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Abstract

We consider the challenge of policy simplification and verifi-
cation in the context of policies learned through reinforce-
ment learning (RL) in continuous environments. In well-
behaved settings, RL algorithms have convergence guaran-
tees in the limit. While these guarantees are valuable, they are
insufficient for safety-critical applications. Furthermore, they
are lost when applying advanced techniques such as deep-
RL. To recover guarantees when applying advanced RL algo-
rithms to more complex environments with (i) reachability,
(ii) safety-constrained reachability, or (iii) discounted-reward
objectives, we build upon the DeepMDP framework to derive
new bisimulation bounds between the unknown environment
and a learned discrete latent model of it. Our bisimulation
bounds enable the application of formal methods for Markov
decision processes. Finally, we show how one can use a pol-
icy obtained via state-of-the-art RL to efficiently train a vari-
ational autoencoder that yields a discrete latent model with
provably approximately correct bisimulation guarantees. Ad-
ditionally, we obtain a distilled version of the policy for the
latent model.

1 Introduction
While reinforcement learning (RL) has been applied to a
wide range of challenging domains, from game playing
(Mnih et al. 2015) to real-world applications such as effec-
tive canal control (Ren et al. 2021), more widespread de-
ployment in the real world is hampered by the lack of guar-
antees provided with the learned policies. Although there are
RL algorithms which have limit-convergence guarantees in
the discrete setting (Tsitsiklis 1994) — and even in some
continuous settings with function approximation, e.g., Nowe
(1994) — these are lost when applying more advanced tech-
niques which make use of general nonlinear function ap-
proximators (Tsitsiklis and Roy 1997) to deal with contin-
uous Markov decision processes (MDPs) such as deep-RL
(e.g., Mnih et al. 2015). In this paper, we apply such ad-
vanced RL algorithms to unknown continuous MDPs with
(i) reachability, (ii) safety-constrained reachability, or (iii)
discounted-reward objectives. To recover the formal guar-
antees, we use the obtained policy to train a variational
autoencoder (VAE) which gives us a discrete latent model
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that approximates the unknown environment. We build upon
the DeepMDP framework (Gelada et al. 2019) to provide
guarantees on the quality of the abstraction induced by this
model. DeepMDPs are provided with such guarantees when
their loss functions are minimized. These can be defined on
the entire state space (global) or on states visited under a
given policy (local). The guarantees concern a state embed-
ding function, linking the latent and original MDPs and are
defined as bounds on the difference of their value function
and bisimulation distance. The latter was only developed for
global losses. While these are interesting in theory, they are
often infeasible to measure in practice. In contrast, we in-
troduce such bounds in the local setting and further consider
an action embedding function to handle continuous actions.
Importantly, we focus on general MDPs and do not restrict
our attention to deterministic ones as was done by Gelada
et al. to enable the approximation and minimization of their
losses via neural networks. We also give PAC approximation
schemes to compute both the losses and said bounds.

Our VAE is trained by maximizing a lower bound on the
likelihood of traces generated by executing the RL policy
in the environment. We derive a loss function, incorporating
variational versions of the local losses, that enables learn-
ing (i) discrete state and action spaces, (ii) an MDP defined
over these spaces, (iii) state and action embedding functions,
linking the original and discrete MDPs, and (iv) a distilled
version of the RL policy set over the discrete spaces which
can be executed in both models via the embedding functions.
An important challenge for our approach is the posterior col-
lapse problem which often occurs when optimizing a varia-
tional model (e.g., Alemi et al. 2018). We present a novel ap-
proach based on prioritized experience replay (Schaul et al.
2016) to resolve this when learning a discrete latent model.

All of the above result in an efficient way of training a
VAE to obtain a discrete latent model that is provably ap-
proximately bisimilar to the unknown MDP, further yielding
a distilled version of the RL policy. These enable the ap-
plication of formal methods and tools that have been devel-
oped for discrete MDPs: for instance, PRISM (Kwiatkowska,
Norman, and Parker 2011), MODEST (Hartmanns and Her-
manns 2014), and STORM (Hensel et al. 2021).
Other related work. Frameworks providing formal guar-
antees during the RL process include the work of Junges
et al. (2016), Shielded-RL (Alshiekh et al. 2018; Jansen et al.
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2020), and AlwaysSafe (Simão, Jansen, and Spaan 2021).
These all require an abstract model of the safety aspect of
the environment. Our approach is complementary in that we
assume no prior knowledge and learn an abstraction. No-
tably, our goal is not the same: they aim at verifying whether
the exploration is safe while our goal is to verify policies
learned via any RL technique. Other approaches share ours
in the particular case of verifying deep-RL policies, but rely
on a known (abstraction of the) environment model. Bacci
and Parker (2020) require the neural network (NN) speci-
fying the policy, the environment to be deterministic, and a
formal description of the probability of action failures. Carr,
Jansen, and Topcu (2020) require the environment to be dis-
crete and focus on policies represented as recurrent NNs by
discretizing their hidden states via quantized autoencoders,
in the same spirit as our policy distillation. Finally, Alamdari
et al. (2020) focus on tree-based policies distilled from deep-
RL, without considering abstraction quality guarantees.

VAEs have been used in the context of (model-based)
RL to learn latent representations of the unknown environ-
ment and train simpler policies from the features extracted
(e.g., Corneil, Gerstner, and Brea 2018; Freeman, Ha, and
Metz 2019; Lee et al. 2020; Burden, Siahroudi, and Kudenko
2021). In particular, Corneil, Gerstner, and Brea (2018) fo-
cused on learning discrete latent MDPs from continuous-
state environments with discrete actions (without guarantees
nor distilled policies) to plan via prioritized sweeping.

2 Background
We write rT s “ tn P N | n ď T u. ForA Ď X , we denote by
1A : X Ñ r1s the indicator function: 1Apaq “ 1 iff a P A.
Let X be a complete and separable space and ΣpX q denote
the set of all Borel subsets of X . We write PpX q for the set
of measures P defined on X and SupppP q “ tx P X |

P pxq ą 0u to denote their support.
Discrepancy measures. Let P,Q P PpX q with density
functions p and q. Their discrepancy can be measured via
• Kullback-Leibler (KL) divergence: DKLpP ‖ Qq “
Ex„P rlogpppxq{qpxqqs.

• Wasserstein: Wd pP,Qq “ infλPΛpP,Qq Ex,y„λ dpx, yq,
where d : X Ñ r0,8r is a distance metric over X and
ΛpP,Qq is the set of all couplings of P and Q.

• Total Variation (TV): dTV pP,Qq “ supAPΣpX q |P pAq´

QpAq|. If X is equipped with the discrete metric 1‰, TV
coincides with the Wasserstein measure.

Markov decision processes. A Markov decision process
(MDP) is a tuple M “ xS,A,P,R, `,AP, sI y where S
is a set of states; A, a set of actions; P : S ˆ A Ñ PpSq,
a probability transition function; R : S ˆAÑ R, a reward
function; ` : S Ñ 2AP, a labeling function over a set of
atomic propositions AP; and sI P S , the initial state. The
set of enabled actions of s P S is Actpsq Ď A. We assume
Actpsq ‰ H for all s P S . If |Actpsq| “ 1 for all s P S , M
is a fully stochastic process called a Markov chain (MC).

Let T Ď AP, we write JTK “ t s | `psq X T ‰ Hu Ď S
and J TK “ SzJTK. We assume AP and labels being re-
spectively one-hot and binary encoded. We write Ms for

the MDP obtained when we replace the initial state of M
by s P S , M ‘ R1 when we replace the reward function
by R1, and M œB when we make absorbing states from
B Ď S , i.e., by changing Pp¨ | s, aq to P1p¨ | s, aq such that
P1pB | s, aq “ 1 for all s P B, a P Actpsq. We refer to
MDPs with continuous states or actions spaces as continu-
ous MDPs. In that case, we assume S and A are complete
separable metric spaces equipped with a Borel σ-algebra and
`´1pTq P ΣpSq for any T Ď AP.

Trajectories. A trajectory τ of M is a sequence of states
and actions τ “ xs0:T , a0:T´1y where s0 “ sI , st`1 „

Pp¨ | st, atq and at P Actpstq for t P rT´1s. The set of infi-
nite trajectories of M is TrajM. An execution trace τ̂ of M
is a trajectory that additionally records labels and rewards
encountered. The set of execution traces of M is TracesM.

Policies. A (memoryless) policy π : S Ñ PpAq of M
is a stochastic mapping from states to actions such that
Supppπp¨ | sqq Ď Actpsq. The set of memoryless policies
of M is Πml

M. An MDP M and π P Πml
M induce an MC Mπ

along with a unique probability measure PM
π on the Borel

σ-algebra over measurable subsets E Ď TrajM (Puterman
1994). We drop the superscript when the context is clear.
For π P Πml

M, we denote by Pπ : S Ñ PpSq the probability
transition distribution of Mπ , and by Rπ : S Ñ R its reward
function. We write τ̂ “ xs0:T , a0:T´1, r0:T´1, l0:T y „Mπ for
xs0:T , a0:T´1y „ PM

π with τ̂ P TracesMπ
.

Stationary distributions. Let π P Πml
M, ξtπ : S Ñ PpSq

with ξtπps
1 | sq “ PMs

π

`

t s0:8, a0:8 | st “ s1 u
˘

be the distri-
bution giving the probability for the agent of being in each
state of Ms after t steps, and B Ď S . B is a strongly con-
nected component (SCC) of Mπ if for any pair of states
s, s1 P B, ξtπps

1 | sq ą 0 for some t P N. It is a bottom SCC
(BSCC) if (i) B is a maximal SCC, and (ii) for each s P B,
PπpB | sq “ 1. The unique stationary distribution of B is
ξπ P PpBq. We write s, a „ ξπ as shorthand for first sam-
pling s from ξπ and then a from π. An MDP M is ergodic if
for all π P Πml

M, the state space of Mπ consists of a unique
aperiodic BSCC with ξπ “ limtÑ8 ξ

t
πp¨ | sq for all s P S .

Events and functions. Let C,T Ď AP, we define the con-
strained reachability (resp. reachability) event as CU T “

t s0:8, a0:8 | Di P N,@j ă i, sj P JCK ^ si P JTK u P
ΣpTrajMq (resp. ♦T “  HU T). Safety w.r.t. a set of fail-
ure states T can be expressed as a safe-constrained reach-
ability event to a safe destination C (resp. safety event)
through  TU C (resp. ˝ T “ TrajMz♦T). Let γ P r0, 1r,
ϕ P t ε,CU T,♦T uwhere ε is the empty symbol, and RT “

p1´ γq1JTKˆA, the value obtained by running π P Πml
M

from state s in M is V ϕπ psq “ EMrs,ϕs
π

“
ř8

t“0 γ
tRpst, atq

‰

.
It corresponds to the expected discounted (i) return when
ϕ “ ε with Mrss “Ms, (ii) constrained reachability when
ϕ “ CU T with Mrs,CU Ts “ M œJ CKYJTK

s ‘ RT, (iii)
reachability when ϕ “ ♦T with Mrs,♦Ts “M œJTK

s ‘RT.
When ϕ P tCU T,♦T u, observe that V ϕπ ptq = 1 for t P JTK
and limγÑ1 V

ϕ
π psq “ PMs

π pϕq for s P S . The action-value
function is Qϕπps, aq “ R1ps, aq ` Es1„Pp¨|s,aq rγV

ϕ
π ps

1qs,
with R1 “ R if ϕ “ ε and R1 “ RT otherwise.
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3 Latent Space Models
Given the original (continuous, possibly unknown) envi-
ronment modeled as an MDP, a latent space model is an-
other (simpler, smaller, and explicit) MDP with state-action
space linked to the original one via embedding functions.
The latter can be learned to optimize an equivalence crite-
rion between the two models. Formally, fix MDPs M “

xS,A,P,R, `,AP, sI y and M “
@

S,A,P,R, `,AP, sI
D

such that S is equipped with metric dS . Let φ : S Ñ S and
ψ : S ˆAÑ A be respectively state and action embedding
functions. We refer to

@

M, φ, ψ
D

as a latent space model of
M and M as its latent MDP. We write Πml “ Πml

M, and
Qπ for the action-value function of a policy π P Πml in M.
We also consider π as a policy in M: states passed to π are
embedded with φ, then actions executed are embedded with
ψ. Let π P Πml and s P S , we write a „ πp¨ | sq for a „
πp¨ | φpsqq and Qπps, aq as shorthand for Qπps, ψps, aqq.

A particular point of interest is to focus on discrete latent
models, where dS “ 1‰. In the following, we adopt the
latent space model formalism of Gelada et al. (2019).
Notations. Let π P Πml, we write |R‹π| for supsPS

ˇ

ˇRπpsq
ˇ

ˇ.
We say that M is xKπ

R,K
π
P
y-Lipschitz if for all s1, s2 P S ,

ˇ

ˇRπps1q ´Rπps2q
ˇ

ˇ ď Kπ
RdSps1, s2q,

WdS

`

Pπp¨ | s1q,Pπp¨ | s2q
˘

ď Kπ
P
dSps1, s2q.

Local losses. Let ξ P PpS ˆAq, local losses are defined as:

LξR “ E
s,a„ξ

ˇ

ˇRps, aq ´Rpφpsq, aq
ˇ

ˇ ,

LξP “ E
s,a„ξ

WdS

`

φPp¨ | s, aq,Pp¨ | φpsq, aq
˘

where (i) Rps, aq, (ii) Pp¨ | s, aq, and (iii) φPp¨ | s, aq are
shorthand for (i) Rps, ψps, aqq, (ii) Pp¨ | s, ψps, aqq, and
(iii) the distribution over S of sampling s1 „ Pp¨ | s, aq and
then embedding s1 “ φpsq.

Assuming M is discrete, all WdS
terms can be replaced

by dTV since Wasserstein coincides with TV when using the
discrete metric. In that case, (optimal) constantsKπ

R andKπ
P

can be computed in polynomial time in M for any π P Πml.
Henceforth, we make the following assumptions.

Assumption 3.1. MDP M is ergodic.
Assumption 3.2. Rewards of M are scaled in the interval
r´ 1

2 ,
1
2 s, i.e., R : S ˆAÑ r´ 1

2 ,
1
2 s.

Assumption 3.3. The embedding function preserves the la-
bels, i.e., φpsq “ s ùñ `psq “ `psq for s P S , s P S .

Seemingly restrictive at first glance, Assumption 3.1 is
compliant with RL environments and a wide range of con-
tinuous learning tasks (every episodic RL process is ergodic,
see Huang 2020). Discarding it restricts the upcoming guar-
antees to BSCCs. Assumption 3.2 basically requires rewards
to be bounded and re-scalable in this interval. This is a rea-
sonable assumption in practice and re-scaling is straight-
forward if bounds are known (otherwise, dynamical re-
scaling is still feasible but complicates the implementation).
In Sect. 4.2, we show that Assumption 3.3 can be made triv-
ial. Note that our approach requires Assumption 3.2 and 3.3.

3.1 Bisimulation and Value Difference Bounds
We aim now at formally checking whether the latent space
model offers a good abstraction of the original MDP M. To
do so, we present bounds that link the two MDPs. We extend
the bounds from Gelada et al. (2019) to discrete spaces while
additionally taking into account state labels and discounted
reachability events. Moreover, we present new bisimulation
bounds in the local setting.
Bisimulation. A (probabilistic) bisimulation is a behavioral
equivalence between states. Formally, a bisimulation on M
is an equivalence relation BΦ such that for all s1, s2 P S
and Φ Ď tR, ` u, s1BΦs2 iff PpT | s1, aq “ PpT | s2, aq,
`ps1q “ `ps2q if ` P Φ, and Rps1, aq “ Rps2, aq if R P Φ,
for each action a P A and (Borel measurable) equivalence
class T P S{BΦ. Properties of bisimulation include trace,
trajectory, and value equivalence (Larsen and Skou 1989;
Givan, Dean, and Greig 2003). The relation can be extended
to compare two MDPs (in our case M and M) by consid-
ering the disjoint union of their state space. We denote the
largest bisimulation relation by „Φ.
Pseudometrics. Desharnais et al. (2004) introduced bisimu-
lation pseudometrics for continuous Markov processes, gen-
eralizing the notion of bisimilariy by assigning a bisimilarity
distance between states. A pseudometric d̃ satisfies symme-
try and the triangle inequality.

Probabilistic bisimilarity can be characterized by a log-
ical family of functional expressions derived from a logic
L. More specifically, given a policy π P Πml

M, we con-
sider a family FL

γ pπq of real-valued functions f , parame-
terized by the discount factor γ and defining the seman-
tics of L in Mπ . The related pseudometric d̃π is de-
fined as: d̃πps1, s2q “ supfPFL

γ pπq
|fps1q ´ fps2q|, for all

s1, s2 P S . We distinguish between pseudometrics d̃Rπ ,
characterized by functional expressions including rewards,
and d̃`π , whose functional expressions are based on state
labels. Let P̃ be the space of pseudometrics on S and
ϕ P tR, ` u. Define ∆: P̃ Ñ P̃ so that ∆pdϕπqps1, s2q is
p1´ γq |Rπps1q ´Rπps2q| ¨ 1tR upϕq `M where:

M “ max

"

γWdϕπ pPπp¨ | s1q,Pπp¨ | s2qq ,

1‰p`ps1q, `ps2qq ¨ 1t ` upϕq,

then d̃ϕπ is its unique fixed point whose kernel is „tϕu, i.e.,
d̃ϕπps1, s2q “ 0 iff s1„tϕus2 (van Breugel and Worrell 2001;
Ferns, Precup, and Knight 2014), and |Vπps1q ´ Vπps2q| ď
d̃Rπ ps1,s2q{1´γ (Ferns, Panangaden, and Precup 2005).
Bisimulation bounds. While computing this distance is in-
tractable when continuous spaces are involved, we empha-
size that local losses can be used to evaluate the original and
latent model bisimilarity. Fix π P Πml and assume M is
discrete. Given the induced stationary distribution ξπ in M,

E
s„ξπ

d̃Rπ ps, φpsqq ď LξπR ` γLξπP
Kπ

R
1´ γKπ

P

,

E
s„ξπ

d̃`πps, φpsqq ď
γLξπP
1´ γ

, (1)
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where M is xKπ
R,K

π
P
y-Lipschitz. The result provides us

a general way to assess the quality of the abstraction: the
bisimulation distance between states and their embedding is
guaranteed to be small in average whenever local losses are
small. Analogously, local losses can further be used to check
whether two states with the same representation are indeed
bisimilarly close: for s1, s2 P S with φps1q “ φps2q,

d̃Rπ ps1, s2q ď

«

LξπR `
γLξπP K

π
R

1´ γKπ
P

ff

`

ξ´1
π ps1q ` ξ

´1
π ps2q

˘

,

d̃`πps1, s2q ď
γLξπP
1´ γ

`

ξ´1
π ps1q ` ξ

´1
π ps2q

˘

. (2)

Value difference bounds. Considering discounted returns
or a specific event, the quality of the latent abstraction
can be in particular formalized by means of value differ-
ence bounds. These bounds can be intuitively derived by
taking the value function as a real-valued function from
FL
γ pπq. Let C,T Ď AP, ϕ P tCU T,♦T u and KV “

min
`

|R‹π |{1´γ,K
π
R{1´γKπ

P

˘

, then,

E
s,a„ξπ

ˇ

ˇQπps, aq ´Qπpφpsq, aq
ˇ

ˇ ď
LξπR ` γKV L

ξπ
P

1´ γ
,

E
s,a„ξπ

ˇ

ˇ

ˇ
Qϕπps, aq ´Q

ϕ

πpφpsq, aq
ˇ

ˇ

ˇ
ď
γLξπP
1´ γ

. (3)

Moreover, for any states s1, s2 P S with φps1q “ φps2q,

|Vπps1q´Vπps2q| ď
LξπR`γKV L

ξξπ
P

1´γ

`

ξ´1
π ps1q`ξ

´1
π ps2q

˘

,

|V ϕπ ps1q´V
ϕ
π ps2q| ď

γLξπP
1´γ

`

ξ´1
π ps1q`ξ

´1
π ps2q

˘

. (4)

Intuitively, when local losses are sufficiently small, then (i)
the value difference of states and their embedding that are
likely to be seen under a latent policy is also small, and (ii)
states with the same embedding have close values.

3.2 Checking the Quality of the Abstraction
While bounding the difference between values offered by
π P Πml in M and M is theoretically possible usingLξπR and
LξπP , we need to accurately approximate these losses from
samples to further offer practical guarantees (recall that M
is unknown). Although the agent is able to produce execu-
tion traces by interacting with M, estimating the expecta-
tion over the Wasserstein is intractable. Intuitively, even if
approximating Wasserstein from samples is possible (e.g.,
Genevay et al. 2019), this would require access to a gener-
ative model for Pp¨ | s, aq (e.g., Kearns, Mansour, and Ng
2002) from which we would have to draw a sufficient num-
ber of samples for each s, a drawn from ξπ to then be able to
estimate the expectation. Gelada et al. (2019) overcome this
issue by assuming a deterministic MDP, which allows opti-
mizing an approximation of LξπP through gradient descent.
To deal with general MDPs, we study an upper bound on

LξπP that can be efficiently approximated from samples:

LξπP ď E
s,a,s1„ξπ

WdS

`

φ
`

¨ | s1
˘

,Pp¨ | φpsq, aq
˘

“ 9LξπP ,

where ξπps, a, s1q “ ξπps, aq ¨ Pps
1 | s, aq and φps | sq “

1“pφpsq, sq. We now provide probably approximately cor-
rect (PAC) guarantees for estimating local losses for discrete
latent models, derived from the Hoeffding’s inequalities.
Lemma 3.4. Suppose M is discrete and the agent in-
teracts with M by executing π P Π, thus producing
xs0:T , a0:T´1, r0:T´1y „ ξπ . Let ε, δ P s0, 1r and denote by

L̂ξπR “
1

T

T´1
ÿ

t“0

ˇ

ˇrt ´Rpφpstq, atq
ˇ

ˇ ,

L̂ξπP “
1

T

T´1
ÿ

t“0

“

1´Ppφpst`1q | φpstq, atq
‰

.

Then after T ě
P

´ logp δ4 q{2ε2
T

steps,
ˇ

ˇ

ˇ
LξπR ´ L̂ξπR

ˇ

ˇ

ˇ
ď ε and

ˇ

ˇ

ˇ

9LξπP ´ L̂ξπP

ˇ

ˇ

ˇ
ď ε with probability at least 1´ δ.

This yields the following Theorem, finally allowing to
check the abstraction quality as a bounded value difference.
Theorem 3.5. Let π P Πml and assume M is discrete and
xKπ

R,K
π
P
y-Lipschitz. Let C,T Ď AP, ϕ P tCU T,♦T u,

and KV “ min
`

|R‹π |{1´γ,K
π
R{1´γKπ

P

˘

. Let ε, δ P s0, 1r and
ξπ be the stationary distribution of Mπ . Then, after T ě
Q

´ logp δ4 q
´

1`γKV

¯2

{2ε2p1´γq2
U

interaction steps through ξπ ,

E
s,a„ξπ

ˇ

ˇQπps, aq ´Qπpφpsq, aq
ˇ

ˇ ď
L̂ξπR ` γKV L̂

ξπ
P

1´ γ
` ε,

E
s,a„ξπ

ˇ

ˇ

ˇ
Qϕπps, aq ´Q

ϕ

πpφpsq, aq
ˇ

ˇ

ˇ
ď
γL̂ξπP
1´ γ

`
γε

1` γKV

with probability at least 1´ δ.

4 Variational Markov Decision Processes
We now provide a framework based on variational au-
toencoders (Kingma and Welling 2014) that allows us to
learn a discrete latent space model of M through the in-
teraction of the agent executing a pre-learned RL policy
π P Πml

M with the environment. Concretely, we seek a dis-
crete latent space model

@

Mθ, φι, ψι,θ
D

such that Mθ “
@

S,A,Pθ,Rθ, `θ,AP, sI
D

. We propose to learn the param-
eters xι, θy of an encoder Qι and a behavioral model Pθ
from which we can retrieve (i) the embedding functions φι
and ψι,θ, (ii) the latent MDP components Pθ, Rθ, and `θ,
and (iii) a latent policy πθ P Πml, via minθDpMπ, Pθq,
where D is a discrepancy measure. Intuitively, the end goal
is to learn (i) a discrete representation of S and A (ii) to
mimic the behaviors of the original MDP over the induced
latent spaces, thus yielding a latent MDP with a bisimula-
tion distance close to M, and (iii) to distill π into πθ. In the
following, we distinguish the case where we only learn S ,
with A “ A (in that case, A is assumed to be discrete), and
the one where we additionally need to discretize the set of
actions and learn A.
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4.1 Evidence Lower Bound
In this work, we focus on the case whereDKL is used as dis-
crepancy measure: the goal is optimizing minθDKLpMπ ‖
Pθq or equivalently maximizing the marginal log-likelihood
of traces of M, i.e., Eτ̂„Mπ

rlogPθpτ̂qs, where

Pθpτ̂q “

ż

TrajMθ

Pθpτ̂ | z0:T q dPπθ pz0:T q, (5)

τ̂ “ xs0:T , a0:T´1, r0:T´1, l0:T y, z P Z with Z “ S if A “ A
and Z “ S ˆA otherwise, Pπθ ps0:T q “

śT´1
t“0 Pπθ pst`1 |

stq, and Pπθ ps0:T , a0:T´1q “
śT´1
t“0 πθpat | stq ¨ Pθpst`1 |

st, atq. The dependency of τ̂ on Z in Eq. 5 is made explicit
by the law of total probability.

Optimizing Eτ̂„Mπ
rlogPθpτ̂qs through Eq. 5 is typically

intractable (Kingma and Welling 2014). To overcome this,
we use an encoder Qιpz0:T | τ̂q to set up a lower bound on
the log-likelihood of produced traces, often referred to as
evidence lower bound (ELBO, Hoffman et al. 2013):

logPθpτ̂q ´DKLpQιp¨ | τ̂q ‖ Pθp¨ | τ̂qq
“ E
z0:T„Qιp¨|τ̂q

rlogPθpτ̂ | z0:T qs ´DKL

`

Qιp¨ | τ̂q ‖ Pπθ
˘

.

The purpose of optimizing the ELBO is twofold. First, this
allows us learning φι via (i)Qιps0:T | τ̂q “

śT
t“0 φιpst | stq

or (ii) Qιps0:T , a0:T´1 | τ̂q “ Qιpa0:T´1 | s0:T , τ̂q ¨Qιps0:T |

τ̂q, where Qιpa0:T´1 | s0:T , τ̂q “
śT´1
t“0 QA

ι pat | st, atq,
QA
ι being an action encoder. We assume here that encoding

states and actions to latent spaces is independent of rewards.
We additionally make them independent of l0:T by assuming
that ` is known. This allows φι to encode states and their
labels directly into the latent space (cf. Sect. 4.2).

Second, we assume the existence of latent reward and la-
bel models, i.e.,PR

θ andP `θ , allowing to recover respectively
Rθ and `θ, as well as a generative model PG

θ , enabling the re-
construction of states and actions. This allows decomposing
the behavioral model Pθ into:

Pθps0:T , a0:T´1, r0:T´1, l0:T | z0:T q

“PG
θ ps0:T | s0:T q ¨ P

G
θ pa0:T´1 | z0:T q

¨ PR
θ pr0:T´1 | s0:T , a0:T´1q ¨ P

`
θ pl0:T | s0:T q,

where PG
θ ps0:T | s0:T q “

śT
t“0 P

G
θ pst | stq,

PG
θ pa0:T´1 | z0:T´1q “

#

śT´1
t“0 πθpat | stq if A “ A

śT´1
t“0 ψθpat | st, atq else,

PR
θ pr0:T´1|s0:T , a0:T´1q “

śT´1
t“0 PR

θ prt | st, atq, and

P `θ pl0:T | s0:T q “
śT
t“0 P

`
θ plt | stq.

Model ψθ allows learning the action embedding function via
ψι,θpa | s, aq “ Es„φιp¨|sq ψθpa | s, aq for all s P S, a P
A, a P A. We also argue that a perfect reconstruction of
labels is possible, i.e., P `θ pl0:T | s0:T q “ 1, due to the labels
being encoded into the latent space. From now on, we thus
omit the label term.

Deterministic embedding functions φι, ψι,θ and Rθ can
finally be obtained by taking the mode of their distribution.

Back to the local setting. Taking Assumption 3.1 into ac-
count, drawing multiple finite traces τ̂ „ Mπ can be seen
as a continuous interaction with M along an infinite trace
(Huang 2020). This observation allows us to formulate the
ELBO in the local setting and connect to local losses:

max
ι,θ

ELBO
`

Mθ, φι, ψι,θ
˘

“ ´min
ι,θ
tDι,θ `Rι,θu ,

where D and R denote respectively the distortion and rate
of the variational model (Alemi et al. 2018), given by

Dι,θ“´

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

E
s,a,r,s1„ξπ

s,s1„φιp¨|s,s1q

“

logPG
θ ps

1|s1q ` log πθpa|sq`

logPR
θ pr | s, aq

‰

if A “ A,
E

s,a,r,s1„ξπ
s,s1„φιp¨|s,s1q
a„QA

ι p¨|s,aq

“

logPG
θ

`

s1 | s1
˘

`

logψθpa | s, aq`

logPR
θ pr | s, aq

‰

else, and

Rι,θ“

$

’

’

’

’

&

’

’

’

’

%

E
s,a,s1„ξπ
s„φιp¨|sq

DKL

`

φι
`

¨ | s1
˘

‖ Pπθ p¨ | sq
˘

if A“A,

E
s,a,s1„ξπ
s„φιp¨|sq

a„QA
ι p¨|s,aq

“

DKL

`

φι
`

¨ | s1
˘

‖ Pθp¨ | s, aq
˘

`

DKL

`

QA
ι p¨ | s, aq ‖ πθp¨ | sq

˘‰

else.

We omit the subscripts when the context is clear. The opti-
mization of ELBO

`

Mθ, φι, ψι,θ
˘

allows for an indirect op-
timization of the local losses through their variational ver-
sions: (i) LξπR via the log-likelihood of rewards produced,
and (ii) 9LξπP where we change the Wasserstein term to the
KL divergence. Note that this last change means we do not
necessarily obtain the theoretical guarantees on the quality
of the abstraction via its optimization. Nevertheless, our ex-
periments indicate KL divergence is a good proxy of the
Wasserstein term in practice. In particular, in the discrete set-
ting, Wasserstein matches TV and one can relate the proxy
with the original metric using the Pinkster’s inequality.

4.2 VAE Distributions

Discrete distributions. We aim at learning discrete latent
spaces S and A, the distributions φι, QA

ι , Pθ, and πθ are
thus supposed to be discrete. Two main challenges arise: (i)
gradient descent is not applicable to learn ι and θ due to
the discontinuity of S and A, and (ii) sampling from these
distributions must be a derivable operation. We overcome
these by using continuous relaxation of Bernoulli distribu-
tions to learn a binary representation of the latent states, and
the Gumbel softmax trick for the latent action space (Jang,
Gu, and Poole 2017; Maddison, Mnih, and Teh 2017).

Labels. To enable logP `θ pl0:T | s0:T q “ 0, we linearly en-
code `pstq “ lt into each st via φι. Recall that labels are
binary encoded, so we allocate them |AP| bits in S . Then,
φιps | sq ą 0 implies `psq “ `θpsq, for all s P S, s P S ,
satisfying Assumption 3.3 if φι is deterministic.

Decoders. For PG
θ , ψθ, and PR

θ , we learn the parameters of
multivariate normal distributions. This further allows linking
all s P S to the parameters of PG

θ p¨ | sq for explainability.
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Figure 1: Latent space distribution along training steps for
the CartPole environment. The intensity of the blue hue
corresponds to the frequency of latent states produced by
φι during training. We compare a bucket-based prioritized
against a simple uniform experience replay. The latent space
learned via the uniform buffer collapses to two latent states.

4.3 Posterior Collapse
A common issue encountered while optimizing variational
models via the ELBO is posterior collapse. Intuitively, this
results in a degenerate local optimum where the model
learns to ignore the latent space. With a discrete encoder,
this translates into a deterministic mapping to a single latent
state, regardless of the input. From an information-theoretic
point of view, optimizing the ELBO gives way to a trade-
off between the minimization of R and D, where the fea-
sible region is a convex set (Alemi et al. 2018). Posterior
collapse occurs when R « 0 (auto-decoding limit). On the
other hand, one can achieve D « 0 (auto-encoding limit) at
the price of a higher rate.
Regularization terms. Various solutions have been pro-
posed in the literature to prevent posterior collapse. They
include entropy regularization (via α P r0,8r, e.g., Dong
et al. 2020) and KL-scaling (via β P r0, 1s, e.g., Alemi et al.
2018), consisting in changing ELBO to xα, βy -ELBO “

´pD ` β ¨Rq ` α ¨HpQιq, where HpQιq denotes the en-
tropy of an encoding distribution. We choose to measure
the entropy of the marginal encoder, given by Qιpsq “
Es„ξπ φιps | sq. Intuitively, this encourages the encoder to
learn to make plenty use of the latent space. The parame-
ter β allows to interpolate between auto-encoding and auto-
decoding behavior, which is not possible with the standard
ELBO objective.

A drawback of these methods is that we no longer opti-
mize a lower bound on the log-likelihood of the input while
optimizing xα, βy -ELBO. In practice, setting up annealing
schemes for α and β allows to eventually recover ELBO and
avoid posterior collapse (α “ 0 and β “ 1 matches ELBO).
Prioritized replay buffers. To enable meaningful use of la-
tent space to represent input state-actions pairs, Qι should
learn to (i) exploit the entire latent space, and (ii) encode
wisely states and actions of transitions yielding poor ELBO,
being generally sensitive to bad representation embedding.
This motivates us to use a prioritized replay buffer (Schaul
et al. 2016) to store transitions and sample them when opti-
mizing ELBO. Draw xs, a, r, s1y „ ξπ and let pxs,a,r,s1y be
its priority, we introduce the following priority functions.

• Bucket-based priority: we partition the buffer in |S| buck-
ets. Let N P N and b : S Ñ N be respectively step and
latent state counters. At each step, let s „ φιp¨ | sq, we
assign pxs,a,r,s1y to N{bpsq, then increment N and bpsq of
one. This allows φι to process states being infrequently
visited under π and learn to fairly distribute S .

• Loss-based priority: we set pxs,a,r,s1y to its individual
transition loss, which enables to learn improving the rep-
resentation of states and actions that yield poor ELBO.

5 Experiments
The goal of our experiments is to evaluate the quality of the
latent space model learned and the policy distilled via our
VAE-MDP framework. This evaluation consists of: an anal-
ysis of the training of the latent space model and the benefits
of our method to avoid posterior collapse, assessing the qual-
ity of the abstraction learned via PAC local losses bounds,
and testing the performance of the distilled policy. This al-
lows to assess if the latent model learned yields a sound
compression of the state-action space that retains the nec-
essary information to optimize the return. We evaluate our
method on classic OpenAI environments (Brockman et al.
2016) with (i) continuous states and discrete actions (Cart-
Pole, MountainCar, and Acrobot), and (ii) where both, states
and actions, are continuous (Pendulum and LunarLander).
We distill RL policies π learned via DQN (Mnih et al. 2015)
for case (i), and SAC (Haarnoja et al. 2018) for case (ii).

Latent spaces. Since latent spaces are trained to enable for-
mal verification, we choose log2 |S| and |A| ranging from 9
bits and 2 actions (coarser) to 16 bits and 5 actions (finer) to
make them tractable for model checkers — see Budde et al.
(2020) for a performance comparison of modern tools for a
range of instances with large model size. Depending on the
property to verify, the latent space may have to be finer since
(i) we need to reserve |AP| bits in the representation of S
for labels, and (ii) this allows the agent to take more precise
decisions over a finer partition of the latent space. We then
select the model with the best trade-off between abstraction
quality (measured via L̂

ξπθ
R and L̂

ξπθ
P ) and performance (i.e.,

the return approximated by running π in M).

ELBO optimization. In order to allow ELBO to be trained
efficiently, posterior collapse has to be tackled from the very
first stages of training. In fact, we found that the KL-scaling
and entropy regularization annealing schemes (cf. Sect. 4.3)
were necessary to avoid the latent space to collapse into
a single state-action pair after only a few training steps.
We found the most efficient to start with an autoencoder
behavior (β0 “ 0) and a large entropy regularizer (e.g.,
α0 “ 10) during the 104 first steps, and then anneal them via
αt “ α0 ¨p1´τq

t, βt “ 1´p1´τqt (e.g., τ “ 10´5) to fully
recover the original ELBO in a second training phase. We
also found that prioritized experience replays further prevent
posterior collapse during training (cf. Fig. 1). Fig. 2a shows
that training ELBO this way results in a stable learning pro-
cedure that successfully minimizes D while preventing an
auto-decoding behavior by keeping R away from 0.
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Figure 2: Plots reporting (2a) variational metrics (approximated over a large batch sampled from the replay buffer, using discrete
latent distributions and averaged using importance sampling weights), (2b) PAC local losses approximation for ε “ 10´2,
δ “ 5 ¨ 10´3: solid lines stand for the transition loss and dashed lines for the reward loss, and (2c) the expected episode return
(approximated by averaging over 30 episodes). For each environment, we train five different instances of our VAE with different
random seeds, where the solid line corresponds to the median and the shaded interval to the interquartile range.

Local losses. We compute the PAC local losses bounds pre-
sented in Sect. 3 along training steps (Fig. 2b). When the
policy is eventually distilled (Fig. 2c) and πθ achieves per-
formance similar to those of π, the learning curves stabilize,
while maximizing ELBO successfully allows minimizing
the local losses. In every environment where we tested our
method, a low reward loss is maintained while the transition
loss reaches values in the interval r1{5, 3{5s for most of the in-
stances. These values are thus guaranteed to upper bound the
expected bisimulation distance between M and M as well
as their value difference. We do not expect our approach to
reach zero reward and transition loss though, since we pass
from continuous to discrete spaces: the abstraction induced
by our approach is always coarser than the original spaces,
which translates in general to precision loss. This precision
loss is often encoded through the discrete probability transi-
tions. For instance, a state s which deterministically transi-
tions to a close state s1 in M such that φιpsq “ s “ φιps

1q

induces Pπθ ps | sq ą 0. Observe that the PAC computation
of L̂

ξπθ
P is sensitive to the entropy of Pθ, which thus may

induce a residual transition loss. L
ξπθ
P is on the contrary not

sensitive to this. In practice, its value will thus often be lower
than its approximated upper bound L̂

ξπθ
P .

Policy distillation. The guarantees derived in Sect. 3 are
only valid for πθ, the policy under which formal proper-
ties can be verified. We further need evaluate if it achieves
sound performance in the RL environment: checking the
expected value difference via Thm. 3.5 is most significant
when Vπθ psq is worth in any state s likely to be reached in

Mπθ . We compare the episode return achieved by πθ against
π in the environment M (Fig. 2c). Our framework allows
learning to improve πθ along training steps and eventually
achieving the return of the original policy π. This illustrates
that training our latent model enables distilling π into a la-
tent policy πθ that achieves similar performance in M.

6 Conclusion
In this work, we presented VAE-MDPs, a framework for
learning discrete latent models of unknown, continuous-
spaces environments with bisimulation guarantees. We de-
tailed how such latent models can be learned by executing an
RL policy in the environment and showed that the procedure
yields a distilled version of the latter as a side effect. To pro-
vide the guarantees, we introduced new local losses bounds
aimed at discrete latent spaces with their PAC-efficient ap-
proximation algorithm derived from the execution of the dis-
tilled policy. All this enables the verification of RL policies
for unknown continuous MDPs.

Experimental results demonstrate the feasibility of our ap-
proach through the PAC bounds and the performance of the
distilled policy achieved for various environments. Our tool
can also be used to highlight the lack of robustness of input
policies when the distillation fails.

Complementary to safe-RL approaches addressed via for-
mal methods, we emphasize the ability of our tool to be
coupled with such algorithms when no model of the envi-
ronment is known a priori. The applicability of our method
enables its use in future work for real-world case studies and
more complex settings, such as multi-agent systems.
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