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Abstract
We study regret minimization in finite horizon tabular
Markov decision processes (MDPs) under the constraints of
differential privacy (DP). This is motivated by the widespread
applications of reinforcement learning (RL) in real-world se-
quential decision making problems, where protecting users’
sensitive and private information is becoming paramount. We
consider two variants of DP – joint DP (JDP), where a central-
ized agent is responsible for protecting users’ sensitive data
and local DP (LDP), where information needs to be protected
directly on the user side. We first propose two general frame-
works – one for policy optimization and another for value
iteration – for designing private, optimistic RL algorithms.
We then instantiate these frameworks with suitable privacy
mechanisms to satisfy JDP and LDP requirements, and si-
multaneously obtain sublinear regret guarantees. The regret
bounds show that under JDP, the cost of privacy is only a
lower order additive term, while for a stronger privacy pro-
tection under LDP, the cost suffered is multiplicative. Finally,
the regret bounds are obtained by a unified analysis, which,
we believe, can be extended beyond tabular MDPs.

Introduction
Reinforcement learning (RL) is a fundamental sequential de-
cision making problem, where an agent learns to maximize
its reward in an unknown environment through trial and er-
ror. Recently, it is ubiquitous in various personalized ser-
vices, including healthcare (Gottesman et al. 2019), virtual
assistants (Li et al. 2016), social robots (Gordon et al. 2016)
and online recommendations (Li et al. 2010). In these ap-
plications, the learning agent continuously improves its de-
cision by learning from users’ personal data and feedback.
However, nowadays people are becoming increasingly con-
cerned about potential privacy leakage in these interactions.
For example, in personalized healthcare, the private data of
a patient can be sensitive informations such as her age, gen-
der, height, weight, medical history, state of the treatment,
etc. Therefore, developing RL algorithms which can protect
users’ private data are of paramount importance in these ap-
plications.

Differential privacy (DP) (Dwork 2008) has become a
standard in designing private sequential decision-making al-
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gorithms both in the full information (Jain, Kothari, and
Thakurta 2012) and partial or bandit information (Mishra
and Thakurta 2015; Tossou and Dimitrakakis 2016) settings.
Under DP, the learning agent collects users’ raw data to train
its algorithm while ensuring that its output will not reveal
users’ sensitive information. This notion of privacy protec-
tion is suitable for situations, where a user is willing to share
her own information to the agent in order to obtain a ser-
vice specially tailored to her needs, but meanwhile she does
not like to allow any third party to infer her private informa-
tion seeing the output of the learning algorithm (e.g., Google
GBoard). However, a recent body of work (Shariff and Shef-
fet 2018; Dubey 2021) show that the standard DP guarantee
is irreconcilable with sublinear regret in contextual bandits,
and thus, a variant of DP, called joint differential privacy
(JDP) (Kearns et al. 2014) is considered. Another variant of
DP, called local differential privacy (LDP) (Duchi, Jordan,
and Wainwright 2013) has recently gained increasing pop-
ularity in personalized services due to its stronger privacy
protection. It has been studied in various bandit settings re-
cently (Ren et al. 2020; Zheng et al. 2020; Zhou and Tan
2020). Under LDP, each user’s raw data is directly protected
before being sent to the learning agent. Thus, the learning
agent only has access to privatized data to train its algorithm,
which often leads to a worse regret guarantee compared to
DP or JDP.

In contrast to the vast amount of work in private bandit
algorithms, much less attention are given to address privacy
in RL problems. To the best of our knowledge, Vietri et al.
(2020) propose the first RL algorithm – PUCB – for regret
minimization with JDP guarantee in tabular finite state, fi-
nite action MDPs. On the other hand, Garcelon et al. (2020)
design the first private RL algorithm – LDP-OBI – with
regret and LDP guarantees. Recently, Chowdhury, Zhou,
and Shroff (2021) study linear quadratic regulators under
the JDP constraint. It is worth noting that all these prior
work consider only value-based RL algorithms, and a study
on policy-based private RL algorithms remains elusive. Re-
cently, policy optimization (PO) has seen great success in
many real-world applications, especially when coupled with
deep neural networks (Silver et al. 2017; Duan et al. 2016;
Wang, Li, and He 2018), and a variety of PO based algo-
rithms have been proposed (Williams 1992; Kakade 2001;
Schulman et al. 2015, 2017; Konda and Tsitsiklis 2000). The
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Algorithm Regret (ε-JDP) Regret (ε-LDP)
PO PRIVATE-UCB-PO Õ

(√
S2AH3T + S2AH3/ε

)
Õ
(√

S2AH3T + S2A
√
H5T/ε

)
VI

PRIVATE-UCB-VI Õ
(√

SAH3T + S2AH3/ε
)

Õ
(√

SAH3T + S2A
√
H5T/ε

)
PUCB (Vietri et al. 2020) Õ

(√
S2AH3T + S2AH3/ε

)
1 NA

LDP-OBI (Garcelon et al. 2020) NA Õ
(√

S2AH3T + S2A
√
H5T/ε

)
2

Table 1: Regret comparisons for private RL algorithms on episodic tabular MDP. T = KH is total number of steps, where K
is the total number of episodes and H is the number of steps per episode. S is the number of states, and A is the number of
actions. ε > 0 is the desired privacy level.

theoretical understandings of PO have also been studied in
both computational (i.e., convergence) perspective (Liu et al.
2019; Wang et al. 2019a) and statistical (i.e., regret) perspec-
tive (Cai et al. 2020; Efroni et al. 2020). Thus, one funda-
mental question to ask is how to build on existing under-
standings of non-private PO algorithms to design sample-
efficient policy-based RL algorithms with general privacy
guarantees (e.g., JDP and LDP), which is the main moti-
vation behind this work. Also, the existing regret bounds in
both Vietri et al. (2020) and Garcelon et al. (2020) for private
valued-iteration (VI) based RL algorithms are loose. More-
over, the algorithm design and regret analysis under JDP
in Vietri et al. (2020) and the ones under LDP in Garcelon
et al. (2020) follow different approaches (e.g., choice of ex-
ploration bonus terms and corresponding analysis). Thus,
another important question to ask is whether one can obtain
tighter regret bounds for VI based private RL algorithms via
a unified framework under general privacy requirements.

Contributions. Motivated by the two questions above, we
make the following contributions.
• We present a general framework – PRIVATE-UCB-PO

– for designing private policy-based optimistic RL algo-
rithms in tabular MDPs. This framework enables us to es-
tablish the first regret bounds for PO under both JDP and
LDP requirements by instantiating it with suitable pri-
vate mechanisms – the CENTRAL-PRIVATIZER and the
LOCAL-PRIVATIZER – respectively.

• We revisit private optimistic value-iteration in tabular
MDPs by proposing a general framework – PRIVATE-
UCB-VI – for it. This framework allows us to improve
upon the existing regret bounds under both JDP and LDP
constraints using a unified analysis technique.

• Our regret bounds show that for both policy-based and
value-based private RL algorithms, the cost of JDP guar-
antee is only a lower-order additive term compared to the
non-private regret. In contrast, under the stringer LDP re-
quirement, the cost suffered is multiplicative and is of the
same order. Our regret bounds and their comparison to
the existing ones is summarised in Table 1.

1Vietri et al. (2020) claim a Õ
(√

SAH3T + S2AH3/ε
)

re-
gret bound for PUCB. However, to the best of our understanding,
we believe the current analysis has gaps (see Section 13), and the
best achievable regret for PUCB should have an additional

√
S

factor in the first term.
2Garcelon et al. (2020) consider stationary transition kernels,

Related work. Beside the papers mentioned above, there
are other related work on differentially private online learn-
ing (Guha Thakurta and Smith 2013; Agarwal and Singh
2017) and multi-armed bandits (Tossou and Dimitrakakis
2017; Hu, Huang, and Mehta 2021; Sajed and Sheffet 2019;
Gajane, Urvoy, and Kaufmann 2018; Chen et al. 2020). In
the RL setting, in addition to Vietri et al. (2020); Garcelon
et al. (2020) that focus on value-iteration based regret mini-
mization algorithms under privacy constraints, Balle, Gom-
rokchi, and Precup (2016) considers private policy evalu-
ation with linear function approximation. For MDPs with
continuous state spaces, Wang and Hegde (2019) proposes
a variant of Q-learning to protect the rewards information
by directly injecting noise into value functions. Recently, a
distributed actor-critic RL algorithm under LDP is proposed
in Ono and Takahashi (2020) but without any regret guar-
antee. While there are recent advances in regret guarantees
for policy optimization (Cai et al. 2020; Efroni et al. 2020),
we are not aware of any existing work on private policy op-
timization. Thus, our work takes the first step towards a uni-
fied framework for private policy-based RL algorithms in
tabular MDPs with general privacy and regret guarantees.

Problem Formulation
In this section, we recall the basics of episodic Markov De-
cision Processes and introduce the notion of differential pri-
vacy in reinforcement learning.

Learning Model and Regret in Episodic MDPs
We consider episodic reinforcement learning (RL) in
a finite horizon stochastic Markov decision process
(MDP) (Puterman 1994; Sutton 1988) given by a tuple
(S,A, H, (Ph)Hh=1, (ch)Hh=1), where S and A are state and
action spaces with cardinalities S and A, respectively, H ∈
N is the episode length, Ph(s′|s, a) is the probability of tran-
sitioning to state s′ from state s provided action a is taken
at step h and ch(s, a) is the mean of the cost distribution at
step h supported on [0, 1]. The actions are chosen following
some policy π = (πh)Hh=1, where each πh is a mapping from
the state space S into a probability distribution over the ac-
tion space A, i.e. πh(a|s) ≥ 0 and

∑
a∈A πh(a|s) = 1 for

and show a Õ
(√

S2AH2T + S2A
√
H5T/ε

)
regret bound for

LDP-OBI. For non-stationary transitions, as considered in this
work, an additional multiplicative

√
H factor would appear in the

first term of the bound.
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all s ∈ S . The agent would like to find a policy π that min-
imizes the long term expected cost starting from every state
s ∈ S and every step h ∈ [H], defined as

V πh (s) := E
[∑H

h′=h
ch′(sh′ , a′h) | sh = s, π

]
,

where the expectation is with respect to the randomness of
the transition kernel and the policy. We call V πh the value
function of policy π at step h. Now, defining the Q-function
of policy π at step h as

Qπh(s, a) := E
[∑H

h′=h
ch′(sh′ , a′h)) | sh = s, ah = a, π

]
,

we obtainQπh(s, a) = ch(s, a)+
∑
s′∈S V

π
h+1(s′)Ph(s′|s, a)

and V πh (s) =
∑
a∈AQ

π
h(s, a)πh(a|s).

A policy π∗ is said to be optimal if it minimizes the value
for all states s and step h simultaneously, and the corre-
sponding optimal value function is denoted by V ∗h (s) =
minπ∈Π V

π
h (s) for all h ∈ [H], where Π is the set of all

non-stationary policies. The agent interacts with the environ-
ment for K episodes to learn the unknown transition prob-
abilities Ph(s′|s, a) and mean costs ch(s, a), and thus, in
turn, the optimal policy π∗. At each episode k, the agent
chooses a policy πk = (πkh)Hh=1 and samples a trajectory
{sk1 , ak1 , ck1 , . . . , skH , akH , ckH , skH+1} by interacting with the
MDP using this policy. Here, at a given step h, skh denotes
the state of the MDP, akh ∼ πkh(·|skh) denotes the action
taken by the agent, ckh ∈ [0, 1] denotes the (random) cost
suffered by the agent with the mean value ch(skh, a

k
h) and

skh+1 ∼ Ph(·|skh, akh) denotes the next state. The initial state
sk1 is assumed to be fixed and history independent. We mea-
sure performance of the agent by the cumulative (pseudo)
regret accumulated over K episodes, defined as

R(T ) :=
∑K

k=1

[
V π

k

1 (sk1)− V ∗1 (sk1)
]
,

where T = KH denotes the total number of steps. We seek
algorithms with regret that is sublinear in T , which demon-
strates the agent’s ability to act near optimally.

Differential Privacy in Episodic RL
In the episodic RL setting described above, it is natural to
view each episode k ∈ [K] as a trajectory associated to a
specific user. To this end, we let UK = (u1, . . . , uK) ∈ UK
to denote a sequence of K unique3 users participating in the
private RL protocol with an RL agentM, where U is the set
of all users. Each user uk is identified by the cost and state
responses (ckh, s

k
h+1)Hh=1 she gives to the actions (akh)Hh=1

chosen by the agent. We let M(Uk) = (a1
1, . . . , a

K
H ) ∈

AKH to denote the set of all actions chosen by the agentM
when interacting with the user sequence Uk. Informally, we
will be interested in (centralized) randomized mechanisms
(in this case, RL agents) M so that the knowledge of the
outputM(Uk) and all but the k-th user uk does not reveal
‘much’ information about uk. We formalize this in the fol-
lowing definition.

3Uniqueness is assumed wlog, as for a returning user one can
group her with her previous occurrences.

Definition 1 (Differential Privacy (DP)). For any ε ≥ 0
and δ ∈ [0, 1], a mechanism M : UK → AKH is (ε, δ)-
differentially private if for all UK , U ′K ∈ UK differing on a
single user and for all subset of actions A0 ⊂ AKH ,

P [M(UK) ∈ A0] ≤ exp(ε)P [M(U ′K) ∈ A0] + δ .

If δ = 0, we call the mechanism M to be ε-differentially
private (ε-DP).

This is a direct adaptation of the classic notion of differ-
ential privacy (Dwork, Roth et al. 2014). However, we need
to relax this definition for our purpose, because although
the actions recommended to the user uk have only a small
effect on the types (i.e., state and cost responses) of other
users participating in the RL protocol, those can reveal a lot
of information about the type of the user uk. Thus, it be-
comes hard to privately recommend the actions to user uk
while protecting the privacy of it’s type, i.e., it’s state and
cost responses to the suggested actions. Hence, to preserve
the privacy of individual users, we consider the notion of
joint differential privacy (JDP) (Kearns et al. 2014), which
requires that simultaneously for all user uk, the joint distri-
bution of the actions recommended to all users other than
uk be differentially private in the type of the user uk. It
weakens the constraint of DP only in that the actions sug-
gested specifically to uk may be sensitive in her type (state
and cost responses). However, JDP is still a very strong
definition since it protects uk from any arbitrary collusion
of other users against her, so long as she does not herself
make the actions suggested to her public. To this end, we let
M−k(Uk) := M(Uk) \ (akh)Hh=1 to denote all the actions
chosen by the agentM excluding those recommended to uk
and formally define JDP as follows.
Definition 2 (Joint Differential Privacy (JDP)). For any ε≥
0, a mechanism M : UK → AKH is ε-joint differentially
private if for all k ∈ [K], for all user sequences UK , U ′K ∈
UK differing only on the k-th user and for all set of actions
A−k⊂A(K−1)H given to all but the k-th user,

P [M−k(UK) ∈ A−k] ≤ exp(ε)P [M−k(U ′K) ∈ A−k] .

JDP has been used extensively in private mechanism de-
sign (Kearns et al. 2014), in private matching and allocation
problems (Hsu et al. 2016), in designing privacy-preserving
algorithms for linear contextual bandits (Shariff and Sheffet
2018), and it has been introduced in private tabular RL by
Vietri et al. (2020).

JDP allows the agent to observe the data (i.e., the en-
tire trajectory of state-action-cost sequence) associated with
each user and the privacy burden lies on the agent itself. In
some scenarios, however, the users may not even be willing
to share it’s data with the agent directly. This motivates a
stringer notion of privacy protection, called the local differ-
ential privacy (LDP) (Duchi, Jordan, and Wainwright 2013).
In this setting, each user is assumed to have her own privacy
mechanism that can do randomized mapping on its data to
guarantee privacy. To this end, we denote by X a trajectory
(sh, ah, ch, sh+1)Hh=1 and by X the set of all possible trajec-
tories. We writeM′(X) to denote the privatized trajectory
generated by a (local) randomized mechanismM′. With this
notation, we now formally define LDP for our RL protocol.
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Algorithm 1: PRIVATE-UCB-PO
Input: Number of episodes K, time horizon H ,

privacy level ε > 0, a PRIVATIZER (LOCAL
or CENTRAL), confidence level δ ∈ (0, 1] and
parameter η > 0

1 Initialize policy π1
h(a|s) = 1/A for all (s, a, h)

2 Initialize private counts C̃1
h(s, a) = 0, Ñ1

h(s, a) = 0

and Ñ1
h(s, a, s′) = 0 for all (s, a, s′, h)

3 Set precision levels Eε,δ,1, Eε,δ,2 of the PRIVATIZER
4 for k = 1, 2, 3, . . . ,K do
5 Initialize private value estimates: Ṽ kH+1(s) = 0
6 for h = H,H − 1, . . . , 1 do
7 Compute c̃kh(s, a) and P̃ kh (s, a) ∀(s, a) as

in (1) using the private counts
8 Set exploration bonus using Lemma 1:

βkh(s, a) = βk,ch (s, a) +Hβk,ph (s, a) ∀(s, a)

9 Compute: ∀(s, a), Q̃kh(s, a) =

min{H − h+ 1,max{0, c̃kh(s, a) +∑
s′∈S Ṽ

k
h+1(s′)P̃ kh (s′|s, a)− βkh(s, a)}}

10 Compute private value estimates: ∀s,
Ṽ kh (s) =

∑
a∈A Q̃

k
h(s, a)πkh(a|s)

11 Roll out a trajectory (sk1 , a
k
1 , c

k
1 , . . . , s

k
H+1) by

acting the policy πk = (πkh)Hh=1

12 Receive private counts C̃k+1
h (s, a), Ñk+1

h (s, a),
Ñk+1
h (s, a, s′) from the PRIVATIZER

13 Update policy: ∀(s, a, h),

πk+1
h (a|s) =

πkh(a|s) exp(−ηQ̃kh(s,a))∑
a∈A πkh(a|s) exp(−ηQ̃kh(s,a))

Definition 3 (Local Differential Privacy (LDP)). For any
ε ≥ 0, a mechanism M′ is ε-local differentially private if
for all trajectories X,X ′ ∈ X and for all possible subsets
E0 ⊂ {M′(X)|X ∈ X},

P [M′(X) ∈ E0] ≤ exp(ε)P [M′(X ′) ∈ E0] .

LDP ensures that if any adversary (can be the RL agent
itself) observes the output of the privacy mechanismM′ for
two different trajectories, then it is statistically difficult for
it to guess which output is from which trajectory. This has
been used extensively in multi-armed bandits (Zheng et al.
2020; Ren et al. 2020), and introduced in private tabular RL
by Garcelon et al. (2020).

Private Policy Optimization
In this section, we introduce a policy-optimization based pri-
vate RL algorithm PRIVATE-UCB-PO (Algorithm 1) that
can be instantiated with any private mechanism (hence-
forth, referred as a PRIVATIZER) satisfying a general condi-
tion. We derive a generic regret bound for PRIVATE-UCB-
PO, which can be applied to obtain bounds under JDP and
LDP requirements by instantiating PRIVATE-UCB-PO with
a CENTRAL-PRIVATIZER and a LOCAL-PRIVATIZER, re-
spectively. All the proofs are deferred to the appendix.

Let us first introduce some notations. We denote by
Nk
h (s, a) :=

∑k−1
k′=1 I{sk

′

h = s, ak
′

h = a}, the num-
ber of times that the agent has visited state-action pair
(s, a) at step h before episode k. Similarly, Nk

h (s, a, s′) :=∑k−1
k′=1 I{sk

′

h = s, ak
′

h = a, sk
′

h+1 = s′} denotes the count of
going to state s′ from s upon playing action a at step h before
episode k. Finally, Ckh(s, a) :=

∑k−1
k′=1 I{sk

′

h = s, ak
′

h =

a}ck′h denotes the total cost suffered by taking action a on
state s and step h before episode k. In non-private learning,
these counters are sufficient to find estimates of the transi-
tion kernels (Ph)h and mean cost functions (ch)h to design
the policy (πkh)h for episode k. However, in private learning,
the challenge is that the counters depend on users’ state and
cost responses to suggested actions, which is considered sen-
sitive information. Therefore, the PRIVATIZER must release
the counts in a privacy-preserving way on which the learning
agent would rely. To this end, we let Ñk

h (s, a), C̃kh(s, a), and
Ñk
h (s, a, s′) to denote the privatized versions of Nk

h (s, a),
Ckh(s, a), and Nk

h (s, a, s′), respectively. Now, we make a
general assumption on the counts released by the PRIVA-
TIZER (both LOCAL and CENTRAL), which roughly means
that with high probability the private counts are close to the
actual ones.
Assumption 1 (Properties of private counts). For any ε > 0
and δ ∈ (0, 1], there exist functions Eε,δ,1, Eε,δ,2 > 0
such that with probability at least 1 − δ, uniformly over
all (s, a, h, k), the private counts returned by the PRIVA-
TIZER (both LOCAL and CENTRAL) satisfy: (i) |Ñk

h (s, a)−
Nk
h (s, a)| ≤ Eε,δ,1, (ii) |C̃kh(s, a)−Ckh(s, a)| ≤ Eε,δ,1, and

(iii) |Ñk
h (s, a, s′)−Nk

h (s, a, s′)| ≤ Eε,δ,2.
In the following, we assume Assumption 1 holds. Then,

we define, for all (s, a, h, k), the private mean empirical
costs and private empirical transition probabilities as

c̃kh(s, a) :=
C̃kh(s, a)

max{1, Ñk
h (s, a) + Eε,δ,1}

P̃ kh (s′|s, a) :=
Ñk
h (s, a, s′)

max{1, Ñk
h (s, a) + Eε,δ,1}

.

(1)

The following concentration bounds on the private esti-
mates will be the key to our algorithm design.
Lemma 1 (Concentration of private estimates). Fix any ε >
0 and δ ∈ (0, 1]. Then, under Assumption 1, with probability
at least 1− 2δ, uniformly over all (s, a, h, k),

|ch(s, a)− c̃kh(s, a)| ≤ βk,ch (s, a), and∥∥∥Ph(·|s, a)− P̃ kh (·|s, a)
∥∥∥

1
≤ βk,ph (s, a),

where βk,ch (s, a) := Lc(δ)√
max{1,Ñkh (s,a)+Eε,δ,1}

+

3Eε,δ,1

max{1,Ñkh (s,a)+Eε,δ,1}
, Lc(δ) :=

√
2 ln 4SAT

δ , βk,ph (s, a) :=

Lp(δ)√
max{1,Ñkh (s,a)+Eε,δ,1}

+
SEε,δ,2+2Eε,δ,1

max{1,Ñkh (s,a)+Eε,δ,1}
, and

Lp(δ) :=
√

4S ln 6SAT
δ .
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PRIVATE-UCB-PO algorithm. PRIVATE-UCB-PO
(Algorithm 1) is a private policy optimization (PO) al-
gorithm based on the celebrated upper confidence bound
(UCB) philosophy (Auer, Cesa-Bianchi, and Fischer 2002;
Jaksch, Ortner, and Auer 2010). Similar to the non-private
setting (Efroni et al. 2020), it basically has two stages at
each episode k: policy evaluation and policy improvement.
In the policy evaluation stage, it evaluates the policy πk

based on k − 1 historical trajectories. In contrast to the
non-private case, PRIVATE-UCB-PO relies only on the
private counts (returned by the PRIVATIZER) to calculate
the private mean empirical costs and private empirical
transitions. These two along with a UCB exploration bonus
term (which also depends only on private counts) are used
to compute Q-function estimates. The Q-estimates are then
truncated and corresponding value estimates are computed
by taking their expectation with respect to the policy. Next,
a new trajectory is rolled out by acting the policy πk and
the PRIVATIZER translates all non-private counts into the
private ones to be used for the policy evaluation in the next
episode. Finally, in the policy improvement stage, PRIVATE-
UCB-PO employs a ‘soft’ update of the current policy πk
by following a standard mirror-descent step together with
a Kullback–Leibler (KL) divergence proximity term (Beck
and Teboulle 2003; Cai et al. 2020; Efroni et al. 2020).
The following theorem presents a general regret bound
of PRIVATE-UCB-PO (Algorithm 1) when instantiated
with any PRIVATIZER (LOCAL or CENTRAL) that satisfies
Assumption 1.
Theorem 1 (Regret bound of PRIVATE-UCB-PO). Fix any
ε > 0 and δ ∈ (0, 1] and set η =

√
2 logA/(H2K). Then,

under Assumption 1, with probability at least 1 − δ, the cu-
mulative regret of PRIVATE-UCB-PO is

R(T ) = Õ
(√

S2AH3T +
√
S3A2H4

)
+ Õ

(
Eε,δ,2S

2AH2 + Eε,δ,1SAH
2
)
.

Remark 1 (Cost of privacy). Theorem 1 shows that regret of
PRIVATE-UCB-PO is lower bounded by the regret in non-
private setting (Efroni et al. 2020, Theorem 1), and depends
directly on the privacy parameter ε through the permitted
precision levels Eε,δ,1 and Eε,δ,2 of the PRIVATIZER. Thus,
choosing Eε,δ,1, Eε,δ,2 appropriately to guarantee JDP or
LDP, we can obtain regret bounds under both forms of pri-
vacy. The cost of privacy, as we shall see in Section 12, is
lower order than the non-private regret under JDP, and is of
the same order under the stringer requirement of LDP.4

Proof sketch. We first decompose the regret as
sum of three terms: T1 =

∑
k(V π

k

1 (sk1) − Ṽ k1 (sk1)), T2 =∑
k,h E

[
〈Q̃kh(sh, ·), πkh(·|sh)− π∗h(·|sh)〉|sk1 , π∗

]
and T3 =∑

E
[
Q̃kh(sh, ah)−ch(sh, ah)−Ph(·|sh, ah)Ṽ kh+1|sk1 , π∗

]
.

We then bound each of the three terms. First,
by setting η =

√
2 logA/(H2K), we show that

4The lower order terms scale with S2, which is quite common
for optimistic tabular RL algorithms (Azar, Osband, and Munos
2017; Dann, Lattimore, and Brunskill 2017).

T2 ≤
√

2H4K logA via a standard online mirror de-
scent analysis. Then, from Lemma 1 and our choice
of bonus terms, we get T3 ≤ 0. Next, we bound
T1 by the sum of expected bonus terms, i.e., T1 ≤∑
k,h E

[
2βk,ch (sh, ah) + 2Hβk,ph (sh, ah)|sk1 , πk

]
. Now,

by Assumption 1, the expected bonuses can be controlled

using E
[

Lc(δ)√
max{Nkh (sh,ah),1}

+
3Eε,δ,1

max{Nkh (sh,ah),1} |s
k
1 , π

k

]
,

and E
[

Lp(δ)√
max{Nkh (sh,ah),1}

+
SEε,δ,2+2Eε,δ,1

max{Nkh (sh,ah),1} |s
k
1 , π

k

]
,

respectively. We can now complete the proof by show-
ing that5

∑
k,h E

[
1

max{1,Nkh (sh,ah)}

]
≈ Õ

(
SAH

)
and∑

k,h E
[

1√
max{1,Nkh (sh,ah)}

]
≈ Õ

(√
SAHT + SAH

)
.

Private UCB-VI Revisited
In this section, we turn to investigate value-iteration based
private RL algorithms. It is worth noting that private valued-
based RL algorithms have been studied under both JDP and
LDP requirements (Vietri et al. 2020; Garcelon et al. 2020).
However, to the best of our understanding, the regret anal-
ysis of the JDP algorithm presented in Vietri et al. (2020)
has gaps and does not support the claimed result.6 Under
LDP, the regret bound presented in Garcelon et al. (2020) is
sub-optimal in the cardinality of the state space and as the
authors have remarked, it is possible to achieve the optimal
scaling using a refined analysis. Motivated by this, we revisit
private value iteration by designing an optimistic algorithm
PRIVATE-UCB-VI (Algorithm 2) that can be instantiated
with a PRIVATIZER (CENTRAL and LOCAL) to achieve both
JDP and LDP.

PRIVATE-UCB-VI algorithm. Our algorithm design
principle is again based on the UCB philosophy, the private
estimates defined in (1) and a value-aware concentration re-
sult for the estimates stated in Lemma 2 below. Similar to
the non-private setting (Azar, Osband, and Munos 2017),
PRIVATE-UCB-VI (Algorithm 2) follows the procedure of
optimistic value iteration. Specifically, at each episode k,
using the private counts and a private UCB bonus term, it
first compute private Q-estimates and value estimates using
optimistic Bellman recursion. Next, a greedy policy πk is
obtained directly from the estimated Q-function. Finally, a
trajectory is rolled out by acting the policy πk and then PRI-
VATIZER translates all non-private statistics into private ones

5These are generalization of results proved under stationary
transition model (Efroni et al. 2019; Zanette and Brunskill 2019)
to our non-stationary setting (similar results appear in Efroni, Man-
nor, and Pirotta (2020); Efroni et al. (2020), but without proofs).

6The gap lies in Vietri et al. (2020, Lemma 18) in which the pri-
vate estimates were incorrectly used as the true cost and transition
functions. This lead to a simpler but incorrect regret decomposition
since it omits the ‘error’ term between the private estimates and true
values. Moreover, the error term cannot be simply upper bounded
by its current bonus term (c̃onft in Vietri et al. (2020, Algorithm
3)) since one cannot directly use Hoeffding’s inequality due to the
fact that the value function is not fixed in this term (please refer to
Appendix for more detailed discussions).
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to be used in the next episode.
Lemma 2 (Refined concentration of private estimates). Fix
any ε > 0 and δ ∈ (0, 1). Then, under Assumption 1, with
probability at least 1− 3δ, uniformly over all (s, a, s′, h, k),

|ch(s, a)− c̃kh(s, a)| ≤ βk,ch (s, a),∣∣∣(P̃ kh − Ph)V ∗h+1(s, a)
∣∣∣ ≤ βk,pvh (s, a),

|Ph(s′|s, a)− P̃ kh (s′|s, a)| ≤

C

√
L′(δ)Ph(s′|s, a)

max{1, Ñk
h (s, a)+Eε,δ,1}

+
CL′(δ)+2Eε,δ,1+Eε,δ,2

max{1, Ñk
h (s, a)+Eε,δ,1}

where βk,ch (s, a) and Lc(δ) is as defined in Lemma 1,
(PVh+1)(s, a) :=

∑
s′ P (s′|s, a)Vh+1(s′), βk,pvh (s, a) :=

HLc(δ)√
max{1,Ñkh (s,a)+Eε,δ,1}

+
H(SEε,δ,2+2Eε,δ,1)

max{1,Ñkh (s,a)+Eε,δ,1}
, C > 0 is

some constant, and L′(δ) := log
(

6SAT
δ

)
.

The bonus term βk,pvh in PRIVATE-UCB-VI does not
have the factor

√
S in the leading term compared to βk,ph in

PRIVATE-UCB-PO. This is achieved by following a similar
idea in UCB-VI (Azar, Osband, and Munos 2017). That is,
instead of bounding the transition dynamics as in Lemma 1,
we maintain a confidence bound directly over the optimal
value function (the second result in Lemma 2). Due to this,
we have an extra term in the regret bound, which can be
carefully bounded by using a Bernstein-type inequality (the
third result in Lemma 2). These two steps enable us to ob-
tain an improved dependence on S in the regret bound com-
pared to existing private value-based algorithms (Vietri et al.
2020; Garcelon et al. 2020) under both JDP and LDP. This
is stated formally in the next theorem, which presents a gen-
eral regret bound of PRIVATE-UCB-VI (Algorithm 2) when
instantiated with any PRIVATIZER (LOCAL or CENTRAL).
Theorem 2 (Regret bound for PRIVATE-UCB-VI). Fix any
ε > 0 and δ ∈ (0, 1]. Then, under Assumption 1, with prob-
ability ≥ 1− δ, the regret of PRIVATE-UCB-VI is

R(T ) = Õ
(√

SAH3T + S2AH3
)

+ Õ
(
S2AH2Eε,δ,1 + S2AH2Eε,δ,2

)
.

Remark 2 (Cost of privacy). Similar to PRIVATE-UCB-
PO, the regret of PRIVATE-UCB-VI is lower bounded by
the regret in non-private setting (see Azar, Osband, and
Munos (2017, Theorem 1)),7 and the privacy parameter ap-
pear only in the lower order terms.
Remark 3 (VI vs. PO). The regret bound of PRIVATE-
UCB-VI is a

√
S factor better in the leading privacy-

independent term compared to PRIVATE-UCB-PO. This
follows the same pattern as in the non-private case, i.e.,
UCB-VI (Azar, Osband, and Munos 2017) vs. OPPO
(Efroni et al. 2020).

7In the non-private setting, Azar, Osband, and Munos (2017)
assume stationary transition kernels Ph = P for all h. We consider
non-stationary kernels, which adds a multiplicative

√
H factor in

our non-private regret.

Algorithm 2: PRIVATE-UCB-VI
Input: Number of episodes K, time horizon H ,

privacy level ε > 0, a PRIVATIZER (LOCAL
or CENTRAL) and confidence level δ ∈ (0, 1]

1 Initialize private counts C̃1
h(s, a) = 0, Ñ1

h(s, a) = 0

and Ñ1
h(s, a, s′) = 0 for all (s, a, s′, h)

2 Set precision levels Eε,δ,1, Eε,δ,2 of the PRIVATIZER
3 for k = 1, . . . ,K do
4 Initialize private value estimates: Ṽ kH+1(s) = 0
5 for h = H,H − 1, . . . , 1 do
6 Compute c̃kh(s, a) and P̃ kh (s′|s, a) ∀(s, a, s′)

as in (1) using the private counts
7 Set exploration bonus using Lemma 2:

βkh(s, a) = βk,ch (s, a) + βk,pvh (s, a) ∀(s, a)

8 Compute: ∀(s, a), Q̃kh(s, a) =

min{H − h+ 1,max{0, c̃kh(s, a) +∑
s′∈S Ṽ

k
h+1(s′)P̃ kh (s′|s, a)− βkh(s, a)}}

9 Compute private value function: ∀s,
Ṽ kh (s) = mina∈A Q̃

k
h(s, a)

10 Compute policy: ∀(s, h),
πkh(s) = argmina∈A Q̃

k
h(s, a) (with breaking

ties arbitrarily)
11 Roll out a trajectory (sk1 , a

k
1 , c

k
1 , . . . , s

k
H+1) by

acting the policy πk = (πkh)Hh=1

12 Receive private counts C̃k+1
h (s, a), Ñk+1

h (s, a),
Ñk+1
h (s, a, s′) from the PRIVATIZER

Privacy and Regret Guarantees
In this section, we instantiate PRIVATE-UCB-PO and
PRIVATE-UCB-VI using a CENTRAL-PRIVATIZER and a
LOCAL-PRIVATIZER, and derive corresponding privacy and
regret guarantees.

Achieving JDP using CENTRAL-PRIVATIZER
The CENTRAL-PRIVATIZER runs a private K-bounded
binary-tree mechanism (counter) (Chan, Shi, and Song
2010) for each count Nk

h (s, a), Ckh(s, a), Nk
h (s, a, s′), i.e.

it uses 2SAH + S2AH counters in total. Let us focus on
the counters – there are SAH many of thems – for the
number of visited states Nk

h (s, a). Each counter takes as
input the data stream σh(s, a) ∈ {0, 1}K , where the j-
th bit σjh(s, a) := I{sjh = s, ajh = a} denotes whether
the pair (s, a) is encountered or not at step h of episode
j, and at the start of each episode k, release a private ver-
sion Ñk

h (s, a) of the count Nk
h (s, a) :=

∑k−1
j=1 σ

j
h(s, a). Let

us now discuss how private counts are computed. To this
end, we let N i,j

h (s, a) =
∑j
k=i σ

k
h(s, a) to denote a par-

tial sum (P-sum) of the counts in episodes i through j, and
consider a binary interval tree, each leaf node of which rep-
resents an episode (i.e., the tree has k − 1 leaf nodes at the
start of episode k). Each interior node of the tree represents
the range of episodes covered by its children. At the start of
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episode k, first a noisy P-sum corresponding to each node
in the tree is released by perturbing it with an independent
Laplace noise Lap( 1

ε′ ), where ε′ > 0 is a given privacy pa-
rameter.8 Then, the private count Ñk

h (s, a) is computed by
summing up the noisy P-sums released by the set of nodes –
which has cardinality at mostO(log k) – that uniquely cover
the range [1, k − 1]. Observe that, at the end of episode k,
the counter only needs to store noisy P-sums required for
computing private counts at future episodes, and can safely
discard P-sums those are no longer needed.

The counters corresponding to empirical rewards
Ckh(s, a) and state transitions Nk

h (s, a, s′) follow the same
underlying principle to release the respective private counts
C̃kh(s, a) and Ñk

h (s, a, s′). The next lemma sums up the
properties of the CENTRAL-PRIVATIZER.
Lemma 3 (Properties of CENTRAL-PRIVATIZER). For any
ε>0, CENTRAL-PRIVATIZER with parameter ε′= ε

3H logK

is ε-DP. Furthermore, for δ∈ (0, 1] and K>2/δ, it satisfies

Assumption 1 with Eε,δ,1 = 3H
ε

√
8 log3K log(6SAT/δ),

and Eε,δ,2 = 3H
ε

√
8 log3K log(6S2AT/δ).

Lemma 3 follows from the privacy guarantee of the
Laplace mechanism, and the concentration bound on the
sum of i.i.d. Laplace random variables (Dwork, Roth et al.
2014). Using Lemma 3, as corollaries of Theorem 1 and
Theorem 2, we obtain the regret and privacy guarantees
for PRIVATE-UCB-PO and PRIVATE-UCB-VI with the
CENTRAL-PRIVATIZER.
Corollary 1 (Regret under JDP). For any ε > 0 and δ ∈
(0, 1], both PRIVATE-UCB-PO and PRIVATE-UCB-VI, if
instantiated using CENTRAL-PRIVATIZER with parameter
ε′ = 3H logK

ε , satisfy ε-JDP. Furthermore, with probability
at least 1− δ, we obtain the regret bounds:

RPRIVATE-UCB-PO(T ) = Õ
(√

S2AH3T + S2AH3/ε
)
,

RPRIVATE-UCB-VI(T ) = Õ
(√

SAH3T + S2AH3/ε
)
.

We prove the JDP guarantees using the billboard model
(Hsu et al. 2016, Lemma 9) which, informally, states that an
algorithm is JDP if the output sent to each user is a function
of the user’s private data and a common quantity computed
using a standard DP mechanism. Note that by Lemma 3
and the post-processing property of DP (Dwork, Roth et al.
2014), the sequence of policies (πk)k are ε-DP. Therefore,
by the billboard model, the actions (akh)h,k suggested to all
the users are ε-JDP.
Remark 4. Corollary 1, to the best of our understanding,
provides the first regret bound for private PO, and a cor-
rect regret bound for private VI as compared to Vietri et al.
(2020), under the requirement of JDP.

Achieving LDP using LOCAL-PRIVATIZER
The LOCAL-PRIVATIZER, at each episode k, release the pri-
vate counts by injecting Laplace noise into the aggregated

8A random variable X ∼ Lap(b), with scale parameter b > 0,
if ∀x ∈ R, it’s p.d.f. is given by fX(x) = 1

2b
exp(−|x|/b).

statistics computed from the trajectory generated in that
episode. Let us discuss how private counts for the number of
visited states are computed. At each episode j, given privacy
parameter ε′ > 0, LOCAL-PRIVATIZER perturbs σjh(s, a)
with an independent Laplace noise Lap( 1

ε′ ), i.e. it makes
SAH noisy perturbations in total. The private counts for the
k-th episode are computed as Ñk

h (s, a) =
∑k−1
j=1 σ̃

j
h(s, a),

where σ̃jh(s, a) denotes the noisy perturbations. The pri-
vate counts corresponding to empirical rewards Ckh(s, a)
and state transitions Nk

h (s, a, s′) are computed similarly.
The next lemma sums up the properties of the LOCAL-
PRIVATIZER.
Lemma 4 (Properties of LOCAL-PRIVATIZER). For any
ε > 0, LOCAL-PRIVATIZER with parameter ε′ = ε

3H is ε-
LDP. Furthermore, for δ ∈ (0, 1] and K > log(2/δ), it sat-
isfies Assumption 1 with Eε,δ,1 = 3H

ε

√
8K log(6SAT/δ)

and Eε,δ,2 = 3H
ε

√
8K log(6S2AT/δ).

Corollary 2 (Regret under LDP). For any ε > 0 and
δ ∈ (0, 1], instantiating PRIVATE-UCB-PO and PRIVATE-
UCB-VI using LOCAL-PRIVATIZER with parameter ε′ =
3H
ε , we obtain, with probability ≥ 1− δ, the regret bounds:

RPRIVATE-UCB-PO(T ) = Õ
(√

S2AH3T + S2A
√
H5T/ε

)
,

RPRIVATE-UCB-VI(T ) = Õ
(√

SAH3T + S2A
√
H5T/ε

)
.

Remark 5. Corollary 2, to the best of our knowledge, pro-
vides the first regret guarantee for private PO, and an im-
proved regret bound for private VI as compared to Garcelon
et al. (2020), under the requirement of LDP.
Remark 6 (JDP vs. LDP). The noise level in the private
counts is O(log k) under JDP and O(k) under LDP. Due to
this, the privacy cost for LDP is Õ(

√
T/ε), whereas for JDP

it is only Õ(1/ε).
Remark 7 (Alternative LDP mechanisms). Other than the
Laplace noise, one can also use Bernoulli and Gaussian
noise in the LOCAL-PRIVATIZER to achieve LDP (Kairouz,
Bonawitz, and Ramage 2016; Wang et al. 2019b). Thanks
to Theorem 1 and Theorem 2, the regret bounds are readily
obtained by plugging in the correspondingEε,δ,1 andEε,δ,2.

Conclusions
In this work, we presented the first private policy-
optimization algorithm in tabular MDPs with regret guar-
antees under both JDP and LDP requirements. We also re-
visited private value-iteration algorithms by improving the
regret bounds of existing results. These are achieved by de-
veloping a general framework for algorithm design and re-
gret analysis in private tabular RL settings. Though we focus
on statistical guarantees of private RL algorithms, it will be
helpful to understand these from a practitioner’s perspective.
We leave this as a possible future direction. Another impor-
tant direction is to apply our general framework to MDPs
with function approximation, e.g., linear MDPs (Jin et al.
2019), kernelized MDPs (Chowdhury and Gopalan 2019)
and generic MDPs (Ayoub et al. 2020).
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