
Up to 100× Faster Data-Free Knowledge Distillation

Gongfan Fang1,3*, Kanya Mo1∗, Xinchao Wang2, Jie Song1

Shitao Bei1, Haofei Zhang1, Mingli Song1,3†

1Zhejiang University
2National University of Singapore

3Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies
{fgf, sjie, best, haofeizhang, brooksong}@zju.edu.cn

Kanya.18@intl.zju.edu.cn, xinchao@nus.edu.sg

Abstract
Data-free knowledge distillation (DFKD) has recently been
attracting increasing attention from research communities, at-
tributed to its capability to compress a model only using syn-
thetic data. Despite the encouraging results achieved, state-
of-the-art DFKD methods still suffer from the inefficiency
of data synthesis, making the data-free training process ex-
tremely time-consuming and thus inapplicable for large-scale
tasks. In this work, we introduce an efficacious scheme,
termed as FastDFKD, that allows us to accelerate DFKD
by a factor of orders of magnitude. At the heart of our ap-
proach is a novel strategy to reuse the shared common fea-
tures in training data so as to synthesize different data in-
stances. Unlike prior methods that optimize a set of data inde-
pendently, we propose to learn a meta-synthesizer that seeks
common features as the initialization for the fast data syn-
thesis. As a result, FastDFKD achieves data synthesis within
only a few steps, significantly enhancing the efficiency of
data-free training. Experiments over CIFAR, NYUv2, and
ImageNet demonstrate that the proposed FastDFKD achieves
10× and even 100× acceleration while preserving perfor-
mances on par with state of the art. Code is available at
https://github.com/zju-vipa/Fast-Datafree.

Introduction
Knowledge distillation (KD) has recently emerged as a pop-
ular paradigm to reuse pre-trained models that are nowadays
prevalent online. KD aims to train a compact student model
for efficient inference by imitating the behavior of the pre-
trained teacher (Hinton, Vinyals, and Dean 2015; Yang et al.
2020; Fang et al. 2021a). The conventional setup of KD re-
quires possessing the original training data as input so as
to train the student. Unfortunately, due to confidential or
copyright reasons, in many cases the original data cannot
be released and only the pre-trained models are available to
users (Kolesnikov et al. 2020; Shen et al. 2019; Ye et al.
2019), which, in turn, imposes a major obstacle towards ap-
plying KD for a broader domain.

To remedy this issue, data-free knowledge distillation
(DFKD) approaches have been proposed by assuming that
no access to training data is available at all (Lopes, Fenu, and

*Equal contributions
†Corresponding author

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10 1 100 101

GPU Hours for Data Synthesis (Hours in log scale)

10

20

30

40

50

60

A
cc

ur
ac

y
of

 S
tu

de
nt

 (%
)

100x 10x 1x CMI-500

CMI-2
CMI-5

CMI-10

DFQ DeepInv-2k

ZSKT

DAFL

Fast-2

Fast-5 Fast-10

Figure 1: Accuracy (%) of student models v.s. GPU hours of
data synthesis on CIFAR-100 dataset. Our method, denoted
as “Fast”, achieves 10× to even 100× acceleration and per-
formance on par with existing methods.

Starner 2017). Due to the much relaxed constraint on train-
ing data, DFKD has been receiving increasing attention from
research communities including computer vision (Chen
et al. 2019), natural language processing (Ma et al. 2020),
and graph learning (Deng and Zhang 2021). Typically,
DKFD follows a distilling-by-generating paradigm, where a
synthetic dataset is often crafted for training by “inverting”
the pre-trained teacher (Yin et al. 2019). To learn a compa-
rable student model, the synthetic set should contain suffi-
cient samples to enable a comprehensive knowledge trans-
fer from teachers. Consequentially, this poses a significant
challenge to DFKD, since synthesizing a large-scale dataset
is inevitably time-consuming, especially for sophisticated
tasks like ImageNet recognition (Yin et al. 2019) and COCO
detection (Chawla et al. 2021).

In this paper, we introduce a novel approach, termed as
FastDFKD, to accelerate data synthesis process so as to
make data-free knowledge distillation more applicable for
large-scale tasks. Our motivation stems from the fact that,
data instances from the same domain usually share some
common features, and hence such shared features should be
explicitly utilized for data synthesis. For example, the tex-
tures of “fur” may frequently emerge in an animal dataset,
and thus can be reused to create different instances. Unfortu-
nately, existing DFKD approaches have mainly focused on
synthesizing samples independently and, in fact, none of the
existing DFKD approaches has explored taking advantage

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6597

of feature sharing, making the DFKD process very cumber-
some.

The proposed FastDFKD approach, on the other hand, ex-
pressively explores the common features between samples
for synthesizing. FastDFKD follows the batch-based strat-
egy for data synthesis (Yin et al. 2019; Fang et al. 2021b);
yet unlike prior methods that synthesizes different samples
independently, FastDFKD focuses on a “learning to synthe-
size” problem, where an efficient synthesizer is explicitly
trained to capture common features for fast adaptation. The
advantage of common features sharing is that we do not need
to synthesize them repeatedly for each instance, which sig-
nificantly improves the synthesis efficiency.

Specifically, we develop FastDFKD under a meta-
learning framework (Finn, Abbeel, and Levine 2017), which
aims to learn a meta-generator in the synthesis process.
FastDFKD comprises two optimization loops, the outer
loop, and the inner loop. The inner loop accounts for the
data synthesis process, where a set of samples are created
by adapting and re-organizing common features. The outer
loop, on the other hand, updates the common features using
the results of inner loops for a better meta-initialization. As
illustrated in Figure 1, such a meta synthesizer dramatically
improves the efficiency of data synthesis in data-free distil-
lation while preserving a performance on par with state of
the art. As will be demonstrated in our experiments, FastD-
FKD is able to achieve 10× and in some cases even more
than 100× speed up compared to the state of the art.

Our contribution is therefore a novel DFKD scheme,
termed as FastDFKD, that allows us to significantly ac-
celerate the data-free training through common feature
reusing. Experimental results over the CIFAR, ImageNet,
and NYUv2 datasets demonstrate that, FastDFKD yields
performances comparable to the state of the art, while
achieving a speedup factor of 10 and sometimes even more
than 100 over existing approaches.

Related Works
Data-Free Knowledge Distillation. Data-free knowledge
distillation aims to train a compact student model from
a pre-trained teacher model without access to original
training data. It typically follows a distilling-by-generating
paradigm, where a fake dataset will be synthesized and
used for student training. In the literature, Lopes et al. pro-
poses the first data-free approach for knowledge distilla-
tion, which utilizes statistical information of original train-
ing data to reconstruct a synthetic set during knowledge dis-
tillation (Lopes, Fenu, and Starner 2017). This seminal work
has spawned several works, which has achieved impressive
progressive on several tasks including detection (Chawla
et al. 2021), segmentation (Fang et al. 2019), text classifica-
tion (Ma et al. 2020), graph classification (Deng and Zhang
2021) and Federated Learning (Zhu, Hong, and Zhou 2021).
Despite the impressive progress, a vexing problem remains
in DFKD, i.e., the inefficiency of data synthesis, which
makes data-free training extraordinarily time-consuming.
For example, (Luo et al. 2020) trains 1,000 generators to
compress an ImageNet-pretrained ResNet-50 and (Yin et al.
2019) optimizes a large number of mini-batches for data

synthesis. In this work, we focus on this under-studied prob-
lem, i.e., the efficiency of DFKD, and proposes the first ap-
proach to accelerate data-free training.

Meta Learning. Meta-learning is a popular framework for
few-shot learning (Hospedales et al. 2020), which follows
a “learning to learn” paradigm to find a helpful initializa-
tion for target tasks. Among various meta-learning algo-
rithms, MAML is one of the most influential methods own-
ing to its impressive results on several benchmarks (Finn,
Abbeel, and Levine 2017; Nichol, Achiam, and Schulman
2018). As an optimization-based method for meta-learning,
MAML introduces two optimization loops to handle a set
correlated tasks: an inner loop for task learning and an
outer loop for training a meta-learner. The inner and outer
loops are collaboratively trained to find a meta-initialization
that can be adapted to different tasks quickly, where some
general knowledge across tasks are captured by the meta-
learner (Finn, Abbeel, and Levine 2017). Inspired by the
“learning to learn” paradigm of meta-learning, we develop
a fast approach to train a meta-synthesizer for DFKD prob-
lems, which can be quickly adapted for fast data synthesis.

Method
Problem Setup
Given a teacher model ft(x; θt) pre-trained on a labeled but
inaccessible training set Dt =

∑N
i {(xi, yi)|xi ∈ X , yi ∈

Y}, the goal of data-free knowledge distillation (DFKD) is
to craft a synthetic dataset D =

∑N
i {xi|xi ∈ X} with N

samples by inverting the pre-trained model, on which a com-
parable student model fs(x; θs) can be trained by imitating
the behaviour of the teacher. Typically, The synthesis of D
is driven by a pre-trained inversion loss L : X → R, which
indicates whether a input sample x comes from the train-
ing domain according to some statistical information in the
pre-trained teacher model (Yin et al. 2019). Therefore, the
optimization of a single data point x can be formalized as
follows:

x∗ = argmin
x

L(x) (1)

To obtain a complete synthetic set D′ = {x1, x2, ..., xN} of
size N , DFKD repeats the above optimization to construct a
set of samples, which leads to a series of optimization prob-
lems in the form of Equation 1. Notably, the loss function
for different instances xi, denoted as Li, can be different, so
that a diverse dataset D can be constructed to carry out com-
prehensive knowledge from the teacher. To this end, we con-
sider a generalized data synthesis problem for DFKD, which
leverages a set of inversion losses L = {L1,L2, ...,LN} to
craft the synthetic dataset as follows:

D′ = {x∗
1, x

∗
2, ..., x

∗
N} = argmin

x1,x2,...,xN

N∑
i

Li(xi) (2)

In DFKD, a popular way to solve Equation 2 is to optimize
different samples directly in a batch-by-batch manner, (Yin
et al. 2019; Fang et al. 2019; Chawla et al. 2021). As il-
lustrated in Figure 2 (a), batch-based approaches synthesize

6598

(a) No feature reuse

𝑥2

𝑥3

𝑥1

(b) Sequential feature reuse

𝑥2

𝑥3

𝑥1

(c) Meta feature reuse

𝑥2

𝑥3

𝑥1

∇ℒ1

∇ℒ3

∇ℒ2

∇ℒ1

∇ℒ3

∇ℒ2

𝑥4

∇ℒ4

Synthesis Loop Meta Loop

𝑥4
𝑥4

∇ℒ4

∇ℒ1

∇ℒ2

∇ℒ3
∇ℒ4

Gradient

init init init

Figure 2: Diagram of the proposed meta feature reuse, as well as its difference to other synthesis strategies. (a) Data instances
are synthesized independently without feature reuse; (b) Data instances are synthesized sequentially reusing previous results as
initialization. (c) The proposed common feature reuse that learns a meta-generator for fast adaptation.

different instances independently and merely take the rela-
tion between samples into account. Despite the encourag-
ing results achieved, DFKD approaches usually suffer from
the inefficiency of data synthesis, since crafting a large-
scale dataset requires solving a large number of optimiza-
tion problems in Equation 1, each takes thousands of steps
to converge (Yin et al. 2019). Typically, data from the same
domain are likely to share some common features, which
can be reused to synthesize different samples. In this work,
we present FastDFKD, a novel and efficacious approach to
learning common features to accelerate the optimization of
Equation 2.

Fast Data-Free Knowledge Distillation
Overview. At the heart of our proposed approach is the
reusing of common features. Our motivation stems from the
fact that data from the same domain typically share some
reusable patterns, which can be reused to synthesize differ-
ent instances. The following sections develop a novel def-
inition for common features from a generative perspective
and propose FastDFKD to capture common features for fast
synthesis through a meta-learning process.

Common Feature. As the key step towards fast data-free
training, a clear definition of the common feature is required
to construct an optimizable objective for network training.
As illustrated in Figure 2 (b), a naive reusing strategy would
be the sequential feature reusing, where features learned in
the previous synthesis are directly used as the initializa-
tion to craft new samples. However, such a naive scheme
would be problematic since the learned features only come
from a single data point, which may not always be reusable
for other samples. To address this problem, we develop a
more natural definition for common features from a genera-
tive perspective. Let’s consider a generative network G(z; θ)
with latent code z and trainable parameters θ, which satis-
fies that for each sample xi ∈ D′, a latent code zi can be
found to generate xi = G(zi; θ). The generator describes
the generation process of different samples xi. To some ex-
tent, whether there are common features between a set of
samples D′ = {x1, x2, ..., xN} is usually highly correlated
with the similarity of different data instances, which means

that the generator can implicitly capture the common fea-
tures if we can find the optimal parameter θ making the code
z = {z1, z2, ..., zN} of different samples close in the latent
space. Based on this, common features can be learned by
solving the following problems:

min
z,θ

1

N2

∑
i

∑
j

dz(zi, zj)︸ ︷︷ ︸
close in latent space

+
1

N

∑
i

dx(G(zi, θ), xi)︸ ︷︷ ︸
generation

(3)

where dz and dx refers to distance metrics in latent space
and input space. The above optimization aims at finding a
generation process for dataset D′, whose z distance in latent
space is as small as possible so that, with the learned com-
mon features, different samples can be efficiently obtained
by navigating in the latent code z. However, in data-free set-
tings, the synthetic dataset D′ is not available until we syn-
thesize it. Thus, We replace the second term defined on dx
of Equation 3 with the inversion loss L for DFKD, which
leads to a data-free objective for common feature learning:

min
z,θ

1

N2

∑
i

∑
j

dz(zi, zj)︸ ︷︷ ︸
close in latent space

+
1

N

∑
i

Li(G(zi, θ))︸ ︷︷ ︸
data-free generation

(4)

However, due to the limited capacity of the generative model
and the difficulty in GAN training, it is almost intractable to
learn a perfect generator to synthesize the full synthetic set
D′ at the same time (Luo et al. 2020). To remedy this prob-
lem, we make some relaxation on Equation 4 and does not
force the generator G to capture all features for the whole
dataset. Instead, we train a generator that allows fast adap-
tation to different samples within k-steps gradient descents,
which naturally leads to a meta-learning problem.

Meta Generator. Equation 4 is challenging to optimize
because it requires generating the full dataset D′ with a sin-
gle generative network, including a lot of non-reusable fea-
tures. Instead, we can train a generator that only contains
common features and synthesize other missing features on
the fly for the data synthesis process as illustrated in Figure
2 (c). Specifically, we relax the objective of common feature
learning to train a lightweight generator that can be adapted

6599

to synthesize different instances within k-step, formalized as
a meta-learning problem:

min
z,θ

1

N

∑
i

Li(G(Uk
Li
(ẑ, θ̂)︸ ︷︷ ︸

k-step adaptation

)) (5)

where Uk
Li

is the inner loop of meta-learning, which refers
to a k-step optimization initialized from θ̂ and code ẑ for the
synthesis of xi. The inner loop can be unrolled as follows:

z0i , θ
0
i = ẑ, θ̂

zki = zk−1
i − α∇zk−1

i
Li(G(zk−1

i ; θk−1
i))

θki = θk−1
i − α∇θk−1

i
Li(G(zk−1

i ; θk−1
i))

(6)

Notably, Equation 5 plays a similar role as the common
feature loss in Equation 4. The inner loop, i.e., the k-step
adaptation, aims to learn a generator for synthesis by explic-
itly optimizing the second term of Equation 4. On the other
hand, the outer loop tries to make different samples reach-
able within k-step optimization by implicitly optimizing the
first term of Equation 4.

Optimization. Optimizing Equation 6 naturally leads to a
meta-learning problem, where a useful initialization (ẑ, θ̂) is
demanded for fast adaptation. After k-step gradient descent,
we obtain the a set of new parameter (z∗i , θ

∗
i) = Uk

Li
(ẑ, θ̂))

under the guidance of loss function Li, which provides gra-
dient w.r.t θ̂ as follows:

gθ̂ = ∇θ̂Li(G(ULi
(ẑ; θ̂)))

= U ′
Li
(θ̂)G′(θ∗)L′

i(x
∗
i)

(7)

where θ∗ = Uk
Li
(ẑ; θ̂) refers to the optimization results of

k-step adaptation using Equation 6 and x∗
i = G(z∗i ; θ∗i) =

G(Uk
Li
(ẑ; θ̂)) refers to the synthesis results under the guid-

ance of loss Li. However, note that the k-step adaptation in
Equation 6 involves k gradient updates:

(z∗, θ∗) = Uk
Li
(ẑ; θ̂) = (ẑ, θ̂) + g1 + g2 + ...+ gk (8)

where gk refers to the gradient computed at the k-th step
of Equation 6, which introduces high-order gradients to the
generator training and makes the back-propagation very in-
efficient. Inspired by prior works in meta learning (Nichol,
Achiam, and Schulman 2018), we apply a first-order approx-
imation to further accelerate the gradient computing, which
treats high-order gradients in as constants and replace the
U ′
i(θ̂) with an identity mapping. In this case, the gradient

computing in Equation 7 only involves first-order gradient
and can be simplified as follows:

∇θ̂Li(G(Uk
Li
(ẑ; θ̂))) = G′(θ∗)L′

i(x
∗) (9)

The first-order approximation directly uses the gradient
computed on the adapted generator in the inner loops to
update the meta generator. Further, a more efficient gradi-
ent approximation, known as reptile (Nichol, Achiam, and

Algorithm 1 FastDFKD

Input: Pretrained teacher Ft(x; θt), student Fs(x; θs).
Output: An optimized student Fs(x; θs)

1: Randomly initialize a generator G(ẑ; θ̂)
2: Initialize an empty dataset D′ = {}
3: for each synthesis loss Li do:
4: // 1. k-step adaptation for synthesis (Eq. 6)
5: Periodically re-initialize ẑ for diversity
6: Reuse meta feature z, θ ← ẑ, θ̂
7: for k steps do:
8: Update (z, θ)← (z, θ)− α∇(z,θ)Li(G(z; θ))
9: end for

10: Generate the synthetic data x∗ = G(z; θ)
11: Update the synthetic set D′ = D′ ∪ {x∗}
12:
13: // 2. Meta update (Eq. 10)
14: Update (ẑ, θ̂)← (ẑ, θ̂)− η∇(ẑ,θ̂)Li(G(Uk

i (ẑ; θ̂)))
15:
16: // 3. KD update (Eq. 12)
17: for t steps do:
18: sample a mini-batch B from D′

19: θs ← θs − γ
∑
x∈B
∇θsKL(ft(x)∥fs(x))

20: end for
21: end for

Schulman 2018), can be achieved by approximating the gra-
dient in Equation 9 with the parameter difference between
the adapted generator and meta generator, which further
simplifies Equation 9 as:

∇θ̂Li(G(Uk
Li
(ẑ; θ̂))) = θ̂i − θ∗i (10)

In conclusion, the optimization of meta generator can be
presented as follows:

θ̂ = θ̂ − η
∑
i

∇θ̂Li(G(Uk
Li
(ẑ; θ̂)))

ẑ = ẑ − η
∑
i

∇ẑLi(G(Uk
Li
(ẑ; θ̂)))

(11)

Method Summary. The proposed method is summarized
in Algorithm 1, which consists of three stages: 1) a k-step
adaptation for data synthesis; 2) a meta-learning step for
common feature learning; 3) several KD steps to update the
student model by optimizing the KL divergence as follows:

θs ← θs − γ
∑
x∈B
∇θsKL(ft(x)∥fs(x)) (12)

where B is a mini-batch sampled from the synthetic set D′.
The proposed approach allows a small k for data synthesis,
which significantly improves the efficiency of DFKD.

Experiments
Inversion Loss for FastDFKD
In this section, we provide more details about the inver-
sion loss L used in our method. This work mainly focus on

6600

classification and segmentation problems, which have been
widely studied in the data-free literature (Yin et al. 2019;
Fang et al. 2019; Chen et al. 2019). We utilize the preva-
lent Deep Inversion loss proposed by (Yin et al. 2019) as
criteria for data synthesis and demonstrate how to accelerate
the data synthesis with FastDFKD. Note that Deep Inversion
loss consists of three terms: a class confidence loss Lcls, an
adversarial loss Ladv and a feature regularization loss Lfeat,
summarized as follows:

Lcls(x) = CE(ft(x), c)

Ladv(x) = −JSD(ft(x)/τ∥fs(x)/τ)
Lfeat(x) =

∑
l ∥µl

feat − µl
bn∥+ ∥σl

feat − σl
bn∥

(13)
where both Lcls(x) and Ladv(x) provide dynamic learning
targets for data synthesis and thus can be directly used to
construct different synthesis tasks for meta-learning. For ex-
ample, choosing different pseudo labels can lead to various
target categories. However, the loss for feature regulariza-
tion is unchanged during synthesis since the batch normal-
ization layer only encodes the global statistical information
on the whole dataset. To fully leverage the power of meta-
learning, which requires a set of different but related losses
L, we modify the Deep Inversion loss by decomposing the
feature regularization loss. Note that the feature regulariza-
tion Lfeat aims to solve a distribution matching problem,
where the synthetic distribution is will be aligned with the
mean and variance (µbn, σ

2
bn) stored in BN layers. The BN

statistics is estimated on the whole dataset using the follow-
ing rules:

µbn = (1−m) · µbn +m · µfeat

σ2
bn = (1−m) · σ2

bn +m · σ2
feat

(14)

where m is a momentum parameter for estimating Batch-
Norm statistics (BNS). Inspired by the momentum estima-
tion of BNS, we propose to construct a dynamic and adap-
tive feature regularization in a momentum way, too. Specif-
ically, we introduce two accumulative variables to store the
mean and variance of already synthesized data and train the
inputs to approximate the global BNS as follows:

Lfeat(x) =
∑

l
[∥(1−m) · µl

a +m · µl
feat − µl

bn∥+

∥(1−m) · σl
a +m · σl

feat − σ2
bn∥]

(15)

After synthesis, the accumulative variables (µa, σ
2
a) will be

updated with Equation 14, so as to provide a different learn-
ing target for meta-learning.

Experimental Settings
Datasets and models. We evaluate the proposed method
on both classification and semantic segmentation tasks. For
image classification, we conduct data-free knowledge dis-
tillation on three widely used datasets: CIFAR-10, CIFAR-
100 (Krizhevsky, Hinton et al. 2009) and ImageNet (Deng
et al. 2009). We use the pretrained models from (Fang
et al. 2021b) and follow the same training protocol for
comparison, where 50,000 synthetic images are synthe-
sized for distillation. For ImageNet, we use an off-the-
shelf ResNet-50 as the teacher and train student models

by synthesizing 224×224 images. For semantic segmenta-
tion, we use Deeplab models (Chen et al. 2017) trained on
NYUv2 (Nathan Silberman and Fergus 2012) dataset for
training and evaluation, which contains 1449 densely la-
beled pairs of aligned RGB images and a 13-class segmen-
tation map.

Baselines. Two types of DFKD methods are compared in
our experiments: (1) generative methods that train a genera-
tive model for synthesis, including DAFL (Chen et al. 2019),
ZSKT (Micaelli and Storkey 2019), DFQ (Choi et al. 2020),
and Generative DFD (Luo et al. 2020) (2) non-generative
methods that craft transfer set in a batch-by-batch manner
including DeepInv (Yin et al. 2019) and CMI (Fang et al.
2021b).

Evaluation Metrics. In addition to the standard metrics
like classification accuracy and mean IoU for classification
and segmentation, we also focus on the efficiency of data
synthesis in DFKD, where GPU hours taken by data syn-
thesis is collected and reported. Note that the time cost of
student training is omitted since we only focus on the data
synthesis process and adopt the vanilla KD (Hinton, Vinyals,
and Dean 2015) in all DFKD methods. For fair comparisons,
all GPU hours are estimated on a single GPU.

Results on Classification
CIFAR-10 & CIFAR-100. The student accuracy obtained
on CIFAR-10 and CIFAR-100 datasets are reported in Ta-
ble 1. In the table, baseline “Teacher”, “Student” and “KD”
train networks with the original training data, which does
not require data synthesis. To verify the effectiveness of
FastDFKD, we compare it with two types of data-free al-
gorithms, including generative methods that train genera-
tors for synthesis and non-generative methods that optimize
mini-batches iteratively. As shown in Table 1, generative
methods are usually 10× faster than non-generative meth-
ods like DeepInv and CMI since they only need to train a
single generator for synthesis. However, due to the limited
capacity of the generative network, it is almost challenging
to synthesize a diverse dataset for training, which may de-
grade the student performance. We find that the performance
of generative methods tends to degrade as the complexity
of the dataset increases from CIFAR-10 to CIFAR-100. By
contrast, non-generative is usually more flexible than gener-
ative ones and thus more applicable to different tasks.

Like non-generative methods, the proposed FastDFKD
also optimizes mini-batches for data synthesis yet optimizes
a generative network for adaptation. As shown in Table 1,
the 5-step FastDFKD, i.e., Fast5, can achieve 10× accel-
eration compared to existing generative methods and even
more than 100× acceleration compared to non-generative
methods. For example, DeepInv2k synthesizes images by
optimizing mini-batches, each of which requires 2,000 iter-
ations to converge (Yin et al. 2019). To obtain 50,000 train-
ing samples for CIFAR, DeepInv2k would take 42.1 hours
for data synthesis on a single GPU. by contrast, our method,
i.e., Fast-5, adopts the same inversion loss as DeepInv but

6601

Dataset Method ResNet-34 VGG-11 WRN40-2 WRN40-2 WRN40-2 Average
ResNet-18 ResNet-18 WRN16-1 WRN40-1 WRN16-2 Speed Up

C
IF

A
R

-1
0

Teacher 95.70 92.25 94.87 94.87 94.87 -
Student 95.20 95.20 91.12 93.94 93.95 -
KD 95.20 95.20 95.20 95.20 95.20 -
DeepInv2k 93.26 (42.1h) 90.36 (20.2h) 83.04 (16.9h) 86.85 (21.9h) 89.72 (18.2h) 1.0×
CMI500 94.84 (19.0h) 91.13 (11.6h) 90.01 (13.3h) 92.78 (14.1h) 92.52 (13.6h) 1.6×
DAFL 92.22 (2.73h) 81.10 (0.73h) 65.71 (1.73h) 81.33 (1.53h) 81.55 (1.60h) 15.7×
ZSKT 93.32 (1.67h) 89.46 (0.33h) 83.74 (0.87h) 86.07 (0.87h) 89.66 (0.87h) 30.4×
DFQ 94.61 (8.79h) 90.84 (1.50h) 86.14 (0.75h) 91.69 (0.75h) 92.01 (0.75h) 18.9×
Fast2 92.62 (0.06h) 84.67 (0.03h) 88.36 (0.03h) 89.56 (0.03h) 89.68 (0.03h) 655.0×
Fast5 93.63 (0.14h) 89.94 (0.08h) 88.90 (0.08h) 92.04 (0.09h) 91.96 (0.08h) 247.1×
Fast10 94.05 (0.28h) 90.53 (0.15h) 89.29 (0.15h) 92.51 (0.17h) 92.45 (0.17h) 126.7×

C
IF

A
R

-1
00

Teacher 78.05 71.32 75.83 75.83 75.83 -
Student 77.10 77.10 65.31 72.19 73.56 -
KD 77.87 75.07 64.06 68.58 70.79 -
DeepInv2k 61.32 (42.1h) 54.13 (20.1h) 53.77 (17.0h) 61.33 (21.9h) 61.34 (18.2h) 1.0×
CMI500 77.04 (19.2h) 70.56 (11.6h) 57.91 (13.3h) 68.88 (14.2h) 68.75 (13.9h) 1.6×
DAFL 74.47 (2.73h) 54.16 (0.73h) 20.88 (1.67h) 42.83 (1.80h) 43.70 (1.73h) 15.2×
ZSKT 67.74 (1.67h) 54.31 (0.33h) 36.66 (0.87h) 53.60 (0.87h) 54.59 (0.87h) 30.4×
DFQ 77.01 (8.79h) 66.21 (1.54h) 51.27 (0.75h) 54.43 (0.75h) 64.79 (0.75h) 18.8×
Fast2 69.76 (0.06h) 62.83 (0.03h) 41.77 (0.03h) 53.15 (0.04h) 57.08 (0.04h) 588.2×
Fast5 72.82 (0.14h) 65.28 (0.08h) 52.90 (0.07h) 61.80 (0.09h) 63.83 (0.08h) 253.1×
Fast10 74.34 (0.27h) 67.44 (0.16h) 54.02 (0.16h) 63.91 (0.17h) 65.12 (0.17h) 124.7×

Table 1: Student accuracy (%) on 32×32 CIFAR. The methods “Teacher”, “Student” and “KD” is conducted on original training
data and do not require data synthesis. DAFL, ZSKT and DFQ train generative networks for synthesis, while DeepInv, CMI
and Fast (ours) optimizes batches to craft different samples.

Method Data Amount Syn. Time Speed Up ResNet-50 ResNet-50 ResNet-50
ResNet-50 ResNet-18 MobileNetv2

Scratch 1.3M - - 75.45 68.45 70.01
Places365+KD 1.8M - - 55.74 45.53 39.89
Generative DFD - ∼300h 1× 69.75 54.66 43.15
DeepInv2k 140k 166h 1.8× 68.00 - -
Fast50 140k 6.28h 47.8× 68.61 53.45 43.02

Table 2: Student accuracy (%) on 224×224 ImageNet. We use an off-the-shelf ResNet-50 as the teacher model and train student
models from scratch following the training protocol of (Yin et al. 2019).

only requires 5 steps for each batch owning to the proposed
common feature reusing, which is much more efficient than
Deep Inversion. In addition to the improvements in effi-
ciency, FastDFKD also achieves comparable or even supe-
rior performance compared to the state-of-arts.

ImageNet. To verify the effectiveness of FastDFKD, we
further evaluate our method on a more challenging dataset,
i.e., ImageNet, which contains 1.3 million training images
of 224 × 224 resolutions from 1,000 categories. ImageNet
is obviously much more complicated than CIFAR and thus
much more time-consuming for data-free training. As shown
in Table 2, we compare our methods with a data-driven KD
that uses Places365 as alternative data, and two data-free
methods, i.e., Generative DFD (Luo et al. 2020) and Deep-
Inv (Yin et al. 2019). Notably, Generative DFD (Luo et al.
2020) trains one generator of 224×224 resolutions for each
category, which leads to 1,000 generators in total. Although
each generator can be optimized within one hour, the whole
training process for 1,000 generators is still cumbersome.

By contrast, our method only requires 6.28 hours for image
synthesis and preserves comparable performance to existing
methods.

Results on Segmentation
In this work, we further conduct data-free training on se-
mantic segmentation tasks to show the effectiveness of our
method. In segmentation, we only use the feature regular-
ization loss and adversarial loss of 13 for data synthesis.
The mIoU of the student model, as well as the data amount
and synthesis time, are reported in Table 3. We compare
our method with DFAD (Fang et al. 2019), DAFL (Chen
et al. 2019) and DFND (Chen et al. 2021). DFND is a data-
driven method and assumes that a sufficient unlabeled set
is available for in-domain data retrieval (Chen et al. 2021).
DFAD and DAFL refer to data-free methods that train gen-
erative networks for knowledge distillation. In comparison,
our method successfully synthesizes a training set only in
0.82 hours, which is much more efficient than DAFL (3.99
hours) and DFAD (6.0 hours).

6602

Figure 3: Visualization of synthetic data, inverted from an off-the-shelf ResNet-50 classifier pre-trained on ImageNet. All
samples are obtained using the 50-step FastDFKD.

Method Data Amount Syn. Time mIoU
Teacher 1,449 (NYUv2) - 0.519
Student 1,449 (NYUv2) - 0.375
KD 1,449 (NYUv2) - 0.380
DFND 14 M (ImageNet) - 0.378
DFAD 960k (GAN) 6.0h 0.364
DAFL 960k (GAN) 3.99h 0.105
Fast10 17K (Synthetic) 0.82h 0.366

Table 3: Mean IoU the student model trained on NYUv2
Segmentation dataset. The teacher model is a Deeplabv3-
ResNet50 network with ImageNet pre-training, and the stu-
dent model is a freshly initialized Deeplabv3-Mobilenetv2.

Steps 2 steps 5 steps 10 steps
Teacher 75.83 75.83 75.83
Student 65.31 65.31 65.31
DeepInv 2.61 (0.03h) 4.84 (0.06h) 6.77 (0.11h)
CMI 14.62 (0.05h) 20.08 (0.12h) 32.43 (0.22h)
Fast 41.77 (0.03h) 52.90 (0.07h) 54.02 (0.16h)

Table 4: Few-step experiments on CIFAR-100.

Quantitative Analysis
Few-step synthesis. As aforementioned, FastDFKD al-
lows efficient data synthesis within only a few steps. This ex-
periment validates our method by comparing it to the “few-
step” versions of existing non-generative methods. For ex-
ample, we reduce the optimization steps of original Deep-
Inv (Yin et al. 2019) from 2,000 to {10, 5, 2} for CIFAR,
which leads to the “efficient” DeepInv. As shown in Table 4,
the student accuracy of DeepInv and CMI severely degrades
when the optimization steps are reduced, which means that
existing methods fail to complete the data synthesis in only a
few steps. By contrast, the proposed FastDFKD works well
even when a 2-step optimization is deployed, which provides
strong evidence for the effectiveness of FastDFKD.

Ablation Study. In Table 5, we make an ablation study
to make a systematic exploration for the proposed method,
where three reusing strategies in Figure 2 are considered: 1)
no feature reuse; 2) sequential feature reuse; 3) the proposed
common feature reuse. Further, the effectiveness of the gen-

Settings CIFAR-10 CIFAR-100
No Reuse + Pixel 44.74 3.11
No Reuse + GAN 87.33 35.48
Seq. + Pixel 71.97 10.93
Seq. + GAN 90.91 59.38
Meta + GAN 91.79 61.43
Meta + GAN + MMT 91.96 63.83

Table 5: Ablation study for FastDFKD, where MMT means
deep inversion with momentum feature regularization.

erative network is also verified by replacing it with the pixel
updating proposed in (Yin et al. 2019).

Visualization. The synthetic results on ImageNet are vi-
sualized in Figure 3, where all samples are obtained by de-
ploying the 50-step FastDFKD on an off-the-shelf ResNet-
50 classifier. Compared with existing methods that either re-
quire solving a 2000-step mini-batch optimization (Yin et al.
2019) or train 1000 generative models for synthesis (Luo
et al. 2020), our proposed method can craft plausible sam-
ples within a few steps.

Conclusions
In this work, we propose a novel approach, termed as FastD-
FKD, to learn a meta-generator for fast data-free knowl-
edge distillation, which is able to achieve 10 × and even
100× acceleration on CIFAR, NYUv2, and ImageNet. As
the first attempt to improve the efficiency of data-free learn-
ing, the proposed approach successfully crafted a synthetic
ImageNet in 6.28 hours, making data-free KD more appli-
cable in real-world applications.

Acknowledgements
This work is supported by National Natural Science Foun-
dation of China (U20B2066, 61976186,), Key Research and
Development Program of Zhejiang Province (2020C01023),
the Major Scientific Research Project of Zhejiang Lab
(No. 2019KD0AC01), the Fundamental Research Funds
for the Central Universities, Alibaba-Zhejiang University
Joint Research Institute of Frontier Technologies, NUS AR-
TIC (Project Reference: ECT-RP2), and Faculty Research
Committee Grant (R-263-000-E95-133).

6603

References
Chawla, A.; Yin, H.; Molchanov, P.; and Alvarez, J. 2021.
Data-Free Knowledge Distillation for Object Detection. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, 3289–3298.

Chen, H.; Guo, T.; Xu, C.; Li, W.; Xu, C.; Xu, C.; and Wang,
Y. 2021. Learning Student Networks in the Wild. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 6428–6437.

Chen, H.; Wang, Y.; Xu, C.; Yang, Z.; Liu, C.; Shi, B.; Xu,
C.; Xu, C.; and Tian, Q. 2019. Data-free learning of student
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 3514–3522.

Chen, L.-C.; Papandreou, G.; Schroff, F.; and Adam, H.
2017. Rethinking atrous convolution for semantic image
segmentation. arXiv preprint arXiv:1706.05587 .

Choi, Y.; Choi, J.; El-Khamy, M.; and Lee, J. 2020. Data-
free network quantization with adversarial knowledge dis-
tillation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 710–
711.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.

Deng, X.; and Zhang, Z. 2021. Graph-Free Knowledge
Distillation for Graph Neural Networks. arXiv preprint
arXiv:2105.07519 .

Fang, G.; Bao, Y.; Song, J.; Wang, X.; Xie, D.; Shen, C.; and
Song, M. 2021a. Mosaicking to Distill: Knowledge Distilla-
tion from Out-of-Domain Data. In Thirty-Fifth Conference
on Neural Information Processing Systems.

Fang, G.; Song, J.; Shen, C.; Wang, X.; Chen, D.; and Song,
M. 2019. Data-free adversarial distillation. arXiv preprint
arXiv:1912.11006 .

Fang, G.; Song, J.; Wang, X.; Shen, C.; Wang, X.; and
Song, M. 2021b. Contrastive Model Inversion for Data-Free
Knowledge Distillation. arXiv preprint arXiv:2105.08584 .

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In In-
ternational Conference on Machine Learning, 1126–1135.
PMLR.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .

Hospedales, T.; Antoniou, A.; Micaelli, P.; and Storkey, A.
2020. Meta-learning in neural networks: A survey. arXiv
preprint arXiv:2004.05439 .

Kolesnikov, A.; Beyer, L.; Zhai, X.; Puigcerver, J.; Yung,
J.; Gelly, S.; and Houlsby, N. 2020. Big Transfer (BiT):
General Visual Representation Learning.

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. technical report .

Lopes, R. G.; Fenu, S.; and Starner, T. 2017. Data-free
knowledge distillation for deep neural networks. arXiv
preprint arXiv:1710.07535 .
Luo, L.; Sandler, M.; Lin, Z.; Zhmoginov, A.; and Howard,
A. 2020. Large-scale generative data-free distillation. arXiv
preprint arXiv:2012.05578 .
Ma, X.; Shen, Y.; Fang, G.; Chen, C.; Jia, C.; and Lu, W.
2020. Adversarial Self-Supervised Data-Free Distillation
for Text Classification. arXiv preprint arXiv:2010.04883 .
Micaelli, P.; and Storkey, A. 2019. Zero-shot knowledge
transfer via adversarial belief matching. arXiv preprint
arXiv:1905.09768 .
Nathan Silberman, Derek Hoiem, P. K.; and Fergus, R. 2012.
Indoor Segmentation and Support Inference from RGBD
Images. In ECCV.
Nichol, A.; Achiam, J.; and Schulman, J. 2018. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999 .
Shen, C.; Wang, X.; Song, J.; Sun, L.; and Song, M. 2019.
Amalgamating knowledge towards comprehensive classifi-
cation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 3068–3075.
Yang, Y.; Qiu, J.; Song, M.; Tao, D.; and Wang, X. 2020.
Distilling knowledge from graph convolutional networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 7074–7083.
Ye, J.; Ji, Y.; Wang, X.; Ou, K.; Tao, D.; and Song, M. 2019.
Student becoming the master: Knowledge amalgamation for
joint scene parsing, depth estimation, and more. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2829–2838.
Yin, H.; Molchanov, P.; Li, Z.; Alvarez, J. M.; Mallya, A.;
Hoiem, D.; Jha, N. K.; and Kautz, J. 2019. Dreaming to Dis-
till: Data-free Knowledge Transfer via DeepInversion. arXiv
preprint arXiv:1912.08795 .
Zhu, Z.; Hong, J.; and Zhou, J. 2021. Data-Free Knowledge
Distillation for Heterogeneous Federated Learning. arXiv
preprint arXiv:2105.10056 .

6604

