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Abstract
Universal domain adaptation (UniDA) aims to transfer
knowledge learned from a labeled source domain to an
unlabeled target domain under domain shift and category
shift. Without prior category overlap information, it is chal-
lenging to simultaneously align the common categories be-
tween two domains and separate their respective private cate-
gories. Additionally, previous studies utilize the source clas-
sifier’s prediction to obtain various known labels and one
generic “unknown” label of target samples. However, over-
reliance on learned classifier knowledge is inevitably biased
to source data, ignoring the intrinsic structure of target do-
main. Therefore, in this paper, we propose a novel two-stage
UniDA framework called MATHS based on the principle
of Mutual neArest neighbor conTrast and Hybrid prototype
diScrimination. In the first stage, we design an efficient mu-
tual nearest neighbor contrastive learning scheme to achieve
feature alignment, which exploits the instance-level affinity
relationship to uncover the intrinsic structure of two domains.
We introduce a bimodality hypothesis for the maximum dis-
criminative probability distribution to detect the possible tar-
get private samples, and present a data-based statistical ap-
proach to separate the common and private categories. In
the second stage, to obtain more reliable label predictions,
we propose an incremental pseudo-classifier for target data
only, which is driven by the hybrid representative prototypes.
A confidence-guided prototype contrastive loss is designed
to optimize the category allocation uncertainty via a self-
training mechanism. Extensive experiments on three bench-
marks demonstrate that MATHS outperforms previous state-
of-the-arts on most UniDA settings.

Introduction
In the past few years, deep learning has achieved impres-
sive progress in image classification tasks. The impressive
efficacy of deep learning algorithms highly relies on abun-
dant labeled training data. However, collecting abundant la-
beled datasets requires massive annotation resources. A nat-
ural idea is to adapt the model well-trained on a labeled
source domain to an unlabeled target domain. Unfortunately,
because of the data distribution shift between different do-
mains, the resultant model often fails to obtain acceptable
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generalization performance. Domain adaptation (DA) aims
to exploit the learned knowledge that is transferred from
source domain to target domain by eliminating domain bias
(Saenko et al. 2010). Closed-set domain adaptation (CDA)
assumes that the label spaces of source and target domain are
consistent, in order to facilitate learning a domain-invariant
representation (Ganin and Lempitsky 2015). As the restric-
tion of label consistency is too harsh, researchers have begun
to allow the existence of category shift to study partial do-
main adaptation (PDA) (Cao et al. 2018), open-set domain
adaptation (ODA) (Saito et al. 2018) and open-partial do-
main adaptation (OPDA) (Fu et al. 2020). As shown in Fig-
ure 1, these three settings correspond to larger source label
space, larger target label space and the partial overlapping
between the two label spaces, respectively. The latter two
are more challenging, because we need to align the known
common categories between the two domains as well as dis-
cover the unknown private categories in the target domain.

Whether it is CDA, PDA, ODA or OPDA, we need to
know the categorical relationship between source and tar-
get domain in advance, but this is not an easy task to satisfy
in real cases. For more general situations, universal domain
adaptation (UniDA), which imposes no prior knowledge on
the target label space, was proposed (You et al. 2019). In
the UniDA setting, it is extremely troublesome to align the
common categories while separating the respective private
categories. Excessive reliance on the supervision informa-
tion of source domain would result in losing the ability to
discriminate the private categories in target domain. Some
previous works like UAN (You et al. 2019) and CMU (Fu
et al. 2020) design sample-level transferability measure to
distinguish common and private categories. They determine
the category labels of target samples by means of a vali-
dated threshold. However, it is not practical to manually set a
threshold to reject the target private categories. Other related
works like DANCE (Saito et al. 2020) and DCC (Li et al.
2021) utilize the global clustering structure of target domain
to learn a discriminative target-oriented representation. But
focusing on clustering the target domain would weaken the
constraint of common categories in the source domain, po-
tentially leading to category misalignment.

To date, few feature alignment methods are specifically
tailored to the UniDA setting (Saito et al. 2020). However,
without domain invariant representation, adapting to the
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Figure 1: Various DA settings with respect to label space of source and target domains. UniDA can easily accommodate the
setting where the label space of target domain is unknown.
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Figure 2: Schematics of our proposed two-stage UniDA framework MATHS. In the first stage, we use mutual nearest neighbors
contrastive learning to achieve domain alignment. After that, we use statistical testing and fitting to detect target private samples.
In the second stage, we apply a self-training strategy to obtain reliable target predictions based on hybrid prototypes.

source classifier that is biased to source data leads to highly
noisy discrimination in target domain. Since target domain
may contain potential private categories, global domain-
level or cluster-level alignment would bring the risk of nega-
tive class knowledge transfer. Besides, most existing UniDA
methods treat target private samples as a whole and ignore
the class diversity of their intrinsic structure, thereby fails to
learning optimal compact feature representation. More im-
portantly, almost all UniDA algorithms cannot tell us how to
distinguish between the open set and non-open set DA sit-
uations, and they use the same discrimination strategy like
source classifier to deal with various situations. When “un-
known” samples exist, it is suboptimal to discriminate all
target samples by a closed source classifier.

To address the above issues, we propose a two-stage
UniDA framework called MATHS based on the criterion of
contrastive alignment of mutual nearest neighbors, and in-
cremental pseudo-classifier discrimination guided by hybrid
prototype completion. An overview of MATHS is shown in
Figure 2. First, we retrieve the mutual nearest neighbor pairs
both intra- and inter-domains. By eliminating the feature dis-
crepancy of these anchor pairs, we achieve the alignment of
common classes across domains and separation of private
classes in each domain. This adaptation process can uncover
the intrinsic structure in both two domains from the perspec-
tive of instance affinity relationship. Second, we propose
to identify whether the target domain contains private cate-
gories by statistically validating whether the target discrim-
inative probability distribution appears as a bimodal struc-
ture. We further estimate the bimodal distribution parame-
ters and utilize them to select partial target private samples
with high confidence. Third, we propose mixing the source
prototypes and target private prototypes in the embedding

space as an auxiliary pseudo-classifier to obtain more reli-
able target predictions. This process designs a self-training
strategy of hybrid prototype allocation confidence.

Our contributions are summarized as follows:

• We propose a novel two-stage UniDA framework called
MATHS based on mutual nearest neighbor contrast cri-
terion and hybrid prototype discrimination principle.

• We first construct an instance-level contrastive loss to
reduce the feature discrepancy between mutual nearest
neighbors. Then we design a confidence-guided proto-
type contrastive loss to optimize the uncertainty of cate-
gory allocation for target samples.

• We introduce a bimodality hypothesis for target discrimi-
native probabilities to identify the potential target private
samples, and propose a data-based statistical approach to
separate the common and private categories.

• MATHS outperforms other state-of-the-art methods on
challenging ODA and OPDA settings, and achieves com-
parable performance on CDA and PDA settings. We also
conduct careful ablation studies to verify the efficacy of
individual components proposed in MATHS.

Related Work
Universal Domain Adaptation
Universal domain adaptation is a realistic but challenging
DA scenario which allows both domains having their own
private categories. UAN (You et al. 2019) measures the
sample-level transferability to distinguish the the common
and private categories. CMU (Fu et al. 2020) detects the
target “unknown” samples by aggregating multiple comple-
mentary uncertainty measures. DANCE (Saito et al. 2020)
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Figure 3: Schematics of our proposed universal domain alignment strategy driven by mutual nearest neighbors contrastive
learning.

designs two loss functions, neighborhood clustering and
entropy separation, for category shift-agnostic adaptation.
DCC (Li et al. 2021) draws the domain consensus knowl-
edge to facilitate the target domain clustering and the pri-
vate category discovery. These methods rely on source clas-
sifier to predict the target samples and barely exploit the
manifold structure relationship between two domains. Con-
versely, MATHS achieves domain alignment by eliminating
feature bias between mutual nearest neighbors, and makes
reliable discrimination on target samples by hybrid proto-
type pseudo-classifier, instead of source classifier.

Out-of-distribution Detection
Out-of-distribution (OOD) detection is alternatively referred
to as outlier or anomaly detection, and it aims to identify
whether a test example is drawn far from the train data dis-
tribution or not (Hodge and Austin 2004). Recently devel-
oped OOD detection methods mainly include those based
on uncertainty measure of the classifier (DeVries and Taylor
2018), reconstruction error of the generative model (Zong
et al. 2018) and self-supervised contrastive learning (Tack
et al. 2020). In principle, identifying target private categories
that do not belong to the source domain in UniDA is simi-
lar to OOD detection. However, applying these OOD meth-
ods to UniDA task directly may lead to erroneous identifica-
tion due to domain shift. Under the premise of eliminating
the domain bias, we discover that the maximum discrimi-
native probability of the common and private classes shows
a bimodal distribution, which is also the general consensus
in OOD detection (Clifton, Hugueny, and Tarassenko 2011;
Kamoi and Kobayashi 2020). The left peak with lower clas-
sification confidence corresponds to those target private ex-
amples. On this basis, we design a data-based statistical ap-
proach to identify partial reliable ones among them, and the
remaining fuzzy ones would be detected by exploiting their
affinity membership to the hybrid prototypes.

Methods
In universal domain adaptation, given a labeled source do-
main Ds = {(xsi , ysi )}

ns
i=1, we need to annotate an unla-

beled target domain Dt = {(xti)}
nt
i=1, which contains all,

or some, known classes and possible unknown classes. De-
fine Ys and Yt as the label space in source domain and tar-
get domain, respectively, and their common label space is

Y = Ys ∩Yt. Note that Y may be a proper subset of Ys, and
that Yt may contain categories that are not in Ys. For simplic-
ity, let Ȳs = Ys \ Y and Ȳt = Yt \ Y . Our goal is to assign
the label in Y to the target samples belonging to the common
classes between two domains, and to assign the “unknown”
label to the samples in the target private classes. Our model
is a transductive transfer learning based framework, in which
the labeled source domain and unlabeled target domain both
participate in the network training. The overall network ar-
chitecture consists of a backbone to extract embedding fea-
tures of samples and a classifier to discriminate embedding
features. Suppose the function for learning embedding fea-
tures is φ : X → Z , and the discrimination function of the
classifier is ϕ : Z → Rks . The dimension ks is the number
of categories in the source domain label space Ys.

Feature Alignment by Mutual Nearest Neighbors
Contrastive Learning Paradigm
Usually, the classifier ϕ is trained on the labeled source do-
main using the cross-entropy loss, i.e.,

Lce = − 1

ns

ns∑
i=1

ks∑
j=1

ysi,j log(ϕ(φ(x
s
i ))j). (1)

Because of the domain shift, the classifier trained on source
domain cannot generalize well to target domain. Many
methods rely on global distribution calibration to learn do-
main invariant feature representation, such as those based on
adversarial learning (Ganin and Lempitsky 2015) and max-
imum mean discrepancy (Yan et al. 2017). However, they
do not consider class specific structure properties, and this
may result in noisy prediction near the classification bound-
ary. Since the target domain may contain categories not in
the source domain, class-level domain alignment methods,
like those based on pseudo-labeling (Liang, Hu, and Feng
2020) and clustering (Tang, Chen, and Jia 2020), may en-
counter categories misalignment issue, leading to negative
transfer. Therefore, inspired by manifold learning (McInnes,
Healy, and Melville 2018), we exploit the much finer domain
structure knowledge from the perspective of nearest neigh-
bor graph and pairwise affinity constraint. For different do-
mains, the geometrically nearest neighbors can be consid-
ered as the most similar anchor pairs in the same category.
For each domain itself, especially unlabeled target domain,
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Figure 4: The frequency histogram of {qi}nt
i=1 on “Art (source) to Real (target)” in OfficeHome (Venkateswara et al. 2017).

(a)(b) No significant bimodal structure; (c)(d) Significant bimodal structure.

geometrically close samples are more likely to belong to the
same category. To force alignment of both two domains on
the common categories and compact on the respective pri-
vate categories, we propose a contrastive learning frame-
work based on mutual nearest neighbors (see Figure 3).

Specifically, for any sample i in target domain, we search
its k nearest neighbors Gs

i in the source domain; similarly,
for the sample j in source domain, we can also obtain its
k nearest neighbors Gt

j in the target domain. If an instance
pair from different domains is contained in each other’s near-
est neighbor set, namely i ∈ Gt

j , j ∈ Gs
i , they are con-

sidered to be mutual nearest neighbors. On this basis, we
construct a pairwise affinity relationship between two do-
mains. We build this relationship as an adjacency matrix
Ast ∈ Rns×nt . Then Ast

ij = 1 if and only if i and j is
the mutual nearest neighbor pair, or positive pair; otherwise
Ast

ij = 0, or negative pair. To explore the target domain’s in-
trinsic structure, we also search the mutual nearest neighbor
pairs in it and construct its adjacency matrix Att ∈ Rnt×nt .
Since the source domain has ground-truth labels, its affinity
matrix Ass ∈ Rns×ns can be obtained according to whether
the sample pair belongs to the same class.

In the training phase, we aim to pull these nearest neigh-
bors closer to each other and push away those geometri-
cally dissimilar samples to prevent category structure col-
lapse. To accomplish it, we design an instance contrastive
loss based on the affinity matrices. Considering the limited
information contained in the minibatch, we employ an ef-
fective memory bank B (Zhuang, Zhai, and Yamins 2021) to
store diverse global information of two domains. The bank
B contains both updated source and target features from the
current minibatch and the older features absent in the mini-
batch, without utilizing the exponential moving average of
features in previous epochs. For each training sample i, its
positive and negative sample sets in B are Pi and Ni, re-
spectively, which can be inferred by affinity matrices Ass,
Ast and Att. Inspired by InfoNCE (Hadsell, Chopra, and
LeCun 2006), our instance contrastive loss is

LIns−Con = −
ns+nt∑
i=1

∑
j∈Pi

logψi,j , (2)

ψi,j =
exp(zizj/τ)∑

k∈Pi
exp(zizk/τ) +

∑
l∈Ni

exp(zizl/τ)
,

where τ is a temperature parameter. By minimizing Lce +
λLIns−Con (λ is a weight parameter), we strive to spread
out the known categories in the source domain, align the
common categories between two domains, and compact the
clusters in the target domain.

Separating Common and Private Categories with
Bimodality Hypothesis

After contrastive feature alignment on both two domains, we
transform the recognition of open set DA into the recogni-
tion of ODD detection. The extreme value theory (Clifton,
Hugueny, and Tarassenko 2011) points out that OOD detec-
tion in multivariate data is equivalent to performing novelty
detection in the probability space of the model of normal-
ity. Given the discriminative probability vectors {pi}nt

i=1 of
target samples, we would typically take the category index
corresponding to their maximum logit qi = max(pi) as the
predicted label. Since the embedding features are provided
by the same engine trained on “known” categories, the logits
{qi}

nc
t

i=1 of the common classes should be higher than those
of private classes (RoyChowdhury et al. 2020). Equivalently,
when the target domain contains private classes, the distribu-
tion of {qi}nt

i=1 would show a bimodal structure (see Figure
4). To identity the target private samples, an alternative ap-
proach is to set a threshold δ for {qi}nt

i=1. If qi < δ, sample
i can be regarded as a target private sample.

Therefore, we first apply the Hartigan’s dip test (Hartigan
and Hartigan 1985) to validate the bimodality of {qi}nt

i=1.
The dip test measures multimodality in a sample by the max-
imum difference, over all sample points, between the em-
pirical distribution function, and the unimodal distribution
function that minimizes that maximum difference. When
the test p-value is small (< 0.05), we can determine that
the target domain contains private categories. Then we use
a two-component Gaussian mixture model πN(θ1, σ

2
1) +

(1− π)N(θ2, σ
2
2), θ1 < θ2 to fit the distribution of {qi}nt

i=1.
According to the three-sigma rule, we take the “unknown”
threshold as δ̂ = θ̂1 + σ̂1 default which can contain about
80% of samples in the left peak. We classify the samples
with qi < δ̂ into target private categories. These samples
will be given the “unknown” label and denoted as Dp

t .
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Reliable Prediction via Hybrid Prototype
Completion and Self-training
In the previous section, we select partial target samples as
representative instances of private classes. We further as-
sume that they cover all private classes in the target domain.
Then we abandon the noisy prediction of source classifier on
remaining fuzzy target samples. Different from other meth-
ods, a pseudo-classifier discrimination method is proposed
in the embedding space, which combines the source proto-
types and target private prototypes to make a reliable pre-
diction. Our motivation for using prototypes as the pseudo-
classifier is that the prototypes can denoise the false target
labels near the classifier boundary by weakening the contri-
bution of outliers. Thus, we first perform k-means clustering
with cluster number kp on embedding features of the sam-
ples inDp

t . Assuming that the source class centroids and tar-
get cluster centroids are {µs

j}
ks
j=1 and {νtj}

kp

j=1, respectively,
then we aim to move all target samples to a geometrically
close centroid through self-training. Specifically, the sam-
ples in Dp

t are moved to the vicinity of corresponding target
private cluster centroid ν, and the samples in Dt \ Dp

t are
moved to the vicinity of µ or ν through the principle of min-
imizing allocation uncertainty. We propose a confidence-
guided prototype contrastive loss to unify these objectives.
Assuming that all embedding features and class centroids
are l2 normalized, we have

LPro−Con = −
nt∑
i=1

ks+kp∑
j=1

wi,j log si,j , (3)

si,j =
exp(ziεj/τ)∑ks

k=1 exp(ziµ
s
k/τ) +

∑kp

l=1 exp(ziν
t
l /τ)

,

εj = µs
j , 1 ≤ j ≤ ks,

εj = νtj−ks
, ks + 1 ≤ j ≤ ks + kp,

where w is an expanded soft label vector. For the sample
b in Dp

t , suppose it belongs to the r-th item of {νtj}
kp

j=1,
then wb,ks+r = 1 and wb,k = 0 (k ̸= ks + r, 1 ≤
k ≤ ks + kp). For the sample c in Dt \ Dp

t , we take

wc,j =
s2c,j/

∑nt
l=1 sl,j∑ks+kp

k=1 s2c,k/
∑nt

l=1 sl,k
(1 ≤ j ≤ ks + kp). The prin-

ciple of designingwi,j is to make its distribution sharper and
more concentrated than that of contrastive score si,j . Mini-
mizing LPro−Con is a self-training process, which can im-
prove cluster purity and put more emphasis on samples as-
signed with high confidence to strengthen predictions. As for
the update of class centroids {µs

j}
ks
j=1∪{νtj}

kp

j=1, we set them
as variables and automatically update them using the back-
propagation gradient optimized by the network. Their ini-
tialization can be obtained after the first stage of training. For
known categories in the source domain, we can directly use
their labels and embedding information to calculate the cor-
responding initialized class centroids {µs,initial

j }ks
j=1. For

target private categories, k-means algorithm would output
the initialized cluster centroids {νt,initialj }kp

j=1. When the
Hartigan’s dip test presents no significant bimodal distribu-
tion, we will only use the source prototypes {µs

j}
ks
j=1 to per-

form self-training and inference. The final predicted label
will be determined by the index corresponding to the maxi-
mum component of contrastive score vector si.

Experiments
Setup
Datasets. We conduct experiments on three bench-
mark datasets: Office (Saenko et al. 2010), OfficeHome
(Venkateswara et al. 2017) and VisDA (Peng et al. 2017).
Office contains three domains (Amazon (A), DSLR (D), We-
bcam (W)) and consists of 4652 images from 31 classes. Of-
ficeHome is a more challenging dataset with 15500 images
from 65 classes, and consists of four domains (Artistic im-
ages (A), Clip-Art images (C), Product images (P), and Real
world images (R)). VisDA has 12 classes from two domains:
the source domain contains 150000 synthetic images (S) and
the target domain consists of 50000 real world images (R).
We also use the Caltech dataset (Griffin, Holub, and Perona
2007) in PDA setting similar to that in DANCE. Let |Y |, |Ŷs|
and |Ŷt| denote the number of common classes, source pri-
vate classes and target private classes, respectively. We show
the class split (|Y |/|Ŷs|/|Ŷt|) of each experimental setting
in corresponding result table. The split details can be seen in
the supplemental material.
Evaluation protocols. In CDA and PDA settings, we calcu-
late the classification accuracy on the whole target samples.
In ODA and OPDA settings, all samples in target private
classes are regarded as one “unknown” class, and we report
the average accuracy over the |Y | + 1 classes. We also use
the H-score (Fu et al. 2020), the harmonic mean of the ac-
curacy on common classes and accuracy on the “unknown”
class, to evaluate each method. For all experiments, we as-
sume no prior information about category shift in advance
and report the averaged results of three runs.
Implementation details. We conduct all the experiments on
8 Tesla V100 GPUs with PyTorch implementation. The net-
work backbone is ResNet50 (He et al. 2016) pretrained on
ImageNet (Deng et al. 2009), and the classifier is made of
one fully connected layer. We use the Nesterov momentum
SGD with momentum 0.9 and weight decay 5e-4 to opti-
mize our model. Similar to domain specific batch normaliza-
tion, we split source and target samples into different mini-
batches with size 36 and forward them separately. For the
sake of consistency and fairness, the nearest neighbors num-
ber k is set to 30 and the k-means cluster number kp is set to
10 as default. Following previous work (Saito et al. 2020),
the temperature parameter τ is set to 0.05. We set the weight
λ as 0.5 to balance each loss contribution, which is a com-
mon choice in the community.
Baseline. We focus our comparison with previous state-of-
the-art methods in four possible scenarios of UniDA, i.e.
CDA (DANN (Ganin and Lempitsky 2015)), PDA (ETN
(Cao et al. 2019)), ODA (STA (Liu et al. 2019)) and OPDA
(UAN (You et al. 2019), CMU (Fu et al. 2020), DANCE
(Saito et al. 2020), DCC (Li et al. 2021)). We also report the
performance of other related methods tailed to each domain
adaptation setting, such as CDAN (Long et al. 2018), MDD
(Zhang et al. 2019), IFAN (Xu et al. 2019), BA3US (Liang
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Universal comparison
Office (31/0/0) OfficeHome (65/0/0) VisDA (12/0/0)

Methods A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
SO 74.1 95.3 99.0 80.1 54.0 56.3 76.5 37.0 62.2 70.7 46.6 55.1 60.3 46.1 32.0 68.7 61.8 39.2 75.4 54.6 46.3

DANN 86.7 97.2 99.8 86.1 72.5 72.8 85.9 46.8 68.4 76.6 54.7 63.9 69.7 57.1 44.7 75.7 64.9 51.3 78.7 62.7 69.1
ETN 87.9 99.2 100 88.4 68.7 66.8 85.2 46.7 69.5 74.8 62.1 66.9 71.9 56.7 44.1 77.0 70.6 50.4 77.9 64.0 64.1
STA 77.1 90.7 98.1 75.5 51.4 48.9 73.6 30.4 46.8 55.9 33.6 46.2 51.1 35.0 28.3 58.2 51.3 33.1 66.5 44.7 48.1
UAN 86.5 97.0 100 84.5 69.6 68.7 84.4 45.0 63.6 71.2 51.4 58.2 63.2 52.6 40.9 71.0 63.3 48.2 75.4 58.7 66.4
CMU 79.6 98.1 97.6 78.3 62.3 63.4 79.9 42.8 65.6 74.3 58.1 63.1 67.4 54.2 41.2 73.8 66.9 48.0 78.7 61.2 56.9

DANCE 88.6 97.5 100 89.4 69.5 68.2 85.5 54.3 75.9 78.4 64.8 72.1 73.4 63.2 53.0 79.4 73.0 58.2 82.9 69.1 70.2
DCC 89.1 96.8 100 87.2 74.4 76.8 87.4 35.4 61.4 75.2 45.7 59.1 62.7 43.9 30.9 70.2 57.8 41.0 77.9 55.1 69.3

MATHS 90.4 97.8 100 90.7 71.6 70.5 86.8 54.7 76.3 78.0 65.4 73.5 74.6 64.8 55.7 78.8 73.8 59.7 83.4 69.9 72.9
Methods tailored for Closed-set Domain Adaptation

CDAN 93.1 98.2 100 89.8 70.1 68.0 86.6 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8 70.0
MDD 94.5 98.4 100 93.5 74.6 72.2 88.9 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1 74.6

Table 1: Results comparison between various methods on closed-set domain adaptation (CDA). Some results are referred to
previous works (Saito et al. 2020; Li et al. 2021).

Universal comparison
Office-Caltech (10/21/0) OfficeHome (25/40/0) VisDA (6/6/0)

Methods A2C W2C D2C D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
SO 75.4 70.7 68.5 80.4 84.6 75.9 37.1 64.5 77.1 52.0 51.3 62.4 52.0 31.3 71.6 66.6 42.6 75.1 57.0 46.3

DANN 41.9 42.7 43.4 41.5 41.5 42.2 35.5 48.2 51.6 35.2 35.4 41.4 34.8 31.7 46.2 47.5 34.7 49.0 40.9 38.7
ETN 88.9 92.3 92.9 95.4 94.3 92.8 52.1 74.5 83.1 69.8 65.2 76.5 69.1 50.6 82.5 76.3 53.8 79.1 69.4 59.8
STA 75.7 72.4 62.8 70.5 67.7 69.8 35.0 55.2 59.7 37.5 48.4 53.5 36.0 32.2 59.9 54.3 38.5 64.6 47.9 48.2
UAN 47.1 49.7 50.6 55.5 61.6 52.9 24.5 35.0 41.5 34.7 32.3 32.7 32.7 21.1 43.0 39.7 26.6 46.0 34.2 39.7
CMU 56.3 60.8 63.7 69.2 66.8 63.4 50.9 74.2 78.4 62.2 64.1 72.5 63.5 47.9 78.3 72.4 54.7 78.9 66.5 65.5

DANCE 88.8 79.2 79.4 83.7 92.6 84.8 53.6 73.2 84.9 70.8 67.3 82.6 70.0 50.9 84.8 77.0 55.9 81.8 71.1 73.7
DCC 85.7 83.4 82.9 95.4 95.5 88.6 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9 72.4

MATHS 89.1 86.2 85.7 85.4 92.8 87.9 56.3 74.8 85.6 71.2 69.4 83.5 70.6 52.7 83.6 76.5 57.3 82.9 72.0 74.8
Methods tailored for Partial Domain Adaptation

IFAN NA NA NA NA NA NA 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8 67.7
BA3US 91.8 93.5 93.9 94.8 95.0 93.8 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 75.9 54.9

Table 2: Results comparison between various methods on partial domain adaptation (PDA). Some results are referred to previous
works (Saito et al. 2020; Li et al. 2021).

et al. 2020) and USFDA (Kundu, Venkat, and Babu 2020).
The summary of these comparison methods can be seen in
supplemental material. Since we cannot know the category
shift in advance, we perform Hartigan’s dip test and mixture
Gaussian model fitting to discover the potential “unknown”
samples in all experiments. The results of test p-value for
each setting can be found in supplemental material.

Results
CDA setting. From the results in Table 1, MATHS shows
consistently better performance than other baseline methods
on the OfficeHome and VisDA datasets. When compared to
those methods customized for CDA setting, MATHS also
achieves the best performance in OfficeHome and competi-
tive performance in Office and VisDA.
PDA setting. The results in Table 2 tell us that MATHS
outperforms all baseline methods and even those methods
specialized in this setting on the large-scale VisDA dataset.
Although ETN shows the best performance on the Office

dataset, it does not give acceptable results in either ODA or
OPDA settings where “unknown” samples exist.
ODA setting. In ODA and OPDA settings, we activate
the “unknown” label mechanism since the test p-values are
lower than 0.05 (see supplemental material). From the re-
sults of three datasets in Table 3, MATHS consistently per-
forms better than all baseline methods including STA tailed
for ODA setting, validating the efficacy of our private sam-
ple detection approach. Besides, the H-score comparison re-
sults in supplemental material also support our claim.
OPDA setting. In this most challenging case, the average
accuracy results in Table 4 and the H-score results in sup-
plemental material show that MATHS also consistently out-
performs DANCE and achieves state-of-the-art results on all
datasets. This can be attributed to its better domain align-
ment via contrastive learning on the mutual nearest neigh-
bors. Instead of treating “unknown” samples as one generic
class, we cluster them as additional prototypes that possess
the same contribution as that of source prototypes.
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Universal comparison
Office (10/0/11) OfficeHome (15/0/50) VisDA (6/0/6)

Methods A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
SO 83.8 95.3 95.3 89.6 85.5 84.9 89.1 55.1 79.8 87.2 61.8 66.2 76.6 63.9 48.5 82.4 75.5 53.7 84.2 69.6 43.3

DANN 87.6 90.5 91.2 88.7 87.4 87.0 88.7 62.1 78.0 86.4 75.5 72.0 79.3 68.8 52.5 82.7 76.1 58.0 82.7 72.8 48.2
ETN 86.7 90.0 90.1 89.1 86.7 86.6 88.2 58.2 79.9 85.5 67.7 70.9 79.6 66.2 54.8 81.2 76.8 60.7 81.7 71.9 51.7
STA 91.7 94.4 94.8 90.9 87.3 80.6 89.9 56.6 74.7 86.5 65.7 69.7 77.3 63.4 47.8 81.0 73.6 57.1 78.8 69.3 57.1
UAN 88.0 95.8 94.8 88.1 89.9 89.4 91.0 63.3 82.4 86.3 75.3 76.2 82.0 69.4 58.2 83.4 76.1 60.5 81.9 74.6 50.0
CMU 90.4 96.7 95.9 91.6 89.3 88.2 92.0 57.6 78.7 85.9 66.1 71.8 80.6 65.8 53.9 84.1 75.6 60.1 84.0 72.0 59.3

DANCE 93.6 97.0 97.1 95.7 91.0 90.3 94.1 64.1 84.1 88.3 76.7 80.7 84.9 77.6 62.7 85.4 80.8 65.1 87.1 78.1 65.3
DCC 92.9 96.5 96.7 94.3 91.2 90.7 93.7 66.8 82.9 86.1 64.5 71.2 78.0 65.7 61.5 83.5 73.3 65.8 83.3 73.6 68.8

MATHS 94.5 97.8 98.6 96.9 90.7 91.6 95.0 73.6 85.0 87.7 78.5 81.3 85.6 79.3 74.8 85.1 82.1 75.9 88.4 81.4 70.6

Table 3: Results comparison between various methods on open-set domain adaptation (ODA). Some results are referred to
previous works (Saito et al. 2020; Li et al. 2021).

Universal comparison
Office (10/10/11) OfficeHome (10/5/50) VisDA (6/3/3)

Methods A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
SO 75.7 95.4 95.2 83.4 84.1 84.8 86.4 50.4 79.4 90.8 64.9 66.1 79.9 71.6 48.5 87.6 77.8 52.1 82.8 71.0 38.8

DANN 87.6 90.5 91.2 88.7 87.4 87.0 88.7 59.9 80.6 89.8 77.5 73.3 86.4 78.5 61.5 88.5 80.3 62.1 82.4 76.7 50.6
ETN 89.1 90.6 90.9 86.3 86.4 86.5 88.3 58.2 78.5 89.1 77.2 69.3 87.5 77.0 56.0 88.2 77.5 58.4 83.0 75.0 66.6
STA 85.2 96.3 95.1 88.1 87.9 86.0 89.8 54.8 76.6 91.2 71.5 71.8 82.0 70.7 50.1 88.2 74.1 60.0 80.5 72.6 47.4
UAN 76.2 82.0 80.4 80.0 93.8 92.2 84.1 60.8 79.1 87.8 72.4 73.5 83.2 78.6 56.4 87.4 79.9 61.1 79.8 75.0 47.3
CMU 86.9 95.7 98.0 89.1 88.4 88.6 91.1 63.5 83.8 88.9 77.7 79.4 86.9 78.6 59.3 88.3 84.1 64.6 81.4 78.0 61.4

DANCE 92.8 97.8 97.7 91.6 92.2 91.4 93.9 64.1 84.3 91.2 84.3 78.3 89.4 83.4 63.6 91.4 83.3 63.9 86.9 80.4 69.2
DCC 91.7 94.5 96.2 93.7 90.4 92.0 93.1 74.7 82.7 92.1 70.7 79.5 87.1 81.5 66.8 92.1 82.4 62.1 87.3 79.9 64.2

MATHS 92.6 98.4 98.6 93.5 93.0 92.3 94.7 76.9 85.2 91.8 85.1 84.6 89.2 84.8 77.9 91.0 84.5 76.7 87.9 84.6 72.8
Methods tailored for Open-partial Domain Adaptation

USFDA 85.6 95.2 97.8 88.5 87.5 86.6 90.2 63.4 83.3 89.4 71.0 72.3 86.1 78.5 60.2 87.4 81.6 63.2 88.2 77.0 63.9

Table 4: Results comparison between various methods on open-partial domain adaptation (OPDA). Some results are referred to
previous works (Saito et al. 2020; Li et al. 2021).

Clustering the “unknown” examples. We evaluate the
quality of learned embedding features by clustering the sam-
ples from both common and private classes. In the previous
evaluation of ODA and OPDA settings, we classify the ex-
amples from private classes into an “unknown” group. Here
we demonstrate the ability to classify them into respective
private classes. Specifically, we use one labeled example per
class to train a new linear classifier on the fixed embedding
features. Then we calculate the classification accuracy for
both common and private classes. In this experiment, we
use the OfficeHome dataset in ODA setting that contains 15
common categories and 50 target private categories. Table 5
shows that MATHS improves the accuracy for both common
and private classes compared to DANCE, illustrating that the
embedding features learned by MATHS are more discrimi-
native and better for separating the “unknown” group.

Feature visualization. We use t-SNE (Van der Maaten and
Hinton 2008) to visualize the learned source and target fea-
tures with corresponding domain label and category label
before and after adaptation. In this analysis, we conduct ex-
periment on “D2W” in Office under the ODA setting. From
Figure 5, before adaptation, the common categories do not
mix well and most target private samples are attached near

R2A R2C P2A P2C
Methods K/N K/N K/N K/N
ImageNet 37.5/31.0 35.3/36.4 36.9/31.0 36.3/36.0

SO 42.4/30.7 43.4/33.8 38.6/30.1 37.0/32.2
DANN 41.3/30.2 42.4/33.4 41.6/28.9 40.1/31.6

DANCE 49.1/33.8 48.7/36.5 46.4/35.2 43.0/38.1
MATHS 52.8/36.1 54.3/39.9 49.7/37.0 47.6/41.8

Table 5: Linear classification accuracy given one labeled tar-
get sample per class on OfficeHome dataset in open-set set-
ting. K: Known Accuracy; N: Novel Accuracy.

the common samples. After adaptation, we achieve the com-
mon categories mixing well and separate most target pri-
vate samples from the common samples. This qualitative ev-
idence demonstrates that our cross-domain contrastive learn-
ing strategy is very effective for feature alignment.

Ablation Study
Effect of mutual nearest neighbors contrast. To verify the
necessity of the proposed mutual nearest neighbors (mnn)
contrastive learning for feature alignment, we use VisDA
dataset to conduct control experiments in four settings. From
the results in Table 6, removing contrastive learning on mnn
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Figure 5: Feature visualization on “D2W” in Office under the ODA setting. For domain, blue represents the source domain and
orange refers to the target domain. For category, blue plots are “unknown” samples, others are “known” samples.

pairs would only severely degrade performance. Besides,
we discover that removing it would also make the bimodal
structure of maximum logits not so significant (see supple-
mental material). Furthermore, we replace our mnn con-
trastive learning paradigm with MoCo (He et al. 2020) in
the first stage and test its result on the VisDA dataset. The
average accuracy of MoCo in CDA, PDA, ODA, and OPDA
settings is 68.5, 67.4, 63.1, and 67.2, respectively, about 6%
lower than MATHS. This is reasonable since MoCo uses
contrastive loss at the single instance level and treats those
informative intra- and inter-domain mnn pairs as noisy nega-
tive samples. MATHS pulls these anchor pairs closer to each
other by contrasting multiple positives with multiple neg-
atives, so as to guarantee class-specific alignment. All this
evidence demonstrates that using only the domain specific
batch normalization and ordinary contrastive learning would
be too weak to eliminate domain shift, while our proposed
criterion is simple, yet effective.
Effect of hybrid prototype self-training. To evaluate the
contribution of hybrid prototype self-training to reliable pre-
diction, we abandon it in the second stage and also use the
VisDA dataset in four settings to conduct analysis. Without
the self-training on hybrid prototypes, the results in Table 6
tell us that the accuracy would decline, which illustrates that
self-training can make fuzzy discrimination boundary dis-
tinct and further compact feature representation. To testify
the effectiveness of hybrid prototype prediction, we utilize
the source classifier instead of it. Table 6 shows that in the
ODA and OPDA settings, the use of source classifier to dis-
criminate target samples is not as good as hybrid prototype
prediction, validating our original claim.

To show that applying OOD methods to a UniDA setting
directly may lead to erroneous identification, we only use
the source classifier with our learned “unknown” threshold
to test on VisDA dataset. Its average accuracy in ODA and
OPDA settings is 47.3 and 45.1, respectively, much lower
than MATHS, which demonstrates that the domain bias se-
riously harms the accuracy of the OOD methods.
Sensitivity to hyper-parameter. To show the sensitivity of
MATHS to the nearest neighbors number k and k-means
cluster number kp, we conduct experiments on OfficeHome
under the OPDA setting, and present the average accuracy
over twelve transfer tasks on four domains, as shown in

Figure 6(a) and Figure 6(b). Within a wide range of k and
kp, the average accuracy varies slightly, demonstrating that
MATHS is robust to the choices of k and kp.

CDA PDA ODA OPDA
MATHS w/o mnnc 65.2 64.7 59.3 64.1
MATHS w/o hps 71.5 73.9 68.5 71.2
MATHS w/o hpp 71.8 74.0 66.4 69.7

MATHS (full) 72.9 74.8 70.6 72.8

Table 6: Ablation study on VisDA. mnnc, hps and hpp refer
to mutual nearest neighbors contrast, hybrid prototype self-
training and hybrid prototype prediction, respectively.
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Figure 6: (a) Varying nearest neighbors number k. (b) Vary-
ing k-means cluster number kp.

Conclusion
In this paper, we propose a novel two-stage framework
called MATHS for universal domain adaptation. It performs
feature alignment via mutual nearest neighbors contrast and
exploits domain discrimination knowledge by hybrid proto-
type self-training. We also introduce a data-based statisti-
cal method to detect target private categories. A thorough
evaluation shows that MATHS outperforms other state-of-
the-art UniDA methods on most DA settings. Beyond the
UniDA task, MATHS shows promise for unsupervised trans-
fer learning and data integration tasks, which are outside the
scope of this paper, but need to be explored.
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