
Feedback Gradient Descent:
Efficient and Stable Optimization with Orthogonality for DNNs

Fanchen Bu, Dong Eui Chang
School of Electrical Engineering, KAIST
{boqvezen97, dechang}@kaist.ac.kr

Abstract

The optimization with orthogonality has been shown useful
in training deep neural networks (DNNs). To impose orthog-
onality on DNNs, both computational efficiency and stability
are important. However, existing methods utilizing Rieman-
nian optimization or hard constraints can only ensure stabil-
ity while those using soft constraints can only improve ef-
ficiency. In this paper, we propose a novel method, named
Feedback Gradient Descent (FGD), to our knowledge, the
first work showing high efficiency and stability simultane-
ously. FGD induces orthogonality based on the simple yet
indispensable Euler discretization of a continuous-time dy-
namical system on the tangent bundle of the Stiefel manifold.
In particular, inspired by a numerical integration method on
manifolds called Feedback Integrators, we propose to instan-
tiate it on the tangent bundle of the Stiefel manifold for the
first time. In the extensive image classification experiments,
FGD comprehensively outperforms the existing state-of-the-
art methods in terms of accuracy, efficiency, and stability.

Introduction
During the prosperous and ongoing development of deep
neural networks (DNNs), it has been shown that imposing
orthogonality on the parameters can help improve the net-
work performance, which has attracted substantial attention
with theoretical analyses (Saxe, McClelland, and Ganguli
2014; Desjardins et al. 2015; Harandi and Fernando 2016).

Many researchers have been trying to practically impose
orthogonality during the training of DNNs. As orthogonal-
ity can be regarded as a property of the Stiefel manifold,
Riemannian optimization is a typical and direct technique to
maintain orthogonality, which has been widely studied in the
optimization field (Smith 1994; Edelman, Arias, and Smith
1998; Rapcsák 2002; Absil, Mahony, and Sepulchre 2009;
Absil and Malick 2012; Wen and Yin 2013; Bonnabel 2013;
Jiang and Dai 2015). However, most Riemannian optimiza-
tion algorithms are computationally expensive due to the
complex retraction or projection. They are especially com-
putationally prohibitive when applied to the state-of-the-art
DNNs that have numerous parameters (Ozay and Okatani
2018), which has been demonstrated in the comparisons
done by a previous work (Li, Fuxin, and Todorovic 2019).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Without great loss of orthogonality, an alternative is to find
a transformation or mapping, keeping the hard constraints
on orthogonality and allowing normal Euclidean optimiza-
tion on the transformed or mapped parameters (Huang et al.
2018; Li, Fuxin, and Todorovic 2019). Although these al-
gorithms are much faster than Riemannian optimization al-
gorithms, they are still considerably time-consuming when
applied to DNNs. To further improve the efficiency, another
intuitive way is to apply soft constraints (Rodrı́guez et al.
2017; Xie, Xiong, and Pu 2017; Bansal, Chen, and Wang
2018; Jia et al. 2017; Huang et al. 2020; Wang et al. 2020)
by adding a penalty term into the loss function. Neverthe-
less, such a way fails to maintain orthogonality during the
training process. Therefore, it is imperative to develop a new
algorithm with both high efficiency and high numerical sta-
bility.

In this paper, we propose a novel method, named Feed-
back Gradient Descent (FGD), to our knowledge, the first
work showing high efficiency and stability simultaneously.
FGD induces orthogonality based on the simple Euler dis-
cretization of a continuous-time dynamical system (CTDS).
In particular, we start from building a CTDS on the tangent
bundle of the Stiefel manifold to represent the gradient de-
scent (GD) process with momentum and orthogonality by
following the idea of the Euclidean counterparts, i.e., the
corresponding CTDSs of GD (Baldi 1995), especially GD
with momentum (Qian 1999).

To construct the corresponding optimization algorithm, it
is indispensable yet nontrivial to discretize the CTDS on the
tangent bundle. The direct application of usual discretiza-
tion techniques such as Euler’s method for ordinary differ-
ential equations is inadequate because the trajectories of the
discrete-time system can go off the manifold. Meanwhile,
usual structure-preserving discretization methods such as
variational or symplectic integrators (Haier, Lubich, and
Wanner 2006) are complex and computationally expensive.
Inspired by Feedback Integrators (FI) (Chang, Jiménez, and
Perlmutter 2016), which is a numerical integration method
for CTDSs on manifolds, we convert the discretization prob-
lem on the tangent bundle to one on a Euclidean space.
Specifically, following the framework of FI, we extend the
CTDS representing GD on the tangent bundle to an ambient
Euclidean space and modify the extended CTDS by adding
a feedback term pulling the variables back to the tangent

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6106



bundle so that the tangent bundle becomes a local attractor.
Moreover, we prove a new theorem, Theorem 3, to directly
show exponential stability while FI only guarantees asymp-
totic stability. Although several applications of FI have been
proposed (Chang 2018; Chang and Perlmutter 2019; Chang,
Phogat, and Choi 2019; Ko et al. 2021; Park et al. 2021),
we are the first to instantiate the FI framework for a CTDS
on the tangent bundle of the Stiefel manifold, as well as the
first to apply the framework to an optimization problem, es-
pecially the GD problem with orthogonality. Since the con-
structed CTDS is in a Euclidean space, we can efficiently
discretize it without using any time-consuming operations
with the stability carried over to the discretized system.

In summary, the major theoretical contributions are four-
fold.

• To the best of our knowledge, FGD is the first optimization
algorithm that imposes orthogonality with momentum for
DNNs based on a CTDS;

• We are the first to instantiate the FI framework for a CTDS
on the tangent bundle of the Stiefel manifold, and also the
first to apply the framework to the GD problem;

• We generalize and improve the idea of FI, providing a new
theorem (Theorem 3) showing exponential stability rather
than the original asymptotic stability;

• FGD provides a way to apply optimization directly on the
parameters and to maintain their orthogonality without us-
ing any time-consuming operations.

We conduct extensive experiments on the image classi-
fication task. We use a range of widely-used DNNs such
as WideResNet (Zagoruyko and Komodakis 2016), ResNet
(He et al. 2016a,b), VGG (Simonyan and Zisserman 2015),
and PreActResNet (He et al. 2016b), and the popular bench-
mark datasets such as CIFAR-10/100 (Krizhevsky, Hinton
et al. 2009), SVHN (Netzer et al. 2011), and ImageNet
(Deng et al. 2009). We compare FGD with stochastic gradi-
ent descent (SGD) (Robbins and Monro 1951; Kiefer, Wol-
fowitz et al. 1952) with momentum and several state-of-the-
art methods imposing soft or hard orthogonality (Rodrı́guez
et al. 2017; Jia et al. 2017; Huang et al. 2018; Bansal, Chen,
and Wang 2018; Li, Fuxin, and Todorovic 2019; Wang et al.
2020; Huang et al. 2020). FGD consistently outperforms
the other baseline methods in terms of accuracy with favor-
able efficiency and stability. Especially, FGD achieves the
highest accuracy in most cases and consumes less or simi-
lar training time than those of the methods using soft con-
straints. It also shows strong numerical stability comparable
to previous methods imposing hard constraints.

Related Work
During the development of neural networks, orthogonality
was first shown to be useful in mitigating the vanishing
or exploding gradients problem (Bengio, Simard, and Fras-
coni 1994), especially on recurrent neural networks (RNNs)
(Pascanu, Mikolov, and Bengio 2013; Le, Jaitly, and Hin-
ton 2015; Wisdom et al. 2016; Arjovsky, Shah, and Bengio
2016; Jing et al. 2017; Hyland and Rätsch 2017; Vorontsov
et al. 2017; Helfrich and Ye 2020). To improve the effi-
ciency of the optimization algorithms with orthogonality,

many techniques have been utilized, e.g., householder re-
flections (Mhammedi et al. 2017), Cayley transform (Hel-
frich, Willmott, and Ye 2018; Maduranga, Helfrich, and Ye
2019), and exponential-map-based parameterization (Lez-
cano Casado 2019; Lezcano-Casado and Martınez-Rubio
2019).

Orthogonality has also shown with theoretical founda-
tion its ability to help the training of general deep neural
networks (DNNs) (Saxe, McClelland, and Ganguli 2014;
Harandi and Fernando 2016; Liu et al. 2021b), especially
convolutional neural networks (CNNs) (Wang et al. 2020;
Trockman and Kolter 2021; Liu et al. 2021a), by reduc-
ing the feature redundancy (Chen et al. 2017), stabilizing
the distribution of activations over layers (Desjardins et al.
2015), and so on. Moreover, orthogonality has also been
substantiated to be helpful in the training of generative ad-
versarial networks (GANs) (Brock et al. 2017; Miyato et al.
2018; Brock, Donahue, and Simonyan 2018; Huang et al.
2020). It is also notable that even merely the initialization
with orthogonality is helpful (Mishkin and Matas 2016).
One may expect to directly apply the existing methods on
RNNs to general DNNs and CNNs. However, the methods
on RNNs are usually limited to square matrices of small size,
which makes it difficult to apply them directly to general
DNNs and CNNs with numerous sizable parameters, espe-
cially when the computational resources are limited. Many
researchers have been trying to propose practically appli-
cable optimization algorithms on DNNs, especially CNNs,
with orthogonality, which we focus on in this paper.

Naturally, as orthogonality can be seen as a property of
the Stiefel manifold, a straightforward way is to directly
utilize Riemannian optimization algorithms on the Stiefel
manifold. However, although this field has continuous the-
oretical development, the direct application of Riemannian
optimization requires computationally expensive retraction
or projection to keep the parameters on the manifold (Ozay
and Okatani 2018), which significantly increases the train-
ing time as demonstrated in a previous work (Li, Fuxin, and
Todorovic 2019) and can impair the stability of training (Ha-
randi and Fernando 2016; Huang et al. 2018, 2020).
Hard Constraints. To address this problem without great
loss of orthogonality, some previous methods, as some re-
searchers have done on RNNs, use a parameter transforma-
tion or mapping from the Stiefel manifold to the Euclidean
space, which still keeps hard constraints on orthogonality.
For example, a previous work (Huang et al. 2018) finds
a closed-form solution on the Stiefel manifold that mini-
mizes the distance to the parameter on Euclidean space to be
updated, where computationally expensive and numerically
unstable eigendecomposition is required, which is also ana-
lyzed and mentioned in their later work (Huang et al. 2020);
another work (Li, Fuxin, and Todorovic 2019) proposes an
iterative estimation of the retraction mapping based on the
Cayley transform, which still needs considerable additional
time as shown in the theoretical analyses and the practical
experiments.
Soft Constraints. Alternatively and intuitively, one can use
soft constraints by adding a penalty term in the loss func-
tion during the training to impose orthogonality with a low

6107



computational cost, which, nevertheless, means that the al-
gorithms can hardly guarantee the maintenance of orthog-
onality, just like other regularization-based methods. Many
different kinds of penalty terms have been proposed, such as
regularization based on the Frobenius norm and its variants
(Rodrı́guez et al. 2017; Xie, Xiong, and Pu 2017; Bansal,
Chen, and Wang 2018), regularization based the singular
value (Jia et al. 2017; Huang et al. 2020), and regulariza-
tion based on doubly block Toeplitz matrices (Wang et al.
2020).

Unlike all the above existing methods, our method does
not use any retraction, projection, transformation, or map-
ping but performs the optimization directly on the orthogo-
nal parameters.

Preliminaries
We use 〈·, ·〉 to denote the Euclidean inner product of matri-
ces, i.e., 〈A,B〉 = tr(ATB), for any two matrices A and B
of the same size, and we use ‖·‖ to denote the norm induced
from the above inner product. We use Sym to denote the
symmetrization operator defined by Sym(A) = 1

2 (A+AT ),
for any square matrix A.

The Stiefel manifold with parameters n and p consists of
orthonormal p-frames in R

n. Formally, in this paper, we use
the compact Stiefel manifold that is defined as St(n, p) =
{X ∈ R

n×p : XTX = Ip}, where n ≥ p and Ip is
the p × p identity matrix. Taking St(n, p) as an embedded
submanifold of Rn×p and using the Euclidean inner prod-
uct, the tangent space of St(n, p) at X ∈ St(n, p) is ex-
pressed as TXSt(n, p) = {Z ∈ R

n×p : Sym(XTZ) = 0},
whose union over all points of the Stiefel manifold is the
tangent bundle of the Stiefel manifold given by TSt(n, p) =
{(X,Y ) : X ∈ St(n, p), Y ∈ TXSt(n, p)}. For any M ∈
R

n×p, we can project M onto the tangent space TXSt(n, p)
at X by fX(M) = M −X Sym(XTM), thus the Rieman-
nian gradient of a differentiable function F is gradF (X) =
∇F (X) −X Sym(XT∇F (X)), where ∇F (·) denotes the
Euclidean gradient of F as a function on R

n×p.

Feedback Gradient Descent
Consider a generic optimization problem. Let D denote the
training dataset, and let L(·) denote the loss function that
is nonnegative on Θ, where Θ is the domain in which the
parameters θ are optimized, and θ can be either a vector or a
matrix. The objective is to find

θ∗ = argmin
θ∈Θ

L(θ). (1)

As a well-known optimization method applicable to solve
the problem (1) with Θ being Euclidean space without fur-
ther restrictions, the discrete-time update of gradient descent
with momentum

θ ← θ + ηφ

φ ← (1− γ)φ−∇L(θ) (2)

corresponds to the following CTDS through the semi-
implicit Euler method with step-size η:[

θ̇

φ̇

]
=

[
φ

(−γφ−∇L(θ))/η
]
, (3)

where φ represents the changing rate of θ and γ > 0 is the
momentum coefficient.

However, the above systems (2) and (3) are only for Eu-
clidean space and thus cannot be directly applied to the case
when Θ is the Stiefel manifold. To design a discrete-time
counterpart of (2) with orthogonality, we start from the con-
struction of a CTDS defined on the tangent bundle of the
Stiefel manifold that is analogous to (3) and represents the
gradient descent process with a momentum-like term.

Specifically, we have the following CTDS:[
θ̇

φ̇

]
=

[
φ

−θφTφ+ (D − θ Sym(θTD))/η

]
(4)

with θ, φ ∈ R
n×p, where η > 0 will be later used in the

discrete-time algorithm as the step-size and

D = D(θ, φ) := −γφ−∇L(θ). (5)

The following lemma shows that the dynamical system (4)
is indeed well defined on TSt(n, p).

Lemma 1 For the dynamical system (4) defined on R
n×p ×

R
n×p, if θ(0)T θ(0) = I and Sym(θ(0)Tφ(0)) = 0, then

θ(t)T θ(t) = I and Sym(θ(t)Tφ(t)) = 0 hold for all t ≥ 0.
Proof. Refer to the supplementary material for the proofs
that are not given in the main text.

The following lemma shows the asymptotic stability on
TSt(n, p) of the dynamical system (4).

Lemma 2 Assume that θ∗ = argminθ∈St(n,p) L(θ)
uniquely exists, and let c0 ≥ 0 such that (θ∗, 0) is the
only point in {(θ, 0) ∈ Ω : gradθ L(θ) = 0}, where
Ω = {(θ, φ) ∈ TSt(n, p) : η

2 ‖φ‖2 + L(θ) ≤ c0}. As-
sume that L is C2 on {θ ∈ St(n, p) : L(θ) ≤ c0}. Then
each trajectory of (4) starting in Ω stays in Ω for all for-
ward time and asymptotically converges to (θ∗, 0) as time
tends to infinity.
Refer to the supplementary material for a local version of
Lemma 2.

It now remains to discretize the system (4). However, we
cannot just use usual discretization techniques on Euclidean
space since the trajectories of the discretized system may
go off the manifold, and the usual structure-preserving dis-
cretization methods can be complicated and computation-
ally expensive. To address these problems, we propose to
extend system (4) to an ambient Euclidean space and mod-
ify it by adding a feedback term so that the original domain
becomes locally attractive. After doing so, we can apply any
off-the-shelf Euclidean discretization method to get our final
optimization algorithm with the stability carried over to the
discretized system.

Let W = S × R
n×p, where

S = {θ ∈ R
n×p :

∥∥θT θ − I
∥∥ < 1} (6)

is an open neighborhood of St(n, p) such that θT θ is invert-
ible for all θ ∈ S. Consider the following dynamical system
defined on W :[

θ̇

φ̇

]
= X(θ, φ)− α

4

[
θ(I − (θT θ)−1)

θ(θT θ)−1(φT θ(θT θ)−1 + θTφ)

]
,

(7)

6108



where

X(θ, φ) =

[
Xθ(θ, φ)
Xφ(θ, φ)

]

=

⎡
⎣ φ− θ(θT θ)−1 Sym(θTφ)
θ(θT θ)−1((θT θ)−1θTφ Sym(θTφ)− φTφ)+

(D − θ(θT θ)−1 Sym(θTD))/η

⎤
⎦

with D defined in (5), and α > 0 is the feedback coefficient.
Note that (7) is identical to (4) on TSt(n, p). Let V : Rn×p×
R

n×p → R≥0 be a function defined as

V (θ, φ) =
k1
4

∥∥θT θ − I
∥∥2 + k2

2

∥∥Sym(θTφ)
∥∥2 , (8)

where k1, k2 > 0. We have V −1(0) = TSt(n, p) and

∇V (θ, φ) =

[∇θV (θ, φ)
∇φV (θ, φ)

]

=

[
k1θ(θ

T θ − I) + k2φ Sym(θTφ)
k2θ Sym(θTφ)

]
. (9)

We have the following theorem showing that the tangent
bundle of the Stiefel manifold is a locally attractive subman-
ifold of the dynamical system (7) on W with exponential
stability.

Theorem 3 For each 0 < c < k1/4, V −1([0, c]) is a subset
of W and each trajectory of (7) starting in V −1([0, c]) ⊂ W
stays in V −1([0, c]) for all forward time and exponentially
converges to V −1(0) = TSt(n, p) as time tends to infinity.
Proof. To proof the theorem, we make use of the following
lemmas.

Lemma 4 For each 0 < c < k1/4, the set of all critical
points of V in V −1([0, c]) is V −1(0).
Lemma 5 〈∇V (θ, φ), X(θ, φ)〉 = 0, ∀(θ, φ) ∈ W .

We define a function L : W → R
2n×2n as

L(θ, φ) =

[
1

4k1
θ(θT θ)−2θT L1(θ, φ)

LT
1 (θ, φ) L2(θ, φ)

]
(10)

where L1(θ, φ) = − 1
4k1

θ(θT θ)−2θTφ(θT θ)−1θT and

L2(θ, φ) = 1
4k1

θ(θT θ)−1φT θ(θT θ)−2θTφ(θT θ)−1θT +
1

2k2
θ(θT θ)−2θT .

Lemma 6 〈∇V (θ, φ), L(θ, φ)∇V (θ, φ)〉 =
V (θ, φ), ∀(θ, φ) ∈ W .

By direct computation, it is easy to check that (7) can be
written as [

θ̇

φ̇

]
= X(θ, φ)− αL(θ, φ)∇V (θ, φ). (11)

By Lemma 5 and 6, along each trajectory (θ(t), φ(t)) of (7)
starting in V −1([0, c]) ⊂ W ,

d

dt
V = 〈∇V,X − αL∇V 〉 = 〈∇V,−αL∇V 〉 = −αV,

(12)
which implies that

V (θ(t), φ(t)) = e−αtV (θ(0), φ(0)) (13)

for all t ≥ 0. Combined with Lemma 4, this completes
the proof.

Algorithm 1: Feedback Gradient Descent

Input: learning rate η, loss function L, momentum coef-
ficient γ, feedback coefficient α
Initialize θ and φ such that θT θ = I , and φ =
θ Sym(θT∇L(θ))−∇L(θ)
while training do

θ ← θ + η[Xθ(θ, φ)− α
4 θ(I − (θT θ)−1)]

φ ← φ + η[Xφ(θ, φ) − α
4 θ(θ

T θ)−1(φT θ(θT θ)−1 +

θTφ)]
end while

Remark 7 Informally speaking, Lemma 5 says that the vec-
tor field X does not change the value of V and Lemma 6
implies that the added term −αL∇V keeps decreasing the
value of V . Therefore, the dynamical system (7) consisting
of these two parts can converge to the tangent bundle of the
Stiefel manifold where V = 0 and dynamical system (7) co-
incides with dynamical system (4). Moreover, this allows us
to perform usual Euclidean discretization on system (7) with
the trajectories of the corresponding discretized dynamical
system kept close to the tangent bundle of the Stiefel mani-
fold.

By straightforward discretization of the system (7) with
the semi-implicit Euler method with step size η, we have the
discretized Algorithm 1 as the update rule for the parameters
with orthogonality.

In the practical application of Algorithm 1, we approxi-
mately use 2I − θT θ for (θT θ)−1, which is a truncation of
the Neumann series (Zhu, Li, and Liang 2015). This approx-
imation does not cause great loss of precision because θT θ
indeed stays around the identity matrix and it can consider-
ably reduce the computational complexity as the inversion
operation is time-consuming, especially for large matrices.

Theorem 8 With the approximation (θT θ)−1 ≈ 2I − θT θ,
the additional time complexity of Algorithm 1 is O(p2n).
FGD uses only matrix multiplications while the previous
methods additionally use computationally expensive SVD,
QR decomposition, etc. In general, this approximation is in-
appropriate. For example, the Cayley transform also requires
the computation of matrix inversion, but the inversion is not
necessarily around the identity matrix. It is notable that even
if one directly uses inversion operation, it will inevitably
have numerical errors when using any existing deep learn-
ing framework.

Theorem 9 Assume there exists a constant c > 0 such that
‖φ‖ ≤ c for all timesteps when using Algorithm 1 with the
approximation (θT θ)−1 ≈ 2I − θT θ. For any given 0 <
ε < 1, there exist η = η(ε) > 0 and α = α(ε) > 0 so that∥∥θT θ − I

∥∥ ≤ ε holds for all timesteps.
The rationality of this approximation is also bolstered by the
experimental results in Section in terms of accuracy, com-
plexity, and numerical stability.

Experiments
We conduct comprehensive experiments using various mod-
els such as WideResNet, ResNet, VGG, and PreActResNet,

6109



0 20 40 60

Epoch

0.0

0.2

0.4

0.6

D
iff
er
en
ce

w
it
h
th
e
M
in
im

a
l
L
o
ss

V0

V1

V2

V3

V4

(a) Difference with the minimal possible distance.

0 20 40 60

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

D
is
ta
n
ce

to
S
ti
ef
el

V0

V1

V2

V3

V4

(b) Distance to the Stiefel manifold.

Figure 1: The results of the toy example.

on CIFAR-10/100, SVHN, and ImageNet datasets. We fol-
low the official settings for the training-testing split of the
datasets, the pre-processing, the data augmentation, etc.

To evaluate the performance, we compare our method
with stochastic gradient descent (SGD) with momentum
and several state-of-the-art optimization algorithms impos-
ing orthogonality such as OCNN (Wang et al. 2020), ONI
(Huang et al. 2020), OMDSM (Huang et al. 2018), Cay-
ley SGD/ADAM (Li, Fuxin, and Todorovic 2019), SRIP
(Bansal, Chen, and Wang 2018), SVB (Jia et al. 2017), and
LCD (Rodrı́guez et al. 2017).

When we list the experimental results, those without ∗ are
the results claimed in the original papers and those with ∗ are
obtained by running the corresponding open-source code on
our machines.

All the experiments are on the image classification task
and all the models used are convolutional neural networks
(CNNs). In CNNs, the weight parameter of a convolutional
layer has a size of co × ci × K1 × K2, where co and ci
are the channel numbers of output and input, respectively,
and (K1,K2) is the size of the kernel. To impose orthog-
onality with FGD, we first need to reshape each such pa-
rameter into a two-dimensional matrix. This can be simply
done by flattening the last three dimensions and transpos-
ing it, which gives a matrix with a size of pi × co, where
pi = ciK1K2. We only impose orthogonality on parameters
with pi ≥ co and min(K1,K2) > 1, which usually consti-
tute most part of a CNN model. For the specific settings for
each sub-experiment, refer to the supplementary material for
the details not mentioned in the main text. Our implementa-
tion uses PyTorch (Paszke et al. 2019).

Toy Example
We first try FGD on a toy example. Fix a non-singular
V ∈ R

n×p and consider the following optimization problem
(Huang et al. 2018) that finds the matrix on the Stiefel man-
ifold with minimal distance to V : minW∈St(n,p) f(W ) =
‖W − V ‖ . The closed-form solution of the problem is

W0(V ) = V DΛ−1/2DT , where Λ = diag({λ1, ..., λp})
is a diagonal matrix corresponding to the eigenvalues of

S = V TV and D is the matrix consisting of the correspond-
ing eigenvectors. Let f0 = ‖W0 − V ‖ be the minimum dis-
tance. We apply FGD on this problem with learning rate
η = 0.1, momentum coefficient γ = 0.1, and feedback co-
efficient α = 12. We pick 5 different random V ∈ R

5×3. In
Figures1 1a and 1b, for the variable W at the current epoch,
we show the difference f(W ) − f0 between the current f
value and the minimum, and the distance

∥∥WTW − I
∥∥ to

the Stiefel manifold during the training of 60 epochs. In each
trial, FGD decreases the loss of the optimization problem
and maintains the orthogonality at the same time, practically
showing the correctness of FGD.

WideResNet on CIFAR-10/100
We use the WideResNet 28-10 model on CIFAR-10/100
datasets. We provide the most detailed results for this sub-
experiment since the results of most baseline methods are
available, which allows us to do the most comprehensive
comparisons. All experiments using WideResNet 28-10 are
done on one TITAN Xp GPU.

In Table 1, we list the test accuracy rates, the training time,
and the distances to the Stiefel manifold of the transformed
two-dimensional parameters in the final trained models of
each method, where FGD shows outstanding performance
in terms of accuracy, efficiency, and numerical stability.
Accuracy. We report the mean value and standard deviation
of the test accuracy rates on both CIFAR-10 and CIFAR-
100 datasets when they are available. We list the claimed
statistics in the original paper when we fail to reproduce
similar ones. As some statistics are not reported in the orig-
inal papers and the corresponding code is unavailable, we
leave them as N/A. FGD achieves the highest accuracy rates
on both CIFAR-10 and CIFAR-100 with accuracy gains of
0.24% and 0.78% over SGD, respectively. Specifically, FGD
achieves an average accuracy rate of 82.25% and is the only
method with an accuracy rate of more than 82% on CIFAR-
100. The second best method is Cayley SGD showing an
average accuracy rate of 81.90%. However, the gap with our

1We use SciencePlots (Garrett 2020) to draw the plots.

6110



0 50 100 150 200

Epoch

20

40

60

80

T
es
t
A
cc
u
ra
cy

(%
)

180 190 200
81

82
SGD

OCNN

SRIP

FGD

(a) Test accuracy rates.

0 50 100 150 200

Epoch

0

1

2

3

4

T
ra
in
in
g
L
o
ss

SGD

OCNN

SRIP

FGD

(b) Training losses.

Figure 2: The results of the experiments using WideResNet 28-10 on CIFAR-100.

Method CIFAR-10 CIFAR-100 Training time L1 L2 L3

SGD* 96.27 ± 0.054 81.47 ± 0.282 110.16 12.26 15.80 23.98
OCNN* 96.34 ± 0.125 81.50 ± 0.156 144.28 3.00e-4 3.70 22.14
ONI* 96.03 ± 0.153 81.18 ± 0.107 132.94 12.26 17.08 22.42
Cayley SGD 96.34 81.74 218.70(292.73*) 4.70e-6* 4.12e-6* 7.32e-6*
Cayley ADAM 96.43 81.90 224.40(292.89*) 3.50e-6* 4.48e-6* 4.52e-6*
OMDSM 96.27 81.39 312.45 N/A N/A N/A
SRIP 96.40 81.81 133.72* 12.57* 15.62* 24.00*
SVB 96.42 81.68 N/A N/A N/A N/A
LCD 96.31 81.44 N/A N/A N/A N/A
FGD*(ours) 96.51 ± 0.062 82.25 ± 0.220 136.71 2.12e-6 3.87e-6 6.56e-6

Table 1: Test accuracy rates (in percentages), training times per epoch (in seconds), and the distances to the Stiefel manifold of
the transformed parameters using WideResNet 28-10 on CIFAR-10/100.

method is favorably obvious. Figures 2a and 2b show the test
accuracy rates and training losses during the training process
on CIFAR-100. Specifically, in Figure 2a, we zoom in the
accuracy rates in the last 20 epochs, where the superiority
of FGD over others in terms of accuracy is clearly shown.
Besides, the ability of FGD to mitigate the drop in the test
accuracy during epochs 60 and 120 is observed. As shown
in Figure 2b, the curve of FGD is much smoother than those
of OCNN and SRIP, showing that FGD not only improves
the accuracy rate but also stabilizes the training. Note that
SRIP and OCNN include regularization terms imposing or-
thogonality into the loss function, but in Figure 2b we only
compare the loss of the optimization problem for the sake of
clarity.

Efficiency. We compare the efficiency by considering the
training time for each method, as done in a previous work
(Li, Fuxin, and Todorovic 2019). The efficiency of FGD is
comparable to those of ONI, SRIP, and OCNN. All three
methods are based on soft constraints and fail to keep or-
thogonality consistently. The training time of FGD is only
2.2%-2.8% longer than that of ONI or SRIP. Moreover, FGD
is even 5.2% faster than OCNN. Compared with Cayley
SGD/ADAM and OMDSM based on hard constraints, FGD
is 37.5%-56.2% faster and achieves better numerical stabil-

ity at the same time.

Numerical stability. The distance to the Stiefel manifold of
each method is used to compare the numerical stability. We
choose three representative layers, where the first one L1 has
original size (160, 160, 3, 3) and transformed size 1440 ×
160; the second one L2 has original size (320, 320, 3, 3) and
transformed size 2880× 320; and the third one L3 has orig-
inal size (640, 640, 3, 3) and transformed size 5760 × 640.
For a transformed matrix M with size n × p, the distance
to the Stiefel manifold is computed as

∥∥MTM − Ip
∥∥. FGD

achieves the lowest distance to the Stiefel manifold on each
representative layer, showing the highest numerical stability
when imposing orthogonality.

ResNet and VGG on CIFAR-10/100
We use ResNet and VGG models on CIFAR-10/100. We
use ResNet110 with bottleneck layers. We use VGG models
with batch normalization (Ioffe and Szegedy 2015). For each
of the models, orthogonality is imposed only on the convo-
lutional layers in the last two residual modules. The param-
eters of these layers constitute the majority of the whole net-
work. This restriction on the range of parameters to impose
orthogonality shows the best performance. We also apply
the same restriction when using OCNN for fairness. This re-

6111



Method ResNet18 ResNet34 ResNet50 ResNet101 ResNet110

SGD* 95.20/77.85 95.30/78.29 95.46/80.29 95.37/79.93 94.36/74.79
SRIP N/A N/A N/A N/A 93.45(94.44*)/74.99

OCNN* 95.20*/78.10 95.41*/78.70 95.54*/80.33* 95.45*/80.12* 94.89*/75.93*
FGD*(ours) 95.57/78.87 95.52/79.52 95.83/80.64 95.68/80.17 95.20/76.33

Table 2: Test accuracy rates using ResNet on CIFAR-10/100.

Method VGG13 VGG16 VGG19

SGD* 93.92/74.27 93.81/74.03 93.73/72.99
Cayley SGD 94.10/75.14 94.23/74.52 94.15/74.32
Cayley ADAM 94.07/74.90 94.12/74.39 93.97/74.30
FGD*(ours) 94.32/75.24 94.45/74.55 94.22/74.37

Table 3: Test accuracy rates using VGG on CIFAR-10/100.

striction also improves the performance of OCNN.

In Tables 2 and 3, we report the test accuracy rates when
using ResNet and VGG, respectively. We focus on the com-
parisons in terms of accuracy as the statistics on the training
time and the distances to the Stiefel manifold of most meth-
ods are unavailable. In each cell of both tables, the number
on the left represents the accuracy on CIFAR-10 and that on
the right is for CIFAR-100. In Table 2, we compare FGD
with three methods: SGD, SRIP, and OCNN. The statistics
and code of SRIP are only available for ResNet110. FGD
consistently outperforms others in terms of accuracy. No-
tably, the accuracy gains of FGD over SGD are more than
1% when using ResNet18, ResNet34, and ResNet110 on
CIFAR-100. In Table 3, we compare FGD with three meth-
ods: SGD, Cayley SGD, and Cayley ADAM. FGD consis-
tently outperforms others in terms of accuracy with accuracy
gains of 0.97%, 0.52%, and 1.38% over SGD when using
three different VGG models on CIFAR-100.

ResNet and PreActResNet on ImageNet

To further show the performance of FGD, we conduct ex-
periments using ResNet and PreActResNet models on the
more complicated ImageNet ILSVRC-2012 dataset, where
we compare FGD with four methods: SGD, OCNN, ONI,
and SRIP. In Table 4, we report the test accuracy rates of
different methods. In each cell, the number on the left rep-
resents the top-1 accuracy and that on the right is the top-5
accuracy. As some statistics are not reported in the original
paper and the corresponding code is unavailable, we leave
them as N/A. Among the five methods, FGD achieves the
best performance in terms of both top-1 and top-5 accuracy
rates using ResNet50 and PreActResNet34. In the experi-
ments using ResNet34, FGD achieves the highest top-1 ac-
curacy, and the achieved top-5 accuracy is only lower than
the claimed one of OCNN and higher than all the others in-
cluding the reproduced one of OCNN. The top-1 accuracy
gains of FGD over SGD are 0.47% on ResNet34, 0.67% on
ResNet50, and 0.91% on PreActResNet34, while the top-5
accuracy gains are 0.46%, 0.35%, and 0.46%.

Method ResNet34 ResNet50 PreActRes34

SGD* 73.49, 91.31 76.13, 92.98 72.62, 90.95

OCNN
73.93, 92.11

76.38, 93.18* N/A
(73.81*, 91.63*)

ONI* 73.68, 91.60 76.75, 93.28 N/A
SRIP N/A, 91.68 N/A, 93.13 N/A, 91.21
FGD*(ours) 73.96, 91.77 76.80, 93.33 73.53, 91.41

Table 4: Test accuracy rates on ImageNet.

Conclusion and Discussion

In this paper, we have proposed Feedback Gradient De-
scent (FGD), an efficient and stable optimization algorithm
with orthogonality for DNNs. Inspired by Feedback Inte-
grators, we have constructed a continuous-time dynamical
system in a Euclidean space containing the tangent bundle
of the Stiefel manifold as a local attractor, and completed
the discretization with the semi-implicit Euler method. The
excellent performance of FGD in terms of accuracy, ef-
ficiency, and numerical stability has been shown through
the theoretical analyses and the extensive experiments. It
is hard to apply most existing momentum-based methods
on manifolds to DNNs due to their problems on efficiency
(Lezcano-Casado 2020). Moreover, some recent works show
that the existing momentum-based methods suffer from in-
sufficiency (Kidambi et al. 2018; Liu and Belkin 2019).
FGD provides a practical and efficient solution for gener-
alizing momentum to manifolds.

FGD has been shown to be advantageous on the image
classification task. Additionally, for many other tasks where
orthogonality has manifested its ability, such as graph em-
bedding (Robles-Kelly and Hancock 2007; Shaw and Je-
bara 2009; Liu, Han, and Nie 2017) and matrix factorization
(Ding et al. 2006; Zhang et al. 2016), FGD can hopefully
also be utilized. Although we have designed FGD specifi-
cally for the Stiefel manifold, our framework can be flex-
ibly applied to other submanifolds embedded in Euclidean
space, such as the Oblique manifold (Huang et al. 2017).
Some recent works (Xiao et al. 2018; Qi et al. 2020) propose
techniques to leverage isometry and orthogonality for train-
ing DNNs, without using normalization or skip connections.
Another recent work (Liu et al. 2021b) proposes an orthog-
onal over-parameterized training framework by learning an
orthogonal transformation to help effectively train DNNs.
We leave it as future works to explore the potential of FGD
in these directions.

6112



Acknowledgements
The authors appreciate the constructive and insightful com-
ments from the reviewers. The authors also would like to
thank Lin Wang and Yi-Ling Qiao for discussions on the
PyTorch implementation.

This work was conducted by the Center for Applied Re-
search in Artificial Intelligence (CARAI) grant funded by
Defense Acquisition Program Administration (DAPA) and
Agency for Defense Development (ADD) [UD190031RD].

References
Absil, P.-A.; Mahony, R.; and Sepulchre, R. 2009. Optimiza-
tion algorithms on matrix manifolds. Princeton University
Press.

Absil, P.-A.; and Malick, J. 2012. Projection-like retractions
on matrix manifolds. In SIOPT.

Arjovsky, M.; Shah, A.; and Bengio, Y. 2016. Unitary evo-
lution recurrent neural networks. In ICML.

Baldi, P. 1995. Gradient descent learning algorithm
overview: A general dynamical systems perspective. In
IEEE Transactions on neural networks.

Bansal, N.; Chen, X.; and Wang, Z. 2018. Can we gain
more from orthogonality regularizations in training deep
networks? In NIPS.

Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning long-
term dependencies with gradient descent is difficult. In IEEE
Transactions on Neural Networks.

Bonnabel, S. 2013. Stochastic gradient descent on Rieman-
nian manifolds. In IEEE Transactions on Automatic Control.
Brock, A.; Donahue, J.; and Simonyan, K. 2018. Large scale
GAN training for high fidelity natural image synthesis. In
ICLR.

Brock, A.; Lim, T.; Ritchie, J. M.; and Weston, N. 2017.
Neural photo editing with introspective adversarial net-
works. In ICLR.

Chang, D. E. 2018. On controller design for systems on
manifolds in Euclidean space. In International Journal of
Robust and Nonlinear Control.
Chang, D. E.; Jiménez, F.; and Perlmutter, M. 2016. Feed-
back integrators. In Journal of Nonlinear Science.

Chang, D. E.; and Perlmutter, M. 2019. Feedback integra-
tors for nonholonomic mechanical systems. In Journal of
Nonlinear Science.

Chang, D. E.; Phogat, K. S.; and Choi, J. 2019. Model Pre-
dictive Tracking Control for Invariant Systems on Matrix
Lie Groups via Stable Embedding into Euclidean Spaces.
In IEEE Transactions on Automatic Control.
Chen, Y.; Jin, X.; Feng, J.; and Yan, S. 2017. Training group
orthogonal neural networks with privileged information. In
IJCAI.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR.

Desjardins, G.; Simonyan, K.; Pascanu, R.; and
Kavukcuoglu, K. 2015. Natural neural networks. In
NIPS.

Ding, C.; Li, T.; Peng, W.; and Park, H. 2006. Orthogonal
nonnegative matrix t-factorizations for clustering. In KDD.

Edelman, A.; Arias, T. A.; and Smith, S. T. 1998. The geom-
etry of algorithms with orthogonality constraints. In SIMAX.

Garrett, J. D. 2020. SciencePlots (v1.0.6). In Zenodo.

Haier, E.; Lubich, C.; and Wanner, G. 2006. Geometric Nu-
merical integration: structure-preserving algorithms for or-
dinary differential equations. Springer.

Harandi, M.; and Fernando, B. 2016. Generalized backprop-

agation, Étude de cas: Orthogonality. In arXiv.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual
learning for image recognition. In CVPR.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity map-
pings in deep residual networks. In ECCV.

Helfrich, K.; Willmott, D.; and Ye, Q. 2018. Orthogonal
recurrent neural networks with scaled Cayley transform. In
ICML.

Helfrich, K.; and Ye, Q. 2020. Eigenvalue Normalized Re-
current Neural Networks for Short Term Memory. In AAAI.
Huang, L.; Liu, L.; Zhu, F.; Wan, D.; Yuan, Z.; Li, B.; and
Shao, L. 2020. Controllable orthogonalization in training
dnns. In CVPR.

Huang, L.; Liu, X.; Lang, B.; and Li, B. 2017. Projection
based weight normalization for deep neural networks. In
arXiv.

Huang, L.; Liu, X.; Lang, B.; Yu, A. W.; Wang, Y.; and Li,
B. 2018. Orthogonal weight normalization: Solution to op-
timization over multiple dependent stiefel manifolds in deep
neural networks. In AAAI.
Hyland, S.; and Rätsch, G. 2017. Learning unitary operators
with help from u (n). In AAAI.
Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In ICML.

Jia, K.; Tao, D.; Gao, S.; and Xu, X. 2017. Improving train-
ing of deep neural networks via singular value bounding. In
CVPR.

Jiang, B.; and Dai, Y.-H. 2015. A framework of constraint
preserving update schemes for optimization on Stiefel man-
ifold. In Mathematical Programming.

Jing, L.; Shen, Y.; Dubcek, T.; Peurifoy, J.; Skirlo, S.; Le-
Cun, Y.; Tegmark, M.; and Soljačić, M. 2017. Tunable effi-
cient unitary neural networks (eunn) and their application to
rnns. In ICML.

Kidambi, R.; Netrapalli, P.; Jain, P.; and Kakade, S. M. 2018.
On the insufficiency of existing momentum schemes for
Stochastic Optimization. In ICLR.

Kiefer, J.; Wolfowitz, J.; et al. 1952. Stochastic estimation
of the maximum of a regression function. In The Annals of
Mathematical Statistics.

Ko, W.; Phogat, K. S.; Petit, N.; and Chang, D. E. 2021.
Tracking Controller Design for Satellite Attitude Under Un-
known Constant Disturbance Using Stable Embedding. In
Journal of Electrical Engineering & Technology.

6113



Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Master’s thesis, Univer-
sity of Toronto.

Le, Q. V.; Jaitly, N.; and Hinton, G. E. 2015. A simple way
to initialize recurrent networks of rectified linear units. In
arXiv:1504.00941.

Lezcano Casado, M. 2019. Trivializations for gradient-
based optimization on manifolds. In NIPS.

Lezcano-Casado, M. 2020. Adaptive and Momentum
Methods on Manifolds Through Trivializations. In
arXiv:2010.04617.

Lezcano-Casado, M.; and Martınez-Rubio, D. 2019. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group. In
ICML.

Li, J.; Fuxin, L.; and Todorovic, S. 2019. Efficient Rie-
mannian optimization on the Stiefel manifold via the Cayley
transform. In ICLR.

Liu, C.; and Belkin, M. 2019. Accelerating SGD with mo-
mentum for over-parameterized learning. In ICLR.

Liu, H.; Han, J.; and Nie, F. 2017. Semi-supervised Orthogo-
nal Graph Embedding with Recursive Projections. In IJCAI.
Liu, S.; Li, X.; Zhai, Y.; You, C.; Zhu, Z.; Fernandez-
Granda, C.; and Qu, Q. 2021a. Convolutional normaliza-
tion: Improving deep convolutional network robustness and
training. In NIPS.

Liu, W.; Lin, R.; Liu, Z.; Rehg, J. M.; Paull, L.; Xiong,
L.; Song, L.; and Weller, A. 2021b. Orthogonal over-
parameterized training. In CVPR.

Maduranga, K. D.; Helfrich, K. E.; and Ye, Q. 2019. Com-
plex unitary recurrent neural networks using scaled cayley
transform. In AAAI.
Mhammedi, Z.; Hellicar, A.; Rahman, A.; and Bailey, J.
2017. Efficient orthogonal parametrisation of recurrent neu-
ral networks using householder reflections. In ICML.

Mishkin, D.; and Matas, J. 2016. All you need is a good init.
In ICLR.

Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y. 2018.
Spectral normalization for generative adversarial networks.
In ICLR.

Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with un-
supervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning.

Ozay, M.; and Okatani, T. 2018. Training cnns with normal-
ized kernels. In AAAI.
Park, J.-H.; Phogat, K. S.; Kim, W.; and Chang, D. E. 2021.
Transversely Stable Extended Kalman Filters for Systems
on Manifolds in Euclidean Spaces. In Journal of Dynamic
Systems, Measurement, and Control.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the diffi-
culty of training recurrent neural networks. In ICML.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;

Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NIPS.

Qi, H.; You, C.; Wang, X.; Ma, Y.; and Malik, J. 2020. Deep
isometric learning for visual recognition. In ICML.

Qian, N. 1999. On the momentum term in gradient descent
learning algorithms. In Neural networks.

Rapcsák, T. 2002. On minimization on Stiefel manifolds. In
European Journal of Operational Research.

Robbins, H.; and Monro, S. 1951. A stochastic approxima-
tion method. In The Annals of Mathematical Statistics.

Robles-Kelly, A.; and Hancock, E. R. 2007. A Riemannian
approach to graph embedding. In Pattern Recognition.

Rodrı́guez, P.; Gonzalez, J.; Cucurull, G.; Gonfaus, J. M.;
and Roca, X. 2017. Regularizing cnns with locally con-
strained decorrelations. In ICLR.

Saxe, A. M.; McClelland, J. L.; and Ganguli, S. 2014. Ex-
act solutions to the nonlinear dynamics of learning in deep
linear neural networks. In ICLR.

Shaw, B.; and Jebara, T. 2009. Structure preserving embed-
ding. In ICML.

Simonyan, K.; and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In ICLR.

Smith, S. T. 1994. Optimization techniques on Riemannian
manifolds. In Fields Institute Communications.

Trockman, A.; and Kolter, J. Z. 2021. Orthogonalizing Con-
volutional Layers with the Cayley Transform. In ICLR.

Vorontsov, E.; Trabelsi, C.; Kadoury, S.; and Pal, C. 2017.
On orthogonality and learning recurrent networks with long
term dependencies. In ICML.

Wang, J.; Chen, Y.; Chakraborty, R.; and Yu, S. X. 2020.
Orthogonal Convolutional Neural Networks. In CVPR.

Wen, Z.; and Yin, W. 2013. A feasible method for opti-
mization with orthogonality constraints. In Mathematical
Programming.

Wisdom, S.; Powers, T.; Hershey, J. R.; Roux, J. L.; and
Atlas, L. 2016. Full-capacity unitary recurrent neural net-
works. In NIPS.

Xiao, L.; Bahri, Y.; Sohl-Dickstein, J.; Schoenholz, S.; and
Pennington, J. 2018. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convolu-
tional neural networks. In ICML.

Xie, D.; Xiong, J.; and Pu, S. 2017. All you need is beyond
a good init: Exploring better solution for training extremely
deep convolutional neural networks with orthonormality and
modulation. In CVPR.

Zagoruyko, S.; and Komodakis, N. 2016. Wide residual net-
works. In BMVC.

Zhang, W. E.; Tan, M.; Sheng, Q. Z.; Yao, L.; and Shi, Q.
2016. Efficient orthogonal non-negative matrix factorization
over Stiefel manifold. In CIKM.

Zhu, D.; Li, B.; and Liang, P. 2015. On the matrix inversion
approximation based on Neumann series in massive MIMO
systems. In ICC.

6114


