Gurion University of the Negev Beer Sheva Israel

bendanoa@post.bgu.ac.il, sabatos@cs.bgu.ac.il

Abstract
We consider the problem of Combinatorial Pure Exploration
(CPE), which deals with finding a combinatorial set of arms
with a high reward, when the rewards of individual arms are
unknown in advance and must be estimated using arm pulls.
Previous algorithms for this problem, while obtaining sam-
ple complexity reductions in many cases, are highly com-
putationally intensive, thus making them impractical even
for mildly large problems. In this work, we propose a new
CPE algorithm in the PAC setting, which is computation-
ally light weight, and so can easily be applied to problems
with tens of thousands of arms. This is achieved since the
proposed algorithm requires a very small number of com-
binatorial oracle calls. The algorithm is based on succes-
sive acceptance of arms, along with elimination which is
based on the combinatorial structure of the problem. We pro-
vide sample complexity guarantees for our algorithm, and
demonstrate in experiments its usefulness on large problems,
whereas previous algorithms are impractical to run on prob-
lems of even a few dozen arms. The code is provided at
https://github.com/noabdavid/csale. The full version of this
paper is available at https://arxiv.org/abs/2112.04197.

1 Introduction
Combinatorial pure exploration (CPE) is an important statis-
tical framework, used in diverse applications such as chan-
nel selection in a wireless network (Xue et al. 2018), job
applicant screening (Schumann et al. 2019), and robot deci-
sion making (Marcotte et al. 2020). In the CPE framework,
there are n arms that can be pulled, where each arm is asso-
ciated with an unknown distribution of real-valued rewards.
Whenever an arm is pulled, an instantaneous reward is in-
dependently drawn from that arm’s reward distribution. An
arm set is a set of arms, and its reward is the sum of rewards
of the arms it contains. The goal is to find a valid arm set
with a high reward. The set of valid arm sets is called the
decision class, and it is typically the set of legal solutions of
a combinatorial problem. The algorithm uses individual arm
pulls (samples) to collect information on the rewards, and
attempts to select from the decision class an arm set with a
high expected reward, using a low sample complexity.

Many applications can be mapped to the CPE setting. As
an example, consider the problem of finding the shortest

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

routing path in a network (Talebi et al. 2017). The network
is modeled as a directed graph, where each edge represents
a link between two routing servers, and the cost of routing
through the link is the (random) delay in the link. The task
is to find the path from a source to a target with the smallest
expected delay. In this problem, the CPE arms are mapped
to the links (graph edges), and pulling an arm is done by
sending a packet through the corresponding link and mea-
suring its delay. The decision class is thus the set of possible
paths between the source and the target. As another exam-
ple, consider pairing online players for matches, based on
their skill compatibility. This can be represented by a max-
imum weight matching problem on a full graph, where the
reward measures the compatibility of the players, and it can
be sampled by running a simulation of a match.

As evident in the examples above, in many natural cases
the size of the decision class of a CPE problem is exponen-
tial in the number of arms. Algorithms for the general CPE
problem with such decision classes thus usually assume ac-
cess to an oracle which can efficiently solve the combinato-
rial optimization problem (see, e.g., Chen et al. 2014; Gabil-
lon et al. 2016; Chen et al. 2017; Cao and Krishnamurthy
2019). Using such an oracle, these algorithms are efficient,
in that their computational complexity is polynomial in the
problem parameters. However, while theoretically efficient,
running the oracle is usually highly demanding in terms of
computation resources for large problems. In existing CPE
algorithms, the number of oracle calls is either similar to the
sample complexity or a high degree polynomial. As a result,
they are computationally heavy, and impractical to run even
on moderately large problems.

In this work, we propose a new CPE algorithm that is
significantly less computationally demanding than previous
algorithms, and so it is practical to run on large problems.
At the same time, it has sample complexity guarantees that
show it can be useful for many problems. The algorithm,
called CSALE (Combinatorial Successive Acceptance with
Light Elimination), uses a significantly smaller number of
oracle calls than previous algorithms, and does not use any
other computationally demanding operations. CSALE works
in the (ε, δ)-PAC setting, in which the algorithm is provided
with an error parameter ε and a confidence parameter δ, and
finds, with a probability of 1 − δ, an arm set from the de-
cision class with an ε-optimal reward. Compared with re-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6064

quiring that the algorithm find an optimal solution, the PAC
approach allows convergence even if the optimal solution is
not unique, and is also more suitable for cases where the gap
between the (unique) optimal solution and the second-best
solution is very small.

The number of oracle calls used by CSALE is only
O(d log(d)), where d is the maximal cardinality of an arm
set. This is achieved by avoiding the common approach of
searching for arms to eliminate by estimating each arm’s
contribution to the solution value (its gap). CSALE succes-
sively accepts arms if they can be safely added to the output
solution. It eliminates arms only due to the combinatorial
structure of the problem. For instance, in the shortest path
problem, arms that create a cycle with accepted arms can
be safely eliminated. We provide sample complexity guar-
antees for CSALE, which show when it can provide useful
sample complexity reductions.

We demonstrate the practical computational advantage of
CSALE by running it on instances of the s-t shortest path
problem and the maximum weight matching problem, which
we generated based on real-world graph data sets. As a base-
line, we compare to the CLUCB-PAC algorithm (Chen et al.
2014), which is the only existing PAC algorithm for the
general CPE problem. We show that in small graph prob-
lems, with about a dozen nodes and up to a few dozen
arms (edges), CLUCB-PAC usually performs somewhat bet-
ter than CSALE in terms of number of samples, but CSALE
runs 5 orders of magnitude faster. We note that existing best-
arm-set CPE algorithms, even if they could be adapted to
the PAC setting, are even more computationally demanding
than CLUCB-PAC. Due to its computational requirements,
we could not test CLUCB-PAC on graphs with more than a
few dozen nodes and edges.

We run CSALE on problems as large as thousands of
nodes and tens of thousands of edges (arms) and compare it
to a naive baseline, which pulls each arm the same number
of times. We show that CSALE provides sample complexity
improvements compared to this baseline, while still being
practical to run in terms of computational resources, even
on these large problems.

2 Related Work
CPE was first introduced by Chen et al. (2014). They pro-
posed CLUCB-PAC, a PAC algorithm which calls an op-
timization oracle twice for every arm pull. They also pro-
pose an algorithm in the fixed-budget setting (which does
not give PAC guarantees), that relies on a constrained ora-
cle: this is an oracle that outputs the optimal arm set subject
to problem-specific constraints. They observe that such an
oracle exists whenever an unconstrained oracle exists, since
the former can be implemented by calling the latter with a
simple transformation of the inputs. Other PAC algorithms
have been proposed for special cases of CPE, such as top-k
arm selection (Kalyanakrishnan et al. 2012; Zhou, Chen, and
Li 2014; Chaudhuri and Kalyanakrishnan 2019), matroids
(Chen, Gupta, and Li 2016), and dueling bandits (Chen et al.
2020).

CPE algorithms for the fixed-confidence setting were pro-
posed in Chen et al. (2014); Gabillon et al. (2016); Chen

et al. (2017); Cao and Krishnamurthy (2019). In these al-
gorithms, the number of oracle calls is either similar to the
sample complexity or is a high-degree polynomial. We note
that none of the algorithms mentioned above have been em-
pirically evaluated in the works above, which focus on theo-
retical guarantees. As far as we know, they also do not have
available implementations.

The idea of successive acceptance with limited elimina-
tion was previously proposed in a different context, of ac-
tive structure learning of Bayesian networks (Ben-David
and Sabato 2021). That problem also involves sampling for
the purpose of combinatorial selection, but it is not a CPE
problem. Moreover, the algorithm proposed in that work is
specifically tailored to the challenges of Bayesian network
learning, and relies on computationally demanding opera-
tions. In contrast, the current work proposes a computation-
ally light algorithm for the CPE setting.

3 Setting and Notation
For an integer i, denote [i] := {1, . . . , i}. Let n be the num-
ber of arms, and denote the set of arms by [n]. Each arm is
associated with a reward distribution. For simplicity, we as-
sume that the support of all reward distributions is in [0, 1].
The results can easily be generalized to sub-Gaussian distri-
butions. Denote the expected reward of an arm a ∈ [n] by
µa. Let µ be the vector of expected rewards of the arms in
[n]. The reward of an arm set M ⊆ [n] is the sum of the
expected rewards of its arms, denoted µ(M) :=

∑
a∈M µa.

Denote the decision class of potential arm sets byM⊆ 2[n].
Denote the optimal score of an arm set in M by µ∗ :=
maxM∈M µ(M). Given ε > 0, δ ∈ (0, 1), our goal is to
find an arm set M̂ ∈ M such that with a probability of at
least 1 − δ, µ(M) ≥ µ∗ − ε. Denote the maximal cardinal-
ity among the arm sets inM by d(M) := maxM∈M |M |.
Whenever it is clear from context, we use d := d(M).

We assume access to a constrained oracle for the given
combinatorial problem. Given a decision class, a constrained
oracleM accepts a reward vector µ, a set of required arms
A ⊆ [n], and a set of forbidden arms B ⊆ [n], and re-
turns an optimal solution in the decision class that satis-
fies these constraints. Formally, the constrained oracle is
a function COracle : Rn × 2[n] × 2[n] → M such that
COracle(µ, A,B) ∈ argmax{µ(M) | M ∈ M, A ⊆
M,B ∩M = ∅}.

Denote the set of all optimal arm sets in M by M∗ :=
{M ∈ M | µ(M) = µ∗}. The gap of an arm a ∈ [n] is
defined as:

∆(a) :=

{
µ∗ −maxM :a/∈M µ(M), a ∈

⋃
M∗∈M∗M

∗

µ∗ −maxM :a∈M µ(M), a /∈
⋃
M∗∈M∗M

∗ .

Note that if a is included in some, but not all, of the optimal
arm sets, then ∆(a) = 0.

4 The CSALE Algorithm
In this section, we present CSALE, the proposed algorithm.
The main idea of the algorithm is to perform successive ac-
ceptance, and to use the combinatorial structure of the deci-
sion class for elimination, thus considerably restricting the

6065

number of required oracle calls. The algorithm starts with a
large accuracy threshold, and iteratively attempts to accept
arms while decreasing the threshold. Arms are accepted if
they belong to the current empirically optimal solution (un-
der the constraint that it must include all arms that have al-
ready been accepted) and have a large gap ∆(a). This is in-
spired by the acceptance criterion of graph sub-structures,
proposed in (Ben-David and Sabato 2021) in the context of
Bayesian structure learning.

The gap ∆(a) is estimated by finding an empirically opti-
mal constrained solution that does not include a. If the gap is
sufficiently large, the arm is accepted. In the final round, the
accuracy parameter is set to guarantee the true desired ac-
curacy ε, and the output arm-set is calculated, by estimating
the rewards of the remaining candidate arms and maximiz-
ing the empirical score subject to all arms accepted so far.

To obtain a significant reduction in sample complexity
compared to a naive uniform sampling baseline, it is help-
ful to eliminate arms from the list of candidates. However,
as discussed above, directly estimating the gaps of arms to
eliminate involves computationally demanding operations
such as a large number of oracle calls. We avoid such di-
rect estimation, and instead use the structure of the decision
class itself. In many cases, this structure allows eliminating
arms as a result of accepting some other arms. For instance,
in the shortest path problem, edges (arms) that complete a
cycle with accepted edges can be eliminated.

Formally, we define an elimination function, denoted
elimn : 2[n] → 2[n], which gets as input the set of arms
accepted so far, and outputs the set of arms that can be elim-
inated as candidates given the accepted arms. This function
is implemented with respect to the specific decision class.
Formally, we require

elimn(A) ⊆ [n] \
⋃

M∈M,A⊆M

M.

The function elimn is used by CSALE to eliminate candidate
arms after each acceptance. Note that elimn is not required
to always identify all possible eliminations, since this may
be a computationally difficult task.
CSALE is listed in Alg. 1. It gets the confidence param-

eter δ and the required accuracy level ε. For ε̃, δ̃ ∈ (0, 1),
we denote by N(ε̃, δ̃) := dlog(2/δ̃)/(2ε̃2)e the number of
samples required by Hoeffding’s inequality for estimating
the expectation of random variable with support [0, 1], with
a probability of at least 1 − δ̃ and an error of no more than
ε̃. CSALE maintains a set of active arms A. This is the set
of arms that have not been accepted so far, but also have
not been precluded from participating in the output solution.
The set of accepted arms by iteration j is denoted Accj .

The algorithm works in rounds. At each round t, it pulls
arms a sufficient number of times to obtain the required ac-
curacy for that round, denoted εt. Denote by µ̂t the vector
of empirical estimates of expected arm rewards, based on
the samples observed until round t. Calling COracle with
µ̂t, CSALE calculates M̂t, the empirically optimal arm set
at round t, out of the arm sets that are consistent with the
arms that have been accepted so far. It then calculates the

Algorithm 1: CSALE: Combinatorial Successive
Acceptance with Light Elimination

Input: δ ∈ (0, 1); ε > 0.
Output: An arm set M ∈M

1 Initialize: A ← [n], Acc1 ← ∅, N0 ← 0, t← 1,
j ← 1,M1 ←M, ε1 ← ε, θ1 ← d(M1) · ε1,
T ← dlog2(d)e+ 1.

2 while εt > ε/(d(Mj)− |Accj |) do
3 Nt ← N(εt/2, δ/(T |A|))
4 Pull each arm in A for Nt −Nt−1 times
5 Update µ̂t based on the results of the arm pulls
6 M̂t ← COracle(µ̂t,Accj , ∅)
7 foreach a ∈ M̂t ∩ A do
8 M̃a

t ← COracle(µ̂t,Accj , {a})
9 ∆̂(a) := µ̂t(M̂t)− µ̂t(M̃

a
t)

10 while ∃a ∈ M̂t ∩ A such that ∆̂(a) > θj do
11 Let a be some arm that satisfies the condition
12 Accj+1 ← Accj ∪ {a} # accept arm a
13 A ← A \ elimn(Accj+1)
14 Mj+1 ← {M ∈M | Accj+1 ⊆M}
15 θj+1 ← (d(Mj+1)− |Accj+1|) · εt
16 j ← j + 1

17 If Accj ∈Mj then return M̂ := Accj .
18 t← t+ 1
19 εt ← εt−1/2; θj ← θj/2.

20 εlast ← ε/(d(Mj)− |Accj |)
21 NT ← N(εlast/2, δ/(T |A|))
22 Pull arms in A for NT −NT−1 times; update µ̂T .
23 Return M̂ ← COracle(µ̂T ,Accj , ∅).

empirical gap of each active arm in M̂t, by calling COracle
again, each time forbidding one of these arms.

In the next stage, every arm with an empirical gap above a
calculated threshold θj is accepted. We show in the analysis
that using this threshold, only arms in the optimal solution
are accepted. Once an arm is accepted, it is removed fromA
along with all the arms that can be eliminated using elimn.
We note that when calling COracle, it is not necessary to
explicitly ban the eliminated arms, since by definition, only
arms that cannot share an arm-set with the accepted arms
are eliminated. The rounds stop when the accuracy εt is suf-
ficiently small. Note that the total number of rounds is at
most T − 1 = dlog2(d)e, where T is defined in line 1 in
CSALE. After the rounds stop, if any arms are still active,
they are pulled to obtain a final batch of samples. CSALE
then returns an arm set that maximizes the empirical reward,
subject to the constraints set by the arms accepted so far.

Number of oracle calls. It can be easily seen that ex-
cept for oracle calls, CSALE does not involve any compu-
tationally demanding operations. Therefore, the number of
oracle calls that it makes is a good proxy for its compu-
tational burden. In the worst case, CSALE calls the oracle
once for every arm in M̂t, in every round t ∈ [T − 1].
Therefore, the total number of oracle calls in CSALE is

6066

O(dT) = O(d log(d)). This is contrasted with previous al-
gorithms, in which the number of oracle calls is either simi-
lar to the sample complexity, or is a high degree polynomial.
For instance, in CLUCB-PAC, the number of oracle calls is
of order Ω(d2n/ε2) in the worst case. In the next section, we
provide the analysis of CSALE.

5 Analysis
In this section, we provide correctness and sample complex-
ity analysis for CSALE. First, we define a uniform conver-
gence event which will be used in the analysis. Denote by
J the total number of acceptance iterations (see line 10 in
Alg. 1) during the entire run of the algorithm. For any j ∈
[J], let t(j) be the round in which iteration j occurred. Let θj
be as defined in line 15, and θJ := (d(MJ)−|AccJ |) ·εlast.
Let η be the event such that ∀j ∈ [J], ∀M ∈Mj ,

|µ̂t(j)(M \Accj)− µ(M \Accj)| ≤ θj/2.
By a standard argument, η holds with a probability at least
1− δ.

To show that CSALE is indeed a PAC algorithm, we prove
the following theorem. The proof is provided in the full ver-
sion of this paper.
Theorem 5.1. With probability at least 1 − δ, the arm set
M̂ returned by CSALE satisfies µ(M̂) ≥ µ∗ − ε.

We now study the sample complexity of CSALE. CSALE
can reduce the number of samples compared to a naive uni-
form sampling solution if it accepts arms early, before the
last sampling batch. An even larger reduction can be ob-
tained if the elimination function elimn for the given de-
cision class leads to many arm eliminations. For k ∈ N such
that k ≤ n, define the elimination measure of elimn for a set
of size k to be Q(n, k) := k + minA⊆[n]:|A|=k |elimn(A)|.
Note that in many natural problems and elimination func-
tions, Q(n, k) grows with n. For instance, for maximum
weight matching in a graph G = (V,E), a natural elimi-
nation function would be elimn(E′) :=

⋃
(u,v)∈E′{e ∈ E |

v or u are nodes of e}. Recall that in this problem, n = |E|.
Thus, if G is a full graph, we get Q(n, k) = Θ(k

√
n).

Denote the set of optimal arm sets in Mj by M∗j :=
M∗∩Mj , and the set of arms that are shared by all optimal
solutions by A∗ :=

⋂
M∈M∗M. As shown in Lemma ??

in Appendix ?? (see the full version of this paper), only
arms in A∗ may be accepted early. For any β > 0 and
� ∈ {>,≥, <,≤} let A∗�β = {a ∈ A∗ | ∆(a)�β}.
Theorem 5.2. Let Q(n, ·) be the elimination measure of
elimn. For t ∈ [T − 1], let εt = 2ε/2t be the accuracy level
in round t of CSALE, and define kt := |A∗≥2dεt

\A∗≥2dεt−1
|,

where ε0 := ∞. Define k̄t :=
∑
i∈[t] kt. Further define

∆t := maxj∈A∗
<2(d−k̄t−1)εt−1

∆(j). The maximal number

of samples required by CSALE is

Õ
(T−1∑
t=1

(d− k̄t−1)2Q(n, kt)

∆2
t

+
(d− k̄T−1)2(n−Q(n, k̄T−1))

ε2

)
,

(1)

where Õ suppresses logarithmic factors. In addition,

1. For every t ∈ [T − 1], if Q(n, kt) > 0, then ∆t > 2ε;
2. k̄T−1 = |A∗≥4ε|.

Before proving the theorem, we discuss the meaning
of these sample complexity guarantees. First, compare
these guarantees to a naive uniform sampling algorithm,
which simply pulls each arm N(ε/d, δ/n) times and selects
the empirically-best arm set. Such an algorithm requires
Θ̃(d2n log(1/δ)/ε2) samples, similarly to the worst case of
CSALE. This is a baseline requirement which ensures that
using CSALE over naive sampling is never harmful. Like all
CPE algorithms, the improvement of CSALE over the naive
baseline is instance dependent.

We now compare the guarantees of CSALE to those of
CLUCB-PAC (Chen et al. 2014), which is the only previous
CPE algorithm for the PAC setting. The guarantees of the
two algorithms are not directly comparable, since each algo-
rithm has a different type of instance dependence. We now
give an example of a simple case in which CSALE performs
significantly better than CLUCB-PAC.

Example 5.3. Consider n arms, where n > 10 is an odd
number, and let s = (n − 1)/2. Let γ > 0. For every
a ∈ [s− 1] we set µa = sγ. We also set µs = γ. All the
other arms get a reward of zero. The decision class consists
of three arm sets, each including exactly s arms: {1, . . . , s},
{1, . . . , s − 1, s + 1}, and {s + 2, . . . , n}. Their respective
rewards are (s2−s+1)γ, (s2−s)γ, and 0. Thus, the reward
difference between the optimal solution and the second-best
solution is γ. Set ε := γ, so that the PAC algorithm is re-
quired to find the optimal solution.

The worst case sample complexity of CLUCB-PAC

is Õ
(∑

a∈A min{width
2(M)

∆(a)2 , d
2

ε2 }
)

, where width(M) is a
combinatorial property of the decision class. In our exam-
ple, we have d = s = Θ(n) and width(M) = 2s = Θ(n).
In addition, for all a ∈ [n] \ {s, s + 1}, we have ∆(a) =
(s2 − s + 1)γ = Θ(n2γ), while ∆(s) = ∆(s + 1) = γ.
The sample complexity guarantee of CLUCB-PAC is thus
O(n2/γ2).

We now bound the sample complexity of CSALE, as-
suming that elimn is maximal. We have A∗ = [s]. By
Theorem 5.2, claim 2, k̄T−1 = |A∗≥4γ | = s − 1. In ad-
dition, since all arms in A∗≥4γ have the same gap, and
k̄T−1 =

∑
t∈[T−1] kt by definition, then there exists some

t0 ∈ [T − 1] for which kt0 = k̄T−1 = s − 1, while
ki = 0 for i 6= t0. By the definition of Q, we have that
Q(n, kt0) = Q(n, s− 1) > 0, and Q(n, ki) = 0 for i 6= t0.
In addition, k̄t0−1 = 0. By Theorem 5.2, claim 1, we have
that ∆t0 > 2γ. Since ∆t0 is a gap of an arm in A∗, we have
∆t0 = Θ(n2γ). From the definition of the elimination func-
tion, we have Q(n, s−1) = s−1 + s = n−2. Substituting
these quantities in Eq. (1), we get that the sample complex-
ity of CSALE for this problem is Õ(1/γ2), while the sample
complexity of CLUCB-PAC is a factor of n2 greater in this
example.

We note that the CPE algorithms of Chen et al. (2017);
Cao and Krishnamurthy (2019) obtain a smaller sample

6067

complexity than CLUCB-PAC, by applying a different sam-
pling and convergence analysis technique. Their sample
complexity is comparable with that of CSALE in the exam-
ple above, but it can also be smaller than that of CSALE.
However, these algorithms do not support the PAC setting,
and their sampling technique is highly computationally de-
manding. An interesting question for future work is whether
similar sample complexity improvements can be obtained
within our framework, while keeping the algorithm compu-
tationally light.

We now turn to the proof of Theorem 5.2. First, we prove
two useful lemmas. The first lemma gives a sufficient condi-
tion for an arm to be accepted by CSALE at a given iteration.
Lemma 5.4. Assume that the event η defined above holds
for a run of CSALE. Let j be an iteration in the run in some
round t and let θj be as defined in Alg. 1. LetAj be the value
of the set of active arms A at the start of iteration j. If there
exists some arm in a ∈ A∗ ∩Aj such that ∆(a) > 2θj , then
some arm is accepted by CSALE at iteration j in this round.

Proof. Under the assumption of the lemma, 2θj < ∆(a). To
prove the lemma, we show that a ∈ M̂t and that ∆̂(a) > θj .
This implies that the condition in line 10 of CSALE holds at
iteration j, and so some arm must be accepted in this itera-
tion.

Let M∗ ∈ M∗ be an optimal arm set. By definition,
A∗ ⊆M∗ and so a ∈ M∗. By Lemma ??, Accj ⊆ A∗.
Thus, M∗j = M∗ and M∗ ∈ Mj . Therefore, µ̂t(M̂t) ≥
µ̂t(M

∗). For every M ∈ Mj we have that µ(M) = µ(M \
Accj) + µ(Accj), and the same holds for µ̂t(j). Therefore,
by η, ∀M,M ′ ∈Mj , we have that

µ̂t(j)(M)− µ̂t(j)(M ′) ≥ µ(M)− µ(M ′)− θj . (2)

In particular, this holds for M̂t and M∗. Since we have
µ̂t(M̂t) − µ̂t(M∗) ≥ 0, it follows that µ∗ − µ(M̂t) ≤ θj .
Since θj < ∆(a) = µ∗ −maxM :a/∈M µ(M), it follows that
µ(M̂t) > maxM :a/∈M µ(M). Hence, a ∈ M̂t. To prove the
second part, observe that

∆̂(a) = µ̂t(M̂t)− µ̂t(M̃a
t) ≥ µ̂t(M∗)− µ̂t(M̃a

t)

≥ µ∗ − µ(M̃a
t)− θj ≥ ∆(a)− θj > θj .

In the second line, we used Eq. (2). This completes the proof.

The second lemma gives a condition for early acceptance
of arms in CSALE. Without loss of generality, suppose that
A∗ = [v] for some v ≤ n, and that the arms are ordered so
that ∆(1) ≥ ∆(2) ≥ · · · ≥ ∆(v). Note that by the definition
of A∗, ∆(v) > 0.
Lemma 5.5. For i ∈ [v], let A∗i = {a ∈ A∗ | ∆(a) ≥
∆(i)}. Consider a run of CSALE in which η holds. Then
CSALE accepts at least |A∗i | ≥ i arms until the end of the
first round t which satisfies εt ≤ ∆(i)/(2d).

Proof. Suppose that CSALE has accepted fewer than |A∗i |
arms until some iteration j. Then A∗i \ Accj 6= ∅. By
Lemma ??, Accj ⊆ A∗. Therefore, M∗ ⊆ Mj , which

means that all arms in A∗ that were not accepted are still
active. Hence, A∗i ∩ Aj 6= ∅, where Aj is as defined in
Lemma 5.4. Let a ∈ A∗i ∩ A. By the definition of A∗i ,
∆(a) ≥ ∆(i). The conditions of Lemma 5.4 thus hold if
2θj < ∆(i). This condition holds throughout the first round
t that satisfies 2dεt ≤ ∆(i). In this case, some arm will be
accepted at iteration j. Round t only ends when no addi-
tional arms are accepted. Therefore, at least |A∗i | arms will
be accepted until the end of this round.

Using the lemmas above, we now prove Theorem 5.2.

Proof of Theorem 5.2. Let Bt be the number of arms that
were accepted during round t. Consider the arms whose last
round of being pulled by CSALE is round t, and note that
their number is at least Q(n,Bt), the number of arms that
are accepted or eliminated in round t. Therefore, the sam-
ple complexity of CSALE is upper bounded by the expres-
sion

∑
t∈[T−1]Q(n,Bt)Nt + (n − Q(n,BT))NT , where

BT =
∑
t∈[T−1]Bt, At is the size of the active set A at

the beginning of round t, and

Nt ≡ N(εt/2, δ/(T ·At)) = Õ
(1

ε2t
(log(n/δ)+log log(d)

)
.

To bound this expression, observe that for every
t ∈ [T − 1], letting αt := 2(d− k̄t−1)εt−1,

∆t := max
j∈A∗<αt

∆(j) < αt = 4(d− k̄t−1)εt.

Therefore, εt > ∆t/(4(d − k̄t−1)). Hence, for t ∈ [T − 1],
Nt = Õ

((d−k̄t−1)2

∆2
t

· (log(n/δ) + log log(d)
)
.

Next, we bound Bt. By the definition of kt in the the-
orem statement, there are kt arms in A∗ with a gap be-
tween 2dεt and 2dεt−1. By Lemma 5.5, at least kt arms
must be accepted by the end of round t. Therefore, since
Nt is monotonically increasing with t, the sample com-
plexity can be upper bounded by

∑
t∈[T−1]Q(n, kt)Nt +

(n − Q(n, k̄T−1))NT . Moreover, for the last round T , we
have NT = Õ

((d−|AccJ |)2

ε2 (log(n/δ) + log log(d))
)
, and

|AccJ | ≥ k̄T−1. Combining the above and suppressing log-
arithmic factors, we get the sample complexity upper bound:

Õ
((T−1∑

t=1

(d− k̄t−1)2Q(n, kt)

∆2
t

+
(d− k̄T−1)2(n−Q(n, k̄T−1))

ε2

)
.

To complete the proof, we prove claims 1 and 2, which
are listed in the theorem statement. To prove claim 1, let
t ∈ [T − 1] be some round such that Q(n, kt) > 0. By
the definition of Q, it follows that kt > 0. This means
that there exists some arm l ∈ A∗≥2dεt

\ A∗≥2dεt−1
. There-

fore, εt ≤ ∆(l)/(2d) < εt−1. Therefore, by the definition
of ∆t, ∆(l) ≤ ∆t. By the condition of the main loop in
CSALE, we have that εt > ε/d. Combining the last two in-
equalities, we get that ∆t > 2ε. To prove claim 2, note that
k̄T−1 =

∑
t∈[T−1] kt = |

⋃
t∈[T−1]A

∗
≥2dεt

| = |A∗≥2dεT−1
|,

and 2dεT−1 = 2d(2ε/2T−1). Substituting T −1 = log2(d),
we get that 2dεT−1 = 4ε, which completes the proof.

6068

6 Experiments
In this section, we report experiments comparing CSALE to
CLUCB-PAC and to the naive baseline algorithm described
in Section 5. As noted in Section 1 and Section 2, there are
no other known PAC-CPE algorithms, and algorithms for
other settings are also highly computationally demanding.
All the experiments were run on a standard PC. The code for
the algorithms and for the experiments below is provided at
https://github.com/noabdavid/csale.

We ran the algorithms on the two types of graph prob-
lems mentioned in Section 1, s-t shortest path and max-
imum weight matching in general graphs. All three algo-
rithms require an optimization oracle. We used Dijkstra’s
algorithm as implemented in the Dijkstar package1 for
the s-t shortest path problem, and the algorithm of Galil
(1986) as implemented in the Networkx package (Hag-
berg, Swart, and Schult 2008) for maximum weight match-
ing in general graphs. The matching oracle is computation-
ally heavier, thus we tested the matching problem on smaller
graphs than those used for the shortest path problem. The
properties and sources of all the data sets that we used are
provided in the full version of this paper. We used graphs
with up to thousands of nodes and tens of thousands of edges
for the shortest path experiments, and graphs with up to hun-
dreds of nodes and thousands of edges for the matching ex-
periments. elimn(E′) for the shortest path problem was im-
plemented to return all the edges that have the same start
node or end node as an edge in E′. For the matching prob-
lem, it returned all the edges that share some node with some
edge in E′.

In all of the experiments, we set δ = 0.05. Each experi-
ment was repeated 10 or 100 times, depending on its com-
putational requirements, as detailed in each result table be-
low. In all experiments, the weight of the edge was used
as the parameter of a Bernoulli distribution describing its
instantaneous rewards. In synthetic or unweighted graphs,
the edge weights were sampled uniformly at random out of
{0.1, 0.5, 0.9} in each run. We tested a large range of ε val-
ues in each experiment. In all the reported experiments, all
algorithms indeed found an ε-optimal solution.

In the first set of experiments, we compared CLUCB-PAC
and CSALE on small graphs, in terms of both sample
size and computation requirements. The graph sizes were
kept small due to the high computational requirements of
CLUCB-PAC. We tested the following graphs:

• Shortest path, synthetic: A synthetic graph with 14 nodes
and 16 edges, with a topology of 4 disjoint paths of length
4 between the source and the target nodes (see illustration
in the full version of this paper).

• Matching, synthetic: A full graph with 6 nodes.

• Shortest path, real: A source and a target were randomly
drawn from the full graph of the USAir97 data set, and
the smallest sub-tree that includes both nodes was ex-
tracted. If the number of edges between the source and
the target was at least 4 and the number of nodes was at

1https://github.com/wylee/Dijkstar

most 10, then the resulting graph was used for one of the
repetitions of the experiment.

• Matching, real: 6 nodes were randomly drawn from the
full graph of the USAir97 data set, and their sub-graph
was extracted. If it included more than four edges, it was
used for one of the repetitions of the experiment.

Table 1 reports the results of the comparison with
CLUCB-PAC for the two smallest values of ε that were
tested in these experiments. The results for all values of ε
are provided in the full version of this paper. It can be seen
that CLUCB-PAC usually has the best sample complexity,
although in most cases CSALE also obtains a significant im-
provement over the Naive baseline. The important advantage
of CSALE can be seen when comparing the number of oracle
calls and the total run time of the algorithm. These are usu-
ally 5 orders of magnitude larger for CLUCB-PAC compared
to CSALE. Moreover, for CLUCB-PAC, this number grows
linearly with the number of samples. This is contrasted with
CSALE, in which the computational burden remains simi-
lar regardless of the sample size. For this reason, running
CLUCB-PAC on large graphs is impractical, while CSALE
can be easily used.

Next, we tested CSALE on larger graphs, and compared it
to the Naive baseline. As mentioned above, it was imprac-
tical to run CLUCB-PAC on these larger problems. Table 2
reports the results for ε = 0.001 (the smallest value of ε that
we tested) for all the graphs that were tested for each prob-
lem. The results for all values of ε are provided in the full pa-
per. It can be seen in Table 2 that the sample size required by
CSALE is significantly smaller than that of the naive base-
line. The run time of CSALE is small even on large networks
with a very large numbers of samples.

We demonstrate the dependence on ε in Table 3, which
lists the results for all values of ε for the p2p-Gnutella08
network. As ε becomes smaller, the sample size saving by
CSALE (see the “sample size ratio” column) becomes more
significant, up to a problem-dependent saturation point. The
“accepted early” column indicates the fraction of the arms
in the solution that were accepted early. When this ratio can
no longer increase due to the problem structure, additional
improvements are not possible.

Overall, our results show that unlike previous CPE algo-
rithms, CSALE is practical to run on large problems, due to
its light computational requirements and the independence
of the number of oracle calls from the number of arm pulls.
When ε is sufficiently small, it provides a significant reduc-
tion in the number of samples over the baseline.

7 Discussion
We propose a new algorithm for PAC-CPE. This algorithm
has the advantage that it is computationally light, thus allow-
ing it to run on large problems, while reducing the sample
complexity compared to the baseline.

6069

Sample size ×104 Oracle calls Time (millisec)
Experiment Naive CLUCB-PAC CSALE CLUCB-PAC CSALE CLUCB-PAC CSALE
ε = 0.0625

path, synthetic 339± 0 14± 9 25±0 29±17× 104 2± 1 12±7× 103 0.5± 0

matching, synthetic 177± 0 16± 8 23± 0 32±15× 104 4±0 12±9× 104 2± 1

path, USAir97 490±350 190± 160 530±470 37±32× 105 7± 2 13±12× 104 1± 0

matching, USAir97 22± 0 30± 2 22± 0 60±3× 104 1±0 96±5× 103 0.3± 0

ε = 0.03125

path, synthetic 1355± 0 16± 10 99±0 33±21× 104 2± 1 13±9× 103 0.4± 0

matching, synthetic 707± 0 19± 9 92± 0 37±18× 104 4±0 15±11× 104 2± 1

path, USAir97 1960±1410 900± 750 2120±1880 18±15× 106 7± 2 72±63× 104 1± 1

matching, USAir97 87± 0 52± 2 87± 0 10±0× 105 1±0 17±1× 104 0.3± 0

Table 1: A comparison of all three algorithms on small graphs. The synthetic and real experiments were repeated 100 and 10
times, respectively.

Type Graph ID Sample size Sample size ratio CSALE
(see Table ??) Naive CSALE (CSALE/ Naive) Oracle calls Time (millisec)

Shortest
Path

1 33× 1010 25± 16× 1010 76% 5±2 4±2
2 86× 1010 22± 28× 1010 26% 5±3 5±4
3 117× 1010 63± 60× 1010 54% 5±3 10±5
4 114× 1010 49± 56× 1010 43% 4±2 9±4
5 33× 1011 22± 16× 1011 67% 6±3 29±12
6 34× 1011 12± 15× 1011 35% 4±2 26±12
7 215× 1011 88± 98× 1011 41% 12±8 48±30
8 13± 16× 1013 10± 17× 1013 77% 13±7 79±47
9 116× 1013 21± 38× 1013 18% 17±14 830±626

10 142× 1013 26± 48× 1013 18% 17±15 852±587
11 73× 1013 12± 23× 1013 16% 16±12 518±333
12 1153× 1012 90± 278× 1012 8% 13±11 561±373

Matching

1 84× 1010 18× 1010 21% 22±0 102±7
2 468× 1010 15× 1010 3% 18±0 204±3
3 244× 1011 66× 1011 27% 34±2 622±43
4 22× 1012 17× 1012 77% 66±2 756±60
5 177× 1012 57× 1012 32% 69±3 3500±100
6 18× 1013 16× 1013 89% 85±4 2700±300
7 317× 1013 59± 1× 1013 19% 356±7 28±1× 104

8 238× 1013 34× 1013 14% 307±1 20±1× 104

Table 2: Experiments with larger graphs, with ε = 0.001. Standard deviations are omitted when they are smaller than 1% of the
average. Shortest paths and matching experiments were repeated 100 and 10 times, respectively.

ε Sample size Sample size ratio CSALE
Naive CSALE (CSALE/ Naive) Oracle calls Time (millisec) Accepted early

0.50000 29× 108 28± 4× 108 97% 48±14 13±3× 102 17%±19%
0.25000 12× 109 10± 2× 109 83% 46±14 12±3× 102 31%±26%
0.12500 47× 109 33± 13× 109 70% 42±14 11±3× 102 51%±33%
0.06250 188× 109 94± 60× 109 50% 37±13 10±3× 102 66%±32%
0.03125 75× 1010 19± 21× 1010 25% 30±13 832±296 85%±28%
0.01000 73× 1011 13± 22× 1011 18% 20±13 592±295 85%±27%
0.00500 294× 1011 49± 91× 1011 17% 16±12 494±285 85%±27%
0.00100 73× 1013 12± 23× 1013 16% 16±12 518±333 85%±28%

Table 3: p2p-Gnutella08 network results. Each experiment was repeated 100 times.

6070

References
Ben-David, N.; and Sabato, S. 2021. Active Structure Learn-
ing of Bayesian Networks in an Observational Setting. arXiv
preprint arXiv:2103.13796.
Cao, T.; and Krishnamurthy, A. 2019. Disagreement-based
combinatorial pure exploration: Sample complexity bounds
and an efficient algorithm. In Conference on Learning The-
ory, 558–588.
Chaudhuri, A. R.; and Kalyanakrishnan, S. 2019. PAC iden-
tification of many good arms in stochastic multi-armed ban-
dits. In International Conference on Machine Learning,
991–1000.
Chen, L.; Gupta, A.; and Li, J. 2016. Pure exploration of
multi-armed bandit under matroid constraints. In Confer-
ence on Learning Theory, 647–669.
Chen, L.; Gupta, A.; Li, J.; Qiao, M.; and Wang, R. 2017.
Nearly optimal sampling algorithms for combinatorial pure
exploration. In Conference on Learning Theory, 482–534.
Chen, S.; Lin, T.; King, I.; Lyu, M. R.; and Chen, W. 2014.
Combinatorial pure exploration of multi-armed bandits. Ad-
vances in neural information processing systems, 27: 379–
387.
Chen, W.; Du, Y.; Huang, L.; and Zhao, H. 2020. Combina-
torial pure exploration for dueling bandit. In International
Conference on Machine Learning, 1531–1541.
Gabillon, V.; Lazaric, A.; Ghavamzadeh, M.; Ortner, R.; and
Bartlett, P. 2016. Improved learning complexity in combina-
torial pure exploration bandits. In Artificial Intelligence and
Statistics, 1004–1012.
Galil, Z. 1986. Efficient algorithms for finding maximum
matching in graphs. ACM Computing Surveys, 18(1): 23–
38.
Hagberg, A.; Swart, P.; and Schult, D. 2008. Exploring net-
work structure, dynamics, and function using NetworkX.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States).
Kalyanakrishnan, S.; Tewari, A.; Auer, P.; and Stone, P.
2012. PAC subset selection in stochastic multi-armed ban-
dits. In International Conference on Machine Learning, vol-
ume 12, 655–662.
Marcotte, R. J.; Wang, X.; Mehta, D.; and Olson, E. 2020.
Optimizing multi-robot communication under bandwidth
constraints. Autonomous Robots, 44(1): 43–55.
Schumann, C.; Lang, Z.; Foster, J.; and Dickerson, J. 2019.
Making the cut: A bandit-based approach to tiered inter-
viewing. In Advances in Neural Information Processing Sys-
tems, volume 32.
Talebi, M. S.; Zou, Z.; Combes, R.; Proutiere, A.; and Jo-
hansson, M. 2017. Stochastic online shortest path routing:
The value of feedback. IEEE Transactions on Automatic
Control, 63(4): 915–930.
Xue, Y.; Zhou, P.; Mao, S.; Wu, D.; and Zhou, Y. 2018. Pure-
exploration bandits for channel selection in mission-critical
wireless communications. IEEE Transactions on Vehicular
Technology, 67(11): 10995–11007.

Zhou, Y.; Chen, X.; and Li, J. 2014. Optimal PAC multiple
arm identification with applications to crowdsourcing. In
International Conference on Machine Learning, 217–225.

6071

