
Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows

Param Budhraja*,1 Mayank Baranwal*,2 Kunal Garg3 and Ashish Hota1

1 Indian Institute of Technology Kharagpur
2 Tata Consultancy Services Research, Mumbai

3 University of California, Santa Cruz
budhrajap99@iitkgp.ac.in, baranwal.mayank@tcs.com, kunalgarg@ucsc.edu, ahota@ee.iitkgp.ac.in

Abstract

Accelerated gradient methods are the cornerstones of large-
scale, data-driven optimization problems that arise naturally
in machine learning and other fields concerning data analysis.
We introduce a gradient-based optimization framework for
achieving acceleration, based on the recently introduced no-
tion of fixed-time stability of dynamical systems. The method
presents itself as a generalization of simple gradient-based
methods suitably scaled to achieve convergence to the opti-
mizer in a fixed-time, independent of the initialization. We
achieve this by first leveraging a continuous-time framework
for designing fixed-time stable dynamical systems, and later
providing a consistent discretization strategy, such that the
equivalent discrete-time algorithm tracks the optimizer in a
practically fixed number of iterations. We also provide a the-
oretical analysis of the convergence behavior of the proposed
gradient flows, and their robustness to additive disturbances
for a range of functions obeying strong convexity, strict con-
vexity, and possibly nonconvexity but satisfying the Polyak-
Łojasiewicz inequality. We also show that the regret bound
on the convergence rate is constant by virtue of the fixed-time
convergence. The hyperparameters have intuitive interpreta-
tions and can be tuned to fit the requirements on the desired
convergence rates. We validate the accelerated convergence
properties of the proposed schemes on a range of numerical
examples against the state-of-the-art optimization algorithms.
Our work provides insights on developing novel optimization
algorithms via discretization of continuous-time flows.

Introduction and Related Work
Optimization algorithms lie at the heart of modern arti-
ficial intelligence and machine learning techniques (Sra,
Nowozin, and Wright 2012). In most applications, fast and
efficient algorithms are desired for solving the optimization
problem at hand. This is particularly true in machine learn-
ing applications where large data sets lead to larger prob-
lem instances and potentially larger computational time. As
a result, stochastic gradient descent (SGD), its variants such
as mini-batch SGD (Shalev-Shwartz and Ben-David 2014),
Adam (Kingma and Ba 2015), momentum-based, and accel-
erated stochastic methods have emerged as popular choices
(Huo et al. 2018; Li, Fang, and Lin 2020).

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In developing accelerated optimization algorithms, the
discrete-time framework often proves non-intuitive and
restrictive from an analytical standpoint. In contrast,
continuous-time algorithms provide better intuition, and
simpler and elegant proofs are often obtained by leverag-
ing the tools of Lyapunov stability theory. Indeed, the con-
nection between ordinary differential equations and opti-
mization has been recognized for several decades. For in-
stance, (Brown and Bartholomew-Biggs 1989) is one of
the early works that leveraged the continuous-time frame-
work to develop faster discrete-time algorithms. Similarly,
the continuous-time version of gradient descent, termed gra-
dient flow (GF) dynamics, was analyzed in (Su, Boyd, and
Candès 2016). In (Wibisono, Wilson, and Jordan 2016),
the family of Bregman-Lagrangians was used to gener-
ate second-order Lagrangian flows and exponential conver-
gence rates were established. Despite much progress, there
remain two main limitations for continuous-time algorithms:
(1) most of the analysis has focused on asymptotic and ex-
ponential convergence, i.e., convergence as time tends to in-
finity; and (2) there have been few systematic studies on de-
veloping discrete-time implementations such that the accel-
erated convergence properties of the continuous-time algo-
rithm are preserved.

In this paper, we focus on continuous-time (accelerated)
gradient flow dynamics with fixed-time convergence guar-
antees. The notion of finite-time stability (FTS), which is a
precursor to the notion of fixed-time stability, was proposed
in the seminal work (Bhat and Bernstein 2000). A system
is said to be finite-time stable if the trajectories converge to
the equilibrium in a finite amount of time, called the settling
time. The settling time may depend on the initial conditions,
and can potentially grow unbounded as the initial conditions
go farther away from the equilibrium point. Fixed-time sta-
bility (FxTS), on the other hand, is a stronger notion, which
requires the settling time to be uniformly bounded for all ini-
tial conditions, i.e., convergence within a fixed time can be
guaranteed (Polyakov 2011).

In the recent few years, continuous-time optimization
methods under the notions of FTS and FxTS have gained
significant interest. In (Cortés 2006), the author proposed a
normalized version of GF and proved its finite-time stability.
For convex optimization problems with equality constraints,
the authors in (Chen and Ren 2018), designed discontinu-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6115



ous dynamical systems having the property of finite-time
convergence. Recently in (Garg and Panagou 2021), FxTS
gradient flows were proposed for unconstrained, constrained
and min-max optimization problems. However, the afore-
mentioned works only guarantee improved convergence in
the continuous-time domain and do not provide a discrete-
time implementation having accelerated convergence.

Recently, (Polyakov, Efimov, and Brogliato 2019) intro-
duced the notion of consistent discretization for finite, and
fixed-time stable dynamical systems. In particular, they pro-
posed an implicit discretization scheme that preserves the
convergence behavior of the continuous-time system. How-
ever, these results are of little use for the optimization
community, since, a) the requirement of the dynamics be-
ing homogeneous cannot be satisfied unless the equilib-
rium point, in this case, the optimizer, is known, and b)
implicit discretization schemes are not easy to implement,
thus, making it difficult to use these schemes for iterative
methods. The authors in (Benosman, Romero, and Cherian
2020) showed that the FTS flow, re-scaled gradient flow,
and signed-gradient flow, all with a finite-time convergence,
when discretized using various explicit schemes, such as Eu-
ler discretization or Runge-Kutta method, preserve the con-
vergence behavior in the discrete-time, i.e., the minimizer
could be computed within a finite number of iterations for
a class of convex optimization problems. The authors eval-
uated their proposed methods for training neural networks
and showed a significant improvement in the performance.

In this paper, a consistent discretization of FxTS-GF is
proposed using the method proposed in (Garg et al. 2021).
We then show the robustness of FxTS-GF to vanishing dis-
turbance, under the assumption of Polyak-Łojasiewicz (PL)
inequality. Note that a function satisfying the PL-inequality
can be nonconvex and that PL-inequality is a weaker as-
sumption than strong convexity. It was shown in (Karimi,
Nutini, and Schmidt 2016) that PL inequality is one of the
weakest assumptions under which linear convergence can be
proven, which was earlier proven under the assumption of
strong convexity. We then analyze the static regret of FxTS-
GF and show that it is bounded by a constant. Finally, nu-
merical experiments are conducted to compare the perfor-
mance of FxTS-GF with state-of-the-art optimization algo-
rithms. The proposed algorithm achieves lower training loss
than traditional optimization methods, which also translates
to better generalization on test instances.
Notation: The set of all real numbers is denoted by R. The
set of all positive reals is denoted by R>0. The zero vec-
tor belonging to Rn is denoted by 0. For x ∈ Rn, its
transpose is represented by x⊺. Unless otherwise specified,
∥ · ∥ denotes the Euclidean norm. The set of all functions
f : U → V , where U ⊆ Rn and V ⊆ Rm, which are k-
times continuously differentiable is denoted by Ck(U, V ).
The set of functions f :U →V which are continuously dif-
ferentiable with locally Lipschitz continuous gradient on U
is denoted by Cloc

1,1(U, V ). For compactness, a function’s ar-
gument might be omitted, whenever clear from the context.
For f ∈ C1(Rn,R), its gradient is denoted by ∇f . A set-
valued mapping F : Rn ⇒ Rm maps every x ∈ Rn to a set
of Rm.

Preliminaries
We start by presenting the problem setting, required assump-
tions and the fixed-time stability property of gradient flow
dynamics. Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R. We make the following assumptions on
the function f .
Assumption 1. The function f attains the minimum value
f⋆ > −∞ at x⋆ ∈ Rn, i.e., f⋆ := f(x⋆) > −∞.
Assumption 2. The function f ∈ Cloc

1,1(Rn,R) has a unique
minimizer x = x⋆ and satisfies Polyak-Lojasiewicz (PL) in-
equality, or is gradient dominated, i.e. there exists µ > 0,
such that ∀x ∈ Rn,

1

2
∥∇f(x)∥2 ≥ µ(f(x)− f⋆). (2)

Under the assumption of gradient dominance it was
shown in ((Karimi, Nutini, and Schmidt 2016), Theorem 2)
that the function f(x) has a quadratic growth, i.e.

f(x)− f⋆ ≥ µ

2
∥x− x⋆∥2, (3)

for all x ∈ Rn.
We now formally discuss the notion of fixed-time stability

(FxTS). Consider the dynamical system

ẋ = g(x), (4)

where x ∈ Rn, g(0) = 0 and let solution to (4) exist, is
unique, and continuous for any initial condition x(0) ∈ Rn,
for all t ≥ 0. As introduced in (Polyakov 2011), an equilib-
rium point of (4) is called as FxTS if (i) it is Lyapunov stable,
and (ii) there exists a fixed-time T < ∞ (also known as set-
tling time), such that for all initial conditions x(0) ∈ Rn, the
solution of (4) satisfies x(t)=0 for all t ≥ T . The following
lemma provides sufficient conditions for FxTS of the origin.
Lemma 1 ((Polyakov 2011)). Suppose there exists a pos-
itive definite, radially unbounded function V ∈ C1(D,R),
where D ⊂ Rn is a neighbourhood of origin, such that

V̇ (x) ≤ −pV (x)α − qV (x)β , ∀x ∈ D \ {0}, (5)

where p, q > 0, α ∈ (0, 1) and β > 1. Then, the origin of
the system (4) is fixed-time stable with a settling time

T ≤ 1

p(1− α)
+

1

q(β − 1)
. (6)

Fixed-Time Stable Gradient Flow (FxTS-GF)
We now introduce the following gradient flow dynamics and
establish the FxTS of the optimizer. Specifically, consider
the dynamics

ẋ =

−c1
∇f(x)

∥∇f(x)∥
p1−2
p1−1

− c2
∇f(x)

∥∇f(x)∥
p2−2
p2−1

, ∇f(x) ̸= 0,

0, ∇f(x) = 0,

(7)
where c1, c2 > 0, p1 > 2 and p2 ∈ (1, 2). The flow (7), first
introduced in (Garg and Panagou 2021), is henceforth called

6116



as FxTS-GF. In (Garg and Panagou 2021), it was shown that
the flow (7) converges to the optimizer x⋆ of (1) within a
fixed time, irrespective of the initial condition, under the As-
sumptions 1 and 2. We now provide a self-contained proof
of FxTS of (7) with a different candidate Lyapunov function.

Theorem 1 (FxTS-GF). Suppose the function f satisfies
Assumptions 1 and 2. Then, the flow given by (7) converges
to the optimizer x⋆ in a fixed time for all x(0) ∈ Rn.

Proof. The existence and uniqueness of a continuous solu-
tion of (7) for initial conditions at all times was proved in
(Garg and Panagou 2021, Proposition 1). Thus, we proceed
with the proof of FxTS of the optimal point x⋆. Consider
Lyapunov candidate V (x) = f(x) − f⋆. As f⋆ is the mini-
mum value of f and x⋆ is the unique minimizer of f , it holds
that V (x) > 0 for all x ̸= x⋆. The time derivative of V is
given by

V̇ (x) = ∇f(x)⊺ẋ

= ∇f(x)⊺

(
−c1

∇f(x)

∥∇f(x)∥
p1−2
p1−1

− c2
∇f(x)

∥∇f(x)∥
p2−2
p2−1

)
= −c1∥∇f(x)∥

p1
p1−1 − c2∥∇f(x)∥

p2
p2−1 .

Using inequality (2), we get

V̇ ≤−c1(2µ(f−f⋆))
p1

2(p1−1) −c2(2µ(f−f⋆))
p2

2(p2−1)

= −c1(2µ)
p1

2(p1−1)V
p1

2(p1−1) −c2(2µ)
p2

2(p2−1)V
p2

2(p2−1) .

Define p := c1(2µ)
p1

2(p1−1) , q := c2(2µ)
p2

2(p2−1) . Since p1 >
2 and p2 ∈ (1, 2), we have α := p1

2(p1−1) ∈ (0, 1) and β :=
p2

2(p2−1) > 1. Thus, the conditions for Lemma 1 are satisfied,
and it follows that the equilibrium point x⋆ of (7) is FxTS
with settling time T ≤ 1

p(1−α) +
1

q(β−1) .

Robustness Analysis
The above result establishes the FxTS of the optimizer un-
der flow dynamics (7). We now prove a stronger result that
the FxTS property is preserved when the dynamics (7) is
subjected to additive noises or disturbances, under mild as-
sumptions on the noise or the disturbances. This is partic-
ularly important in data-driven learning where only a noisy
estimate of the gradient is available. Specifically, we con-
sider the following dynamical system:

ẋ = −c1
∇f(x)

∥∇f(x)∥
p1−2
p1−1

− c2
∇f(x)

∥∇f(x)∥
p2−2
p2−1

+ ε(x), (8)

where ε : Rn → Rn is the additive noise term. We assume
that the noise ε(·) is a vanishing disturbance and it satisfies
the following assumption.

Assumption 3. There exists l > 0 such that the noise term
satisfies ∥ε(x)∥ ≤ l∥x− x⋆∥2, for all x ∈ Rn.

Observe that Assumption 2 along with (3) yield

∥x− x⋆∥2 ≤ 1

µ2
∥∇f(x)∥2.

Together with Assumption 3, we obtain the following bound
on the noise ε:

∥ε(x)∥ ≤ l̄∥∇f(x)∥2, (9)

where l̄ = l
µ2 . Note that Assumption 3 also implies that

the point x⋆ is an equilibrium point of the perturbed flow in
(8). We now show that the FxTS property of x⋆ is robust to
additive disturbance satisfying Assumption 3.
Theorem 2 (Robustness of FxTS-GF). Under As-
sumptions 1, 2, 3, if c1, c2, p2 are chosen so that
4µ2 min {c1, c2} > l and 1 < p2 ≤ 3

2 , then the equilib-
rium point x⋆ is FxTS for the flow given by (8).

Proof. Consider the Lyapunov candidate V (x) = f(x)−f⋆

as before. The time derivative of V is given by

V̇ (x) = −c1∥∇f(x)∥
p1

p1−1 − c2∥∇f(x)∥
p2

p2−1 +∇f⊺ε(x).

We define the following constants for the ease notation:
α1 = p1

p1−1 , β1 = p2

p2−1 . Note that α1 ∈ (0, 2) and β1 > 2.
Now, we prove that

V̇ (x) ≤ −(c1 − l̄)∥∇f(x)∥α1 − (c2 − l̄)∥∇f(x)∥β1 , (10)

for all x ∈ Rn. Using Assumption 3 and triangle inequality,
we obtain that ∇f⊺ε(x) ≤ ∥∇f(x)∥∥ε(x)∥ ≤ l̄∥∇f(x)∥3.
Thus, it follows that

V̇ (x) ≤ −c1∥∇f(x)∥α1 − c2∥∇f(x)∥β1 + l̄∥∇f(x)∥3.
(11)

Define S = {x | ∥∇f(x)∥ ≤ 1} and consider the two cases,
namely, when x ∈ S and x /∈ S.

First, consider the case when x /∈ S. Re-arranging the
right-hand side of (11), we obtain:

V̇ (x) ≤ −c1∥∇f(x)∥α1 − (c2 − l̄)∥∇f(x)∥β1

+ l̄
(
∥∇f(x)∥3 − ∥∇f(x)∥β1

)
.

Since p2 ∈
(
1, 3

2

]
, it follows that β1 > 3. Furthermore, for

all x /∈ S, it holds that ∥∇f(x)∥ > 1 and thus, it follows
that ∥∇f(x)∥3 − ∥∇f(x)∥β1 ≤ 0. Hence, we obtain that

V̇ (x) ≤ −c1∥∇f(x)∥α1 − (c2 − l̄)∥∇f(x)∥β1

≤ −(c1 − l̄)∥∇f(x)∥α1 − (c2 − l̄)∥∇f(x)∥β1 .

Next, consider the case when x ∈ S. Re-arranging the
right-hand side of (11), we obtain

V̇ (x) ≤ −(c1 − l̄)∥∇f(x)∥α1 − c2∥∇f(x)∥β1

+ l̄
(
∥∇f(x)∥3 − ∥∇f(x)∥α1

)
.

For all x ∈ S, we have ∥∇f(x)∥3 − ∥∇f(x)∥α1 ≤ 0 since
α1 ∈ (0, 2) and ∥∇f(x)∥ ≤ 1. Thus, it holds that

V̇ (x) ≤ −(c1 − l̄)∥∇f(x)∥α1 − c2∥∇f(x)∥β1

≤ −(c1 − l̄)∥∇f(x)∥α1 − (c2 − l̄)∥∇f(x)∥β1 .

Thus, it follows from Assumption 2 that for all x ∈ Rn

V̇ (x) ≤ −(c1 − l̄)(2µ(f(x)− f⋆))
p1

2(p1−1)

− (c2 − l̄)(2µ(f(x)− f⋆))
p2

2(p2−1) .

6117



Define p := (c1 − l̄)(2µ)
p1

2(p1−1) , q := (c2 − l̄)(2µ)
p2

2(p2−1) ,
and α := p1

2(p1−1) , β := p2

2(p2−1) so that we have

V̇ (x) ≤ −pV (x)α − qV (x)β ,

where p, q > 0, α ∈ (0, 1) and β > 1. Using Lemma 1, we
obtain that the equilibrium point x⋆ is fixed-time stable for
the perturbed FxTS-GF flow given by (8).

Thus, FxTS-GF flow in (7) is robust against a class of
vanishing additive disturbances.

Regret Analysis
The regret analysis is used to evaluate the effectiveness of
an algorithm (Sun and Hu 2020). In this section, we analyze
the regret of FxTS-GF (7) in the offline setting. The static
regret is defined as the accumulated difference between the
objective function computed according to the state of the al-
gorithm and the objective function computed according to
the best fixed-point that minimizes the accumulated objec-
tive function. The regret at any time T >0 is given by

RS(T, x0) =

∫ T

0

(f(x(t))− f(x⋆)) dt,

where x(0) = x0 is the initial condition. Note that in the
offline setting the dynamic and static regret are equivalent.
Also, observe that static regret is the time integral of the Lya-
punov candidate used in the Theorem 1.
Theorem 3 (Regret Bound). Under the Assumptions 1 and
2, the static regret of the flow FxTS-GF is bounded by a con-
stant l1 + l2, with

l1 =
1

p(2− α)
, l2 =

(1 + V (0)β−1)
β−2
β−1 − 1

qV (0)β−2(β − 2)
,

where V (0) = f(x0)− f⋆.

Proof. Considering the Lyapunov candidate V (x) = f(x)−
f⋆, we have the following bound on its time derivative V̇ (x),
which was proved in Theorem 1,

V̇ (x) ≤ −pV (x)α − qV (x)β , (12)

where p = c1(2µ)
p1

2(p1−1) , q = c1(2µ)
p2

2(p2−1) , α = p1

2(p1−1) ,

and β = p2

2(p2−1) . When V (t) > 1 we use V̇ (t) ≤ −qV (t)β

and when V (t) ≤ 1 we use V̇ (t) ≤ −pV (t)α. The main
idea is to apply these two approximations to obtain upper
bound on V (t), which in turn bounds the regret. We define
the following constants:

T1 :=
1

p(1− α)
, T2 :=

1

q(β − 1)
.

We divide the proof into two parts. First we analyze the case
V (x(0)) > 1 and then the case V (x(0)) ≤ 1.
Case 1: Consider V (x(0)) > 1, i.e. the initial conditions x0

is such that f(x0)− f⋆ > 1. For t ≤ T2 we have

V (x(t)) ≤ V (x(0))

(1 + qV (x(0))β−1(β − 1)t)
1

β−1

· (13)

For T2 ≤ t ≤ T1 + T2, we get

V (x(t)) ≤ (1− p(1− α)(t− T2))
1

1−α . (14)
For t ≥ T1 +T2, V (x(t)) = 0, i,e, the solution converges to
optimizer. We integrate both sides of the inequality (13) to
get the following for all T ∈ [0, T1]:

RS(T, x0) ≤
(1 + q(β − 1)V (x(0))T )

β−2
β−1 − 1

q(β − 2)V (x(0))β−2
.

Similarly for T2 ≤ T ≤ T1 +T2, using both the inequalities
(13) and (14), we get

RS(T, x0) ≤ l2 +
1− (1− p(1− α)(T − T2))

2−α
1−α

p(2− α)
.

As V (t) = 0 for t ≥ T1 + T2, we get RS(T, x0) ≤ l1 + l2
for T ≥ T1 + T2.
Case 2: Consider V (x(0)) ≤ 1, i.e. the initial conditions x0

is such that f(x0)− f⋆ ≤ 1. In this scenario also we use the
same procedure. For 0 ≤ T ≤ T1 we get

RS(T, x0) ≤
1− (1− p(1− α)T )

2−α
1−α

p(2− α)
.

For T ≥ T1 we get RS(T, x0) ≤ l1. Note that we can also
say that RS(T, x0) ≤ l1 + l2 for all T ≥ 0 and for all
V (0).

Observe that instead of bounding by a constant we can
also bound the regret RS(T, x0) by a step function as:

RS(T, x0) =


l1 if, f(x0)− f⋆ ≤ 1, T ≥ 0,

l1 if, f(x0)− f⋆ > 1, T ≤ T1,

l1 + l2 if, f(x0)− f⋆ > 1, T > T1.

Discretization of FxTS-GF
In practice, continuous-time dynamical systems can be im-
plemented using iterative discrete-time approximations. Fol-
lowing the work in (Garg et al. 2021; Benosman, Romero,
and Cherian 2020), in this section, we provide the analy-
sis of the Euler-discretization of (7), and show that when
the FxTS-GF (7) is discretized using Euler discretization, it
leads to a consistent discretization. We use the following re-
sult from (Garg et al. 2021).
Lemma 2 (Consistent Discretization). Consider the fol-
lowing differential inclusion:

ẋ ∈ F(x), (15)
where F : Rn ⇒ Rn is an upper semi-continuous set-
valued map, taking non-empty, convex and compact values,
with 0 ∈ F(x̄) for some x̄ ∈ Rn. Assume that there exists
a positive definite, radially unbounded V : Rn → R such
that V (x̄) = 0 satisfying (5) with α = 1− 1

ξ , β = 1+ 1
ξ for

some ξ > 1. If the function V satisfies V (x) ≥ m∥x − x̄∥2
for all x ∈ Rn, where m > 0 and x̄ is the equilibrium point
of (15), then, for all x0 ∈ Rn and ϵ > 0, there exists η∗ > 0
such that for any η ∈ (0, η∗], the following holds:

∥xk − x̄∥ <

 1√
m

(√
p
q
tan

(
π
2
−

√
pq

ξ
ηk

)) ξ
2
+ ϵ, k ≤ k∗;

ϵ, k > k∗,

(16)

6118



where k∗ =
⌈

ξπ
2η

√
pq

⌉
and xk is a solution of the forward-

Euler discretization of (15):
xk+1 ∈ xk + ηF(xk), (17)

where η > 0 is the time-step, starting from the point x0.
Thus, in order to prove that an Euler discretization scheme

of (7) leads to a consistent discretization, it is sufficient to
show that (7) satisfies the conditions of Lemma 2.
Lemma 3. If p1, p2 satisfy

2 +
1

p1 − 2
=

1

2− p2
, (18)

with 3
2 < p2 < 2, then, the function V (x) = (f(x) − f⋆)

satisfies conditions of Lemma 2.

Proof. Consider the Lyapunov candidate V (x) = (f(x) −
f⋆). Its time derivative along the trajectories of (7) reads:

V̇ (x) =− c1∇f(x)⊺
∇f(x)

∥∇f∥
p2−2
p2−1

− c2∇f(x)⊺
∇f(x)

∥∇f∥
p1−2
p1−1

.

Following the analysis in Theorem 1, it follows that

V̇ ≤ −pV
p1

2(p1−1) − qV
p2

2(p2−1) ,

where p = c1(2µ)
p1

2(p1−1) and q = c2(2µ)
p2

2(p2−1) . Note
that under the condition (18), it holds that there exists ξ =
− 2p2−2

p2−2 = 2p1−2
p1−2 > 2, so that the above equation reads

V̇ (x) = −pV (x)1+
1
ξ − qV (x)1−

1
ξ .

Thus, the candidate function V satisfies the conditions of
Lemma 1 with α = 1 − 1

ξ and β = 1 + 1
ξ . Finally,

note that under Assumption 2, it holds that 1
2∥∇f(x)∥2 ≥

µ(f(x) − f⋆) ≥ 2µ2∥x − x⋆∥2, i.e., the function V has
quadratic growth, and thus, the function V is radially un-
bounded, satisfying all the conditions of Lemma 2.

Theorem 4. Assume that the functions f satisfy Assump-
tions 1-2. Consider the discrete-time system

xk+1 = xk − ηc1
∇f(xk)

∥∇f(xk)∥
p1−2
p1−1

− ηc2
∇f(xk)

∥∇f(xk)∥
p2−2
p2−1

,

(19)
obtained from discretizing the dynamics in (7) using Euler’s
method with time step η > 0, where p1, p2 satisfy (18). Then,
for all ϵ > 0, there exists η∗ > 0 such that for all η ∈ (0, η∗],
the trajectories of (19) satisfy

∥xk − x⋆∥ ≤

{
1√
2µ

(√
p
q
tan

(
π
2
− ηk

√
pq

2µ

))µ

+ϵ ; k ≤ k∗,

ϵ ; k > k∗,

(20)

where k∗ = ⌈ µπ√
pqη ⌉, and a, b, c1, µ > 0.

Proof. The proof is based on Lemma 2. First, note that
per Lemma 3, there exists a function V , namely V (x) =
(f(x) − f⋆), that satisfies the conditions of Lemma 2 with
ξ = 2p1−2

p1−2 and β = 2µ2. Next, note that the right-hand side
of (7) is single-valued and continuous, and thus, F(x) =

−c1
∇f(x)

∥∇f(x)∥
p1−2
p1−1

−c2
∇f(x)

∥∇f(x)∥
p2−2
p2−1

satisfies the assumptions

of Lemma 2 with x̄ = x⋆. Thus, it holds that all the condi-
tions of Lemma 2 are satisfied and the proof is complete.

FxTS Gradient Flow with Momentum
Training of neural networks entails computing gradients on
mini-batches. These gradients are not exact and serve as only
noisy estimates of the true gradient of the loss function, lead-
ing to optimization algorithms not descending in optimal di-
rections. This can be partially alleviated using the momen-
tum method (Polyak 1964), which employs exponentially
weighted averages to provide a better estimate of the true
gradient. Gradient descent with momentum is defined by:

vt = βvt−1 + (1− β)∇f(xt−1)

xt = xt−1 − αvt, (21)

where α > 0 and β ∈ [0, 1). Here xt represents the tth-
iterate of the state x. In the limit that α is sufficiently small,
the derivative ẋ(t) can be approximated as ẋ(t) ≈ (xt −
xt−1)/α. Using this analogy, the continuous-time variant of
the momentum method can be expressed as:

ẋ(t) = −v(t)

v̇(t) = λ(∇f(x(t))− v(t)), (22)
where λ = (1 − β)/α. We now propose a suitable modifi-
cation of (22), such that the resulting dynamics converges to
equilibrium (x⋆,0) in a fixed-time. We refer to this modified
fixed-time stable dynamical system as FxTS(M)-GF which
is an acronym for fixed-time stable gradient flow with mo-
mentum. The continuous-time dynamics for the FxTS(M)-
GF for (x, v) ̸= (x⋆,0) is described as:

ẋ = −v · h(x, v)
v̇ = λ(∇f(x)− v) · gp,q(∥∇f(x)−v∥), (23)

where gp,q : R>0 → R>0 is defined as gp,q(s) :=

1
/
(s)

p−2
p−1 + 1

/
(s)

q−2
q−1 with p > 2, q ∈ (1, 2). The function

h(x, v) is defined as:

h(x, v) =

{
gp,q(∥∇f(x)∥), if ∥∇f(x)∥ > ∥∇f(x)−v∥

1, else .

It is possible to choose the exponents p, q such that gp,q is
monotonically decreasing on R>0. For instance, choosing
p = 2.1 and q = 1.98 results in a monotonically decreasing
gp,q(·). We now state our main result.
Assumption 4. The function f is µ-strongly convex and has
an L-Lipschitz continuous gradient, i.e., µ ≤ ∥∇2f(x)∥ ≤
L for all x ∈ Rn.
Theorem 5. Under Assumptions 1 and 4, if exponents p and
q are chosen such that gp,q(·) is monotonically decreasing
on R>0 and λ > L, then the equilibrium point (x⋆,0) is
fixed-time stable for the flow described in (23).

Proof. We consider the candidate Lyapunov function,

V (x, v) =
1

2
∥∇f(x)∥2︸ ︷︷ ︸

V1(x)

+
1

2
∥∇f(x)− v∥2︸ ︷︷ ︸

V2(x,v)

. (24)

Clearly, V (x, v) > 0 for all (x, v) ̸= (x⋆,0). Additionally,
define a set S = {(x, v) | ∥∇f(x)∥ ≤ ∥∇f(x) − v∥}, and
observe that

x ∈ S =⇒ V ≤ 2V2

x /∈ S =⇒ V ≤ 2V1. (25)

6119



Taking time derivative of V along trajectories of (23) yields
V̇ = (∇f)⊺(∇2f)ẋ+ (∇f − v)⊺((∇2f)ẋ− v̇)

= −h·(∇f)⊺(∇2f)v − h·(∇f − v)⊺(∇2f)v

− λ(∇f − v)⊺(∇f − v)·gp,q(∥∇f − v∥)
= −h·(∇f)⊺(∇2f)(∇f) + h·(∇f − v)⊺(∇2f)(∇f − v)

− λ(∇f − v)⊺(∇f − v)·gp,q(∥∇f − v∥)
≤ −h·µ∥∇f∥2 + ∥∇f−v∥2 (h·L−λ·gp,q(∥∇f−v∥)) ,

where the last inequality follows from µ-strong convexity
and L-Lipschitz gradient conditions.
Case 1: x /∈ S: In this case, h is given by gp,q(∥∇f∥).
Moreover, ∥∇f−v∥ ≤ ∥∇f∥, which leads to gp,q(∥∇f∥) ≤
gp,q(∥∇f − v∥) due to the monotonicity of gp,q . Using this
and the fact that λ > L, V̇ (x) can be upper-bounded as:
V̇ ≤−gp,q(∥∇f∥)µ∥∇f∥2−gp,q(∥∇f−v∥)(λ−L)∥∇f−v∥2

≤ −µ (2V1)
p

2(p−1) − µ (2V1)
q

2(q−1) ,

≤ −µV
p

2(p−1) − µV
q

2(q−1) . (26)
Case 2: x ∈ S: In this case, h = 1 and thus, we have

V̇ ≤ −µ∥∇f∥2 + (L− λ·gp,q(∥∇f−v∥)) ∥∇f−v∥2

≤ L (2V2)− λ (2V2)
p

2(p−1) − λ (2V2)
q

2(q−1)

≤ 2LV − λV
p

2(p−1) − λV
q

2(q−1) . (27)
Since p > 2 and q ∈ (1, 2), using the similar arguments as
in the proof of Theorem 2, we obtain that there exists γ > 0
such that for all x ∈ S

V̇ (x) ≤ −γV (x)
p

2(p−1) − γV (x)
q

2(q−1) . (28)
Thus, from (26) and (28), it follows that

V̇ (x) ≤ −min{γ, µ}
(
V (x)

p
2(p−1) + V (x)

q
2(q−1)

)
, (29)

for all x ∈ Rn i.e., the FxTS(M)-GF is fixed-time conver-
gent gradient flow following Lemma 1.

The proposed FxTS(M)-GF inherits some of the desirable
properties of the aforementioned FxTS-GF, such as robust-
ness and constant regret, however, a detailed analysis of the
FxTS(M)-GF is left for future work.

Experiments
In this section, we present empirical results on optimizing
(non-convex) functions that satisfy PL-inequality and
training deep neural networks. The algorithms were imple-
mented using PyTorch 0.4.1 on a 16GB Core-i7 2.8GHz
CPU and NVIDIA GeForce GTX-1060 GPU.
Algorithms. We compare the proposed FxTS-GF and
FxTS(M)-GF algorithms against the state-of-the-art
Adam (Kingma and Ba 2015) and the Nesterov accelerated
gradient (NAG) descent (Polyak 1964; Sutskever et al.
2013). The hyperparameters for different optimizers are
tuned for optimal performance. We use constant step-size
for all the algorithms.
Datasets. For the purpose of implementing deep neural net-
works, we examine the performances of the aforementioned
algorithms on two widely used datasets: MNIST (60000
training samples, 10000 test samples) (LeCun et al. 1998),
and CIFAR10 (50000 training samples, 10000 test sam-
ples) (Krizhevsky and Hinton 2009).

Figure 1: Minimization of Rosenbrock function. (a) Com-
parison of various optimization algorithms for the initial
condition (0.3, 0.8). (b) Performance of the FxTS(M)-GF al-
gorithm at varying initial conditions.

Optimizing Rosenbrock Function
Rosenbrock function (Rosenbrock 1960) is a non-convex
function with a global minimum at (1, 1), and is often used
to benchmark optimization algorithms. The global minimum
resides in a long, narrow, parabolic-shaped flat valley. While
it is easy to locate the valley, the convergence of optimiza-
tion algorithms to a global minimum is difficult. The Rosen-
brock function is given by:

f(x1, x2) = (1− x1)
2 + 100(x2 − x2

1)
2.

Despite it being a non-convex function, the Rosenbrock
function can be shown to satisfy PL-inequality (2) with mod-
ulus µ = 0.1 in the region [−1, 1]× [−1, 1]. We evaluate the
convergence behavior of various optimization algorithms for
the initial point (x1, x2) = (0.3, 0.8) and constant learning
rate 10−3. We use the following hyperparameters for the op-
timization algorithms:
Adam: β′s = (0.9, 0.999), ϵ = 10−8

NAG: Momentum = 0.5
FxTS-GF: β′s = (1.25, 1.25), α′s = (20, 1.98)
FxTS(M)-GF: β′s = (1.25, 1.25), α′s = (20, 1.98), Mo-
mentum = 0.18

Figure 1a plots the evolution of the norm of the error term
x − x⋆ for various optimization algorithms. It can be seen
that the proposed FxTS-GF and FxTS(M)-GF algorithms
converge much faster than the Adam and NAG optimizers.
The detailed evolution of descent trajectories of the afore-
mentioned optimization algorithms for varying initial con-
ditions can be found in the supplementary material. The per-
formance of the FxTS(M)-GF algorithm for randomly cho-
sen initial conditions is shown in Figure 1b on a semilog-
scale. A straight line on a semilog-scale depicts exponen-
tially fast convergence. However, the proposed FxTS(M)-
GF is shown to achieve faster than exponential convergence
to the global minimum, independent of initialization. Addi-
tional results can be found in the supplementary material.

Training Deep Neural Networks
The accelerated convergence behavior of the FxTS(M)-GF
is further evaluated by training deep neural networks on
MNIST and CIFAR10 datasets, respectively. As before, the
performance of the FxTS(M)-GF algorithm is benchmarked

6120



(a) (b) (c)

(d) (e) (f)

Figure 2: Comparison of several optimization algorithms for training deep neural networks on MNIST and CIFAR datasets
across five random seeds. FxTS(M) outperforms Adam and NAG optimizers on various performance measures.

against the Adam and NAG optimizers for three criteria: (i)
minimization of training loss, (ii) training accuracy, (iii) ac-
curacy on the test set (generalization). The neural network
architecture for MNIST consists of a convolutional layer
(with 32 filters of size 3 × 3), followed by a dense layer
of output size 128. The final layer consists transforms the
128-dimensional input into a 10-dimensional output (corre-
sponding to ten classes). We employ the ReLU activation
function for the convolutional and the first linear layer, and
the softmax activation function for the output layer. The loss
function is the cross-entropy along with l2-regularization
(coefficient 0.01). The learning rates for Adam and NAG
are kept at 10−3. A larger learning rate for Adam and NAG
seems to destabilize the learning curve. On the other hand,
the learning rate for the FxTS(M)-GF is chosen as 0.005.
The momentum parameters for the NAG and FxTS(M)-GF
algorithms are chosen as 0.5 and 0.3, respectively. The train-
ing loss vs epoch is presented in Figure 2a, while the train-
ing and testing accuracies are depicted in Figures 2b and
2c, respectively. These figures depict average performances
across five random seeds. As can be seen, our FxTS(M)-
GF achieves the lowest training loss on the MNIST dataset.
Moreover, this performance gain also translates into better
performance on training and testing accuracies.

For evaluating optimizers on the CIFAR10 dataset, we
consider a neural network architecture with two convolu-
tional layers (6 filters of size 5× 5, 16 filters of size 5× 5),
each followed by a max-pooling layer (with a 2×2 window).
The architecture also consists of three fully connected lay-
ers of output sizes 120, 84, and 10 (number of classes), re-
spectively. We employ the ReLU activation function for the

convolutional and the first two linear layers, and the softmax
activation function for the output linear layer. The learning
rates for all the optimizers are chosen as 10−3, while the
momentum parameters for the NAG and the FxTS(M)-GF
are chosen as 0.5. The training loss (averaged across five
random seeds) vs epoch is presented in Figure 2d, while the
training and testing accuracies are depicted in Figures 2e and
2f, respectively. As can be seen, the proposed FxTS(M)-GF
achieves the lowest training loss on the CIFAR10 dataset,
too, along with better performance on training and testing
accuracies. Interestingly, the training curve with Adam opti-
mizer plateaus quite early during the training.

Conclusion
In this paper, we leverage continuous-time stability the-
ory to develop novel optimization algorithms with acceler-
ated convergence guarantees. In particular, we demonstrate
that a class of continuous-time dynamical systems, suitably
designed to track the minimum of convex objective func-
tions, can do so in a fixed time independent of initializa-
tion. The resulting continuous-time dynamics are shown to
be consistent upon discretization. The continuous-time dy-
namical system also comprises two desirable characteris-
tics: (a) robustness to additive perturbations, (b) constant
regret bounds. As an extension to data-driven learning, we
also develop a momentum-based fixed-time convergent gra-
dient flow scheme. The equivalent discretized algorithm is
validated on several examples consisting of training of neu-
ral networks and minimization of invex functions. The pro-
posed FxTS(M)-GF scheme outperforms Adam and NAG
optimizers on several performance measures.

6121



References
Benosman, M.; Romero, O.; and Cherian, A. 2020. Opti-
mizing deep neural networks via discretization of finite-time
convergent flows. arXiv preprint arXiv:2010.02990.
Bhat, S. P.; and Bernstein, D. S. 2000. Finite-Time Stabil-
ity of Continuous Autonomous Systems. SIAM Journal on
Control and Optimization, 38(3): 751–766.
Brown, A.; and Bartholomew-Biggs, M. 1989. Some effec-
tive methods for unconstrained optimization based on the
solution of systems of ordinary differential equations. Jour-
nal of Optimization Theory and Applications, 62: 211–224.
Chen, F.; and Ren, W. 2018. Convex Optimization via
Finite-Time Projected Gradient Flows. In 2018 IEEE Con-
ference on Decision and Control (CDC), 4072–4077.
Cortés, J. 2006. Finite-time convergent gradient flows with
applications to network consensus. Automatica, 42(11):
1993–2000.
Garg, K.; Baranwal, M.; Gupta, R.; and Benosman, M. 2021.
Fixed-Time Stable Proximal Dynamical System for Solving
MVIPs. ArXiv e-Print.
Garg, K.; and Panagou, D. 2021. Fixed-Time Stable Gra-
dient Flows: Applications to Continuous-Time Optimiza-
tion. IEEE Transactions on Automatic Control, 66(5): 2002–
2015.
Huo, Z.; Gu, B.; Liu, J.; and Huang, H. 2018. Accelerated
method for stochastic composition optimization with nons-
mooth regularization. In Thirty-Second AAAI Conference on
Artificial Intelligence.
Karimi, H.; Nutini, J.; and Schmidt, M. 2016. Linear con-
vergence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, 795–811. Springer.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In 3rd International Conference
on Learning Representations San Diego.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Master’s thesis, Depart-
ment of Computer Science, University of Toronto.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Li, H.; Fang, C.; and Lin, Z. 2020. Accelerated first-order
optimization algorithms for machine learning. Proceedings
of the IEEE, 108(11): 2067–2082.
Polyak, B. T. 1964. Some methods of speeding up the con-
vergence of iteration methods. Ussr computational mathe-
matics and mathematical physics, 4(5): 1–17.
Polyakov, A. 2011. Nonlinear feedback design for fixed-
time stabilization of linear control systems. IEEE Transac-
tions on Automatic Control, 57(8): 2106–2110.
Polyakov, A.; Efimov, D.; and Brogliato, B. 2019. Consis-
tent discretization of finite-time and fixed-time stable sys-
tems. SIAM Journal on Control and Optimization, 57(1):
78–103.

Rosenbrock, H. 1960. An automatic method for finding the
greatest or least value of a function. The Computer Journal,
3(3): 175–184.
Shalev-Shwartz, S.; and Ben-David, S. 2014. Understanding
machine learning: From theory to algorithms. Cambridge
University Press.
Sra, S.; Nowozin, S.; and Wright, S. J. 2012. Optimization
for machine learning. MIT Press.
Su, W.; Boyd, S.; and Candès, E. J. 2016. A Differen-
tial Equation for Modeling Nesterov’s Accelerated Gradient
Method: Theory and Insights. Journal of Machine Learning
Research, 17(153): 1–43.
Sun, C.; and Hu, G. 2020. A Continuous-Time Nes-
terov Accelerated Gradient Method for Centralized and
Distributed Online Convex Optimization. arXiv preprint
arXiv:2009.12545.
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013.
On the importance of initialization and momentum in deep
learning. In International conference on machine learning,
1139–1147. PMLR.
Wibisono, A.; Wilson, A. C.; and Jordan, M. I. 2016. A
variational perspective on accelerated methods in optimiza-
tion. Proceedings of the National Academy of Sciences of
the United States of America, 113(47): E7351—E7358.

6122


