
Smoothing Advantage Learning

Yaozhong Gan1,2, Zhe Zhang1,2, Xiaoyang Tan1,2

1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
2MIIT Key Laboratory of Pattern Analysis and Machine Intelligence

{yzgancn, zhangzhe, x.tan}@nuaa.edu.cn

Abstract

Advantage learning (AL) aims to improve the robustness
of value-based reinforcement learning against estimation er-
rors with action-gap-based regularization. Unfortunately, the
method tends to be unstable in the case of function approx-
imation. In this paper, we propose a simple variant of AL,
named smoothing advantage learning (SAL), to alleviate this
problem. The key to our method is to replace the original
Bellman Optimal operator in AL with a smooth one so as
to obtain more reliable estimation of the temporal difference
target. We give a detailed account of the resulting action gap
and the performance bound for approximate SAL. Further
theoretical analysis reveals that the proposed value smooth-
ing technique not only helps to stabilize the training proce-
dure of AL by controlling the trade-off between convergence
rate and the upper bound of the approximation errors, but is
beneficial to increase the action gap between the optimal and
sub-optimal action value as well.

Introduction
Learning an optimal policy in a given environment is a chal-
lenging task in high-dimensional discrete or continuous state
spaces. A common approach is through approximate meth-
ods, such as using deep neural networks (Mnih et al. 2015).
However, an inevitable phenomenon is that this could in-
troduce approximation/estimation errors - actually, several
studies suggest that this leads to sub-optimal solutions due
to incorrect reinforcement (Thrun and Schwartz 1993; van
Hasselt, Guez, and Silver 2016; Lan et al. 2020).

Advantage learning operator (AL) (Bellemare et al. 2016)
is a recently proposed method to alleviate the negative effect
of the approximation and estimation errors. It is a simple
modification to the standard Bellman operator, by adding an
extra term that encourages the learning algorithm to enlarge
the action gap between the optimal and sub-optimal action
value at each state. Theoretically, it can be shown that the AL
operator is an optimality-preserving operator, and increasing
the action gap not only helps to mitigate the undesirable ef-
fects of errors on the induced greedy policies, but may be
able to achieve a fast convergence rate as well (Farahmand
2011).

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0 1 2 3 4 5
Training steps (Million)

0.00

0.05

0.10

0.15

0.20

0.25

A
ct

io
n

G
ap

DQN
AL
SAL

Figure 1: An illustration of trajectories of action gaps be-
tween the optimal and sub-optimal action at each training
step in Asterix of MinAtar (Young and Tian 2019). It shows
that compared to the baseline DQN method, the AL could
suffer from the problem of over-enlarging the action gaps at
the early stage of the training procedure, while such behav-
ior is well controlled by the proposed SAL method.

Due to these advantages, the AL method has drawn in-
creasing attention recently and several variants appear in
literatures. For example, generalized value iteration (G-VI)
(Kozuno, Uchibe, and Doya 2017) is proposed to allevi-
ate the overestimation of AL, while Munchausen value it-
eration (M-VI) (Vieillard, Pietquin, and Geist 2020) adds a
scaled log-policy to the immediate reward under the entropy
regularization framework. Both methods impose extra con-
straints in the policy space, such as entropy regularization
and Kullback-Leibler (KL) divergence, and technically, both
can be seen as a soft Q operator plus a soft advantage term.

However, one problem less studied in literature about the
AL method is that it could suffer from the problem of over-
enlarging the action gaps at the early stage of the training
procedure. From Figure 1, one can see that the AL method
faces this problem. Although the action gaps are rectified at
a later stage, this has a very negative impact on the perfor-
mance of the algorithm. We call that this issue is an incor-
rect action gaps phenomenon. Naively using the AL opera-
tor tends to be both aggressive and risky. Thus, the difficulty
of learning may be increased. Recall that the AL method
includes two terms, i.e., the temporal-difference (TD) tar-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6657

get estimation and an advantage learning term. From the
perspective of function approximation, both terms critically
rely on the performance of the underlying Q neural network,
which predicts the action value for any action taken at a
given state. The method becomes problematic when the opti-
mal action induced by the approximated value function does
not agree with the true optimal action. This may significantly
increase the risk of incorrect action gap values.

Based on these observations, we propose a new method,
named SAL (smoothing advantage learning), to alleviate this
problem. Our key idea is to use the value smoothing tech-
niques (Lillicrap et al. 2016) to improve the reliability and
stability of the AL operator. For such purpose, we incorpo-
rate the knowledge about the current action value, estimated
using the same target network. Our SAL works in the value
space, which is consistent with the original motivation of
the AL operator. Specifically, we give a detailed account
of the resulting action gap and the performance bound for
approximate SAL. Further theoretical analysis reveals that
the proposed value smoothing technique helps to stabilize
the training procedure and increase the action gap between
the optimal and sub-optimal action value, by controlling the
trade-off between convergence rate and the upper bound of
the approximation errors. We also analyze how the parame-
ters affect the action gap value, and show that the coefficient
α of advantage term can be expanded to (0, 2

1+γ). This ex-
pands the original theory (Bellemare et al. 2016). Finally,
we verify the feasibility and effectiveness of the proposed
method on several publicly available benchmarks with com-
petitive performance.

Background
Notation and Basic Definition
The reinforcement learning problem can be modeled as a
Markov Decision Processes (MDP) which described by a
tuple 〈S,A, P,R, γ〉. S and A are the finite state space and
finite action space, respectively. The function P (s′|s, a) :
S ×A×S 7−→ [0, 1] outputs the transition probability from
state s to state s′ under action a. The reward on each transi-
tion is given by the function R(s, a) : S ×A 7−→ R, whose
maximum absolute value is Rmax. γ ∈ [0, 1) is the discount
factor for long-horizon returns. The goal is to learn a policy
π : S × A 7−→ [0, 1] (satisfies

∑
a π(a|s) = 1) for in-

teracting with the environment. Under a given policy π, the
action-value function is defined as

Qπ(st, at) = Est+1:∞,at+1:∞[Gt|st, at]
where Gt =

∑∞
i=0 γ

iRt+i is the discount return. The
state value function and advantage function are denoted
by V π(s) = Eπ[Qπ(s, a)] and Aπ(s, a) = Qπ(s, a) −
V π(s), respectively. An optimal action state value function
is Q?(s, a) = maxπ Q

π(s, a) and optimal state value func-
tion is V ∗(s) = maxaQ

∗(s, a). The optimal advantage
function is defined as A∗(s, a) = Q∗(s, a) − V ∗(s). Note
thatQ∗(s, a) and V ∗(s) are bounded by Vmax := 1

1−γRmax.
The corresponding optimal policy is defined as π∗(a|s) =
argmaxaQ

∗(s, a), which selects the highest-value action
in each state. For brevity, let ‖f‖ = maxx |f(x)| denote

the L∞ norm. And for functions f and g with a domain X ,
f ≥ (>)g mean f(x) ≥ (>)g(x) for any x ∈ X .

The Bellman Operator
The Bellman operator T π is defined as,

T πQ(s, a) = R(s, a) + γ
∑
s′,a′

P (s′|s, a)π(a′|s′)Q(s′, a′)

(1)
It is known that T π is a contraction (Sutton and Barto

1998) - that is, Qπ(s, a) := limk→∞(T π)kQ0(s, a) is a
unique fixed point. And, the optimal Bellman operator T
is defined as,

T Q(s, a) = max
π
T πQ(s, a)

= R(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q(s′, a′)
(2)

It is well known (Feinberg 1996; Bellman and Drey-
fus 1959; Bellman 1958) that the optimal Q function
Q∗(s, a) = maxπ Q

π(s, a) is the unique solution Q∗ to the
optimal Bellman equation and satisfies

Q∗(s, a) = T Q∗(s, a)
= R(s, a) + γ

∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′)

Q-learning is a method proposed by Watkins (1989) that
estimates the optimal value function Q? through value iter-
ation. Due to the simplicity of the algorithm, it has become
one of the most popular reinforcement learning algorithms.

The Advantage Learning Operator and its
Modifications
The advantage learning (AL) operator was proposed by
Baird (1999) and further studied by Bellemare et al. (2016).
Its operator can be defined as:

TALQ(s, a) = T Q(s, a) + α(Q(s, a)− V (s)) (3)

where V (s) = maxaQ(s, a), T is the optimal Bellman op-
erator Eq.(2) and α ∈ [0, 1). And its operator has very nice
properties.
Definition 0.1. (Optimality-preserving) (Bellemare et al.
2016) An operator T ′ is Optimality-preserving, if for ar-
bitrary initial function Q0(s, a), s ∈ S , a ∈ A, letting
Qk+1(s, a) := T ′Qk(s, a),

V̂ (s) := lim
k→∞

max
a

Qk(s, a)

exists, is unique, V̂ (s) = V ∗(s), and for all a ∈ A,

Q∗(s, a) < V ∗(s) =⇒ lim sup
k→∞

Qk(s, a) < V ∗(s). (4)

Definition 0.2. (Gap-increasing) (Bellemare et al. 2016)
An operator T ′ is gap-increasing, if for arbitrary initial
function Q0(s, a), s ∈ S , a ∈ A, letting Qk+1(s, a) =
T ′Qk(s, a), and Vk(s) = maxaQk(s, a), satisfy

lim inf
k→∞

[Vk(s)−Qk(s, a)] ≥ V ∗(s)−Q∗(s, a). (5)

6658

They proved that when there is no approximation error,
the state value function Vk(s), Vk(s) = maxaQk(s, a) dur-
ing k-thQ-iteration with TAL, is convergent and equal to the
optimal state value function V ∗(s) - this operator is optimal-
preserving operator. And this AL operator can enhance the
difference between Q-values for an optimal action and sub-
optimal actions - this operator is gap-increasing operator, to
make estimated Q-value functions less susceptible to func-
tion approximation/estimation error.

Recently, Kozuno et al. (Kozuno, Uchibe, and Doya 2017)
proposed generalized value iteration (G-VI), a modification
to the AL:

TG,τQ(s, a) =R(s, a) + γ
∑
s′

P (s′|s, a)mτQ(s′, ·)

+ α(Q(s, a)−mτQ(s, ·))

where mτQ(s, ·) := τ ln〈 1
|A| , exp

Q
τ 〉 = τ ln

∑
a

1
|A|

exp Q(s,a)
τ is the mellowmax operator, α ∈ [0, 1).

This is very close to munchausen value iteration1 (M-VI)
(Vieillard, Pietquin, and Geist 2020). Both algorithms can
be derived from using entropy regularization in addition to
Kullback-Leibler (KL) divergence. In fact, they can be seen
as soft Q operator plus a soft advantage term. But the hy-
perparameters τ controls the asymptotic performance - that
is, the performance gap between the optimal action-value
function Q∗ and Qπk , the control policy πk at iteration k,
is related to τ , so both algorithms may be sensitive to the
hyperparameters τ (Kim et al. 2019; Gan, Zhang, and Tan
2021). When τ → 0, it retrieves advantage learning. And
taking α = 1, it retrieves dynamic policy programming
(DPP) (Azar, Gómez, and Kappen 2012). In addition, a vari-
ant of AL for improved exploration was studied in (Ferret,
Pietquin, and Geist 2021). In Appendix, we show that G-VI
and M-VI are equivalent. Meanwhile, we also give the rela-
tionship between their convergence point and AL.

Methods
We discussed that an incorrect action gap maybe affect the
performance of the algorithm from the Figure 1. The possi-
ble reason is that the estimated Q function obtained by the
approximated value function is greatly affected by errors. In
order to alleviate it, we propose a new method, inspired by
the value smoothing technique (Lillicrap et al. 2016). Next,
we first introduce our new operator, named the smoothing
advantage learning operator.

The Smoothing Advantage Learning Operator
We first provide the following optimal smooth Bellman op-
erator (Fu et al. 2019; Smirnova and Dohmatob 2020) which
is used to analyze the smoothing technique:

TωQ(s, a) = (1− ω)Q(s, a) + ωT Q(s, a) (6)

where ω ∈ (0, 1), and T is the optimal Bellman opera-
tor. They proved that the unique fixed point of the opti-
mal smooth Bellman operator is same as the optimal Bell-

1In M-VI, 〈 1
|A| , exp

Q
τ
〉 is replaced by 〈1, exp Q

τ
〉

man operator. In fact, from the operator aspect, the coeffi-
cient ω can be expanded to (0, 2

1+γ) (See Appendix for de-
tailed derivation). Note that if 0 < ω < 1, the uncertainty
caused by maximum operator is reduced, due to the intro-
duction of the action-value function approximation Q(s, a).
And the Tω can be thought of as a conservative operator.
While 1 < ω < 2

1+γ , the uncertainty increases, and overem-
phasizes the bootstrapping is both aggressive and risky in
estimating TD learning.

We propose a smoothing advantage learning operator
(SAL), defined as:

TSALQ(s, a) = TωQ(s, a) + α[Q(s, a)− V (s)] (7)

where V (s) = maxaQ(s, a), Tω is the smooth Bellman op-
erator Eq.(6) and α ∈ R.

Note that if ω = 1, the TSAL operator is reduced to the
advantage learning operator TAL Eq.(3). And when α = 0,
the TSAL operator is reduced to the optimal smooth Bellman
operator Tω Eq.(6). In practice, the TD target of the SAL
operator is calculated by a estimation - the current state es-
timation, the bootstrapping estimate of the next state for fu-
ture return and an advantage term. Considering the fragility
of the prediction of neural network-based value function ap-
proximators especially when the agent steps in an unfamil-
iar region of the state space, the accuracy of the estimated
reinforcement signal may directly affect the performance of
the algorithm. By doing this, we show that it helps to en-
hance the network’s ability to resist environmental noise or
estimation errors by slow update/iteration. It can make the
training more stable (Remark 0.3) and increase the action
gap Eq.(11).

Convergence of SAL
In this section, let’s prove that the Qk, during k-th Q-
iterations with TSAL, converges to a unique fixed point,
and our algorithm can increase the larger action gap value
Eq.(11) compared with AL algorithm, when there is no ap-
proximation error.

Definition 0.3. (All-preserving) An operator T ′ is all-
preserving, if for arbitrary initial function Q0(s, a), letting
Qk+1(s, a) := T ′Qk(s, a),

Q̂∗(s, a) :, lim
k→∞

Qk(s, a)

exists, for all s ∈ S , a ∈ A, satisfy

max
a

Q̂∗(s, a) = max
a

Q∗(s, a) (8)

and

Q∗(s, a[1]) ≥ Q∗(s, a[2]) ≥ · · · ≥ Q∗(s, a[n])
⇒
Q̂∗(s, a[1]) ≥ Q̂∗(s, a[2]) ≥ · · · ≥ Q̂∗(s, a[n])

(9)

where Q∗(s, a) is a stable point with the optimal Bellman
operator T , and [i] donate i-th largest index of action a
among Q∗(s, a).

6659

Thus under an all-preserving operator, all optimal actions
remain optimal, and the order of good and bad actions of
Q̂∗ remains the same as Q∗. Compared with the definition
of optimality-preserving operator 0.1, the definition 0.3 is
more restrictive. Because the operator T ′ is an all-preserving
operator, the T ′ must be an optimality-preserving operator.

From Eq. (7), we have

Qk+1(s, a) : = TSALQk(s, a)
= TωQk(s, a) + α[Qk(s, a)− Vk(s)]
= ωAkT B̂k(s, a)− αAkBk(s) + λkQ0(s, a)

whereAkB̂k(s, a) = Qk−1(s, a)+λVk−2(s)+λ
2Vk−3(s)+

· · · + λk−1V0(s), Ak = 1−λk

1−λ = 1 + λ + λ2 + · · · + λk−1

is the weighted regular term, λ = 1 − ω + α, Bk(s) =

maxak−1
B̂k(s, a), and Vi(s) = maxaQi(s, a), Qi(s, a) is

i-th Q-iterations, i = 1, 2, · · · , k − 1. For simplicity, we
assume Q0(s, a) = 0. See Appendix for detailed derivation.

Now let’s prove that the the smoothing advantage learning
operator TSAL is both all-preserving and gap-increasing.
Theorem 0.1. Let T and TSAL respectively be the optimal
Bellman operator and the smoothing advantage learning op-
erator defined by Eq.(2) and Eq.(7). Letting Qk+1(s, a) =
TSALQk(s, a), and Q∗ is a stable point during Q-iteration
with T , and V ∗(s) = maxaQ

∗(s, a). If 0 ≤ α < ω < 2
1+γ ,

then lim
k→∞

Bk(s) = V ∗(s) and

Q̂∗(s, a) , lim
k→∞

Qk(s, a)

=
1

ω − α [ωQ
∗(s, a)− αV ∗(s)]

Furthermore, we also have the set of argmaxaQ
∗(s, a) is

equal to set argmaxa Q̂
∗(s, a), and the operator TSAL is

all-preserving.
The proof of the theorem is given in Appendix.
This result shows the relationship between the stable point

Q̂∗(s, a) and the optimal point Q∗(s, a). The Q̂∗(s, a) and
Q∗(s, a) not only have the same maximum values, but also
have the same order of good and bad actions. If ω = 1, the
TSAL operator is reduced to the advantage learning operator
TAL. Hence the above analysis applies to the TAL operator
as well - that is, the advantage learning operator TAL is all-
preserving. More importantly, it’s possible that α is greater
than 1. This not only generalizes the properties of the advan-
tage learning operator TAL (Bellemare et al. 2016) (where it
is concluded that V̂ ∗(s) , maxa Q̂

∗(s, a) = V ∗(s) and sat-
isfy 0 ≤ α < 1), but also implies that all optimal actions of
Q∗(s, a) remain optimal through the operator TAL instead
of at least ones (Bellemare et al. 2016). This later advantage
may be the main reason for the good performance of TAL
(shown in the experimental section).

Next, we will give the relationship between the operator
TSAL and T in term of action-gap value.
Theorem 0.2. Let T and TSAL respectively be the optimal
Bellman operator and the smoothing advantage learning op-
erator defined by Eq.(2) and Eq.(7). If 0 ≤ α < ω < 2

1+γ ,

letting Q̂∗(s, a) is a stable point during Q-iteration with
TSAL, and Q∗ is a stable point with T , and V ∗(s) =
maxaQ

∗(s, a). For ∀ s ∈ S, a ∈ A, then we have

Gap(TSAL; s, a) =
ω

ω − αGap(T ; s, a) (10)

where Gap(TSAL; s, a) = V ∗(s) − Q̂∗(s, a) denote the
TSAL operator’s action gap, and Gap(T ; s, a) = V ∗(s) −
Q∗(s, a) denote the T operator’s action gap. Furthermore,
we have

1) the operator TSAL is gap-increasing;
2) if α is fixed, the action gap Gap(TSAL; s, a) monoton-

ically decreases w.r.t ω ∈ (α, 2
1+γ);

3) if ω is fixed, the action gap Gap(TSAL; s, a) monoton-
ically increases w.r.t α ∈ [0, ω).

The proof of the theorem is given in Appendix.
This result shows that the action gap Gap(TSAL; s, a) is

a multiple of the Gap(T ; s, a). It also reveals how hyper-
parameters of ω and α affect the action gap. Furthermore, in
the case of ω = 1, the action gapGap(TSAL; s, a) is equal to
the Gap(TAL; s, a). From Theorem 0.2, if 0 ≤ α < ω ≤ 1,
we can conclude that

Gap(TSAL; s, a) ≥ Gap(TAL; s, a) ≥ Gap(T ; s, a). (11)

In other words, the operator SAL helps to enlarge the gap
between the optimal action-value and the sub-optimal action
values. This is beneficial to improve the robustness of the
estimatedQ value against environmental noise or estimation
errors.

Performance Bound for Approximate SAL
In the previous section, we discussed the convergence of the
SAL in the absence of approximation error. In this section,
we prove that our algorithm can achieve more stable training
compared with AL algorithm by error propagation (Remark
0.3). Now, we derive the performance bound for approxi-
mate SAL, defined by

Qk+1(s, a) :=(1− ω)Qk(s, a) + ω[T Qk(s, a) + εk]

+ α[Qk(s, a)− Vk(s)]
(12)

where Vk(s) = maxaQk(s, a), T is the optimal Bellman
operator Eq.(2), 0 ≤ α < ω < 2

1+γ , εk is an approximation
error at k-iteration. In general, when calculating the T Qk,
error εk is inevitable, because (1) we do not have direct ac-
cess to the optimal Bellman operator, but only some sam-
ples from it, and (2) the function space in which Q belongs
is not representative enough. Thus there would be an ap-
proximation error T Qk(s, a) + εk between the result of the
exact value iteration (VI) and approximate VI (AVI) (Munos
2007; Azar, Gómez, and Kappen 2012; Kozuno, Uchibe, and
Doya 2017; Vieillard, Pietquin, and Geist 2020; Smirnova
and Dohmatob 2020). Just for simplicity, we assume that
Q0(s, a) = 0 throughout this section.

Theorem 0.3. (Error propagation) Consider the approxi-
mate SAL algorithm defined by Eq.(12), πk is a policy greedy

6660

w.r.t. Qk(s, a), and Qπk is the unique fixed point of the Bell-
man operator T πk . If 0 ≤ α < ω < 2

1+γ , then, we have

‖Q∗ −Qπk‖ ≤ 2γ

Ak+1(1− γ)
k∑
i=0

ξiλk−iVmax

+
2γω

Ak+1(1− γ)
k−1∑
i=0

ξi‖
k−1−i∑
j=0

λk−1−i−jεj‖

where Vmax = 1
1−γRmax, Ak = 1−λk

1−λ is the weighted regu-
lar term, λ = 1− ω + α, ξ = |1− ω|+ ωγ.

The proof of the theorem is given in Appendix.
Corollary 0.1. (Kozuno, Uchibe, and Doya 2017) For ap-
proximate AL, when ω = 1, if 0 ≤ α < 1, define Vmax =
1

1−γRmax and Ak = 1−αk

1−α , we have

‖Q∗ −Qπk‖ ≤ 2γ

Ak+1(1− γ)
k∑
i=0

γiαk−iVmax

+
2γ

Ak+1(1− γ)
k−1∑
i=0

γi‖
k−1−i∑
j=0

αk−1−i−jεj‖

Remark 0.1. When α = 0 and ω = 1, we have

‖Q∗ −Qπk‖ ≤ 2γk+1

1− γ Vmax +
2γ

1− γ
k−1∑
i=0

γi‖εk−1−i‖

The conclusion is consistent with approximate modified pol-
icy iteration (AMPI) (Scherrer et al. 2015).
Remark 0.2. From the first term on the right of theorem 0.3,
by the mean value theorem, there exist θ between ξ and λ, it
has

∑k
i=0 ξ

iλk−i = (k + 1)θk, and exist θ̂ between α and
γ, it has

∑k
i=0 γ

iαk−i = (k + 1)θ̂k. Since
k∑
i=0

ξiλk−i ≥
k∑
i=0

γiαk−i ≥ γk > 0,

we have 1 > (k + 1)θk ≥ (k + 1)θ̂k ≥ γk > 0. That
is, the convergence rate of approximate SAL is much slower
than the approximate AL and approximate VI. From formula
Eq.(11), we know that the slower convergence rate can in-
crease more action-gap compared with AL.
Remark 0.3. From the second term on the right of theorem
0.3, assume error terms εk satisfy for all k, ‖εk‖ ≤ ε for
some ε ≥ 0, if 0 ≤ α < ω < 1, we ignore 2γ

1−γ , defined

SAL(ε) = ω
1− λ

1− λk+1

k∑
i=0

ξi
k−1−i∑
j=0

λk−1−i−jε,

AL(ε) =
1− α

1− αk+1

k∑
i=0

γi
k−1−i∑
j=0

αk−1−i−jε,

we have SAL(ε) ≤ AL(ε). In other words, it effectively
reduces the supremum of approximate error compared with
approximate AL. In a sense, it may make the training proce-
dure more stable, if there exist approximate error.

0 100 200 300 400 500 600
k

0

1

2

3

4

5

6

7

AL
(
)-
SA
L(
)

Figure 2: Numerical values of the error AL(ε) − SAL(ε)
with γ = 0.99, α = 0.9 and ω = 0.95, assuming ε = 1.

From the above analysis, we know that the performance of
the algorithm is bounded by the convergence rate term and
the error term. These two terms have a direct effect on the
behavior of our algorithm. Since the convergence rate of ap-
proximate SAL is much slower than the approximate AL and
approximate VI, the upper error bound of the performance is
very lower compared with approximate AL. This is benefi-
cial to alleviate incorrect action gap values. From the Figure
2, we show the difference between AL(ε) and SAL(ε). It’s
pretty straightforward to see that SAL(ε) is very different
from AL(ε) in the early stages. This result shows that this
is consistent with our motivation. The estimated Q function
obtained by the approximate value function may be more ac-
curate compared with approximate AL. In the next section,
we see that our method can effectively alleviate incorrect ac-
tion gap values.

Experiment
In this section, we present our experimental results con-
ducted over six games (Lunarlander; Asterix, Breakout,
Space invaders, Seaquest, Freeway) from Gym (Brockman
et al. 2016) and MinAtar (Young and Tian 2019). In addi-
tion, we also run some experiments on Atari games in Ap-
pendix.

Implementation and Settings
To verify the effectiveness of the smoothing advantage
learning (SAL), we replace the original optimal Bellman op-
erator used in AL (Bellemare et al. 2016) with the optimal
smooth Bellman operator. Algorithm 1 gives the detailed im-
plementation pipeline in Appendix. Basically, the only dif-
ference we made over the original algorithm is that we con-
struct a new TD target for the algorithm at each iteration,
which implements an empirical version of our SAL oper-
ator with the target network, and all the remaining is kept
unchanged. We conduct all the experiments mainly based
on (Lan et al. 2020). The test procedures are averaged over
10 test episodes every 5000 steps across 5 independent runs.
Particularly, we choose α from the set of {0.2, 0.3, 0.5, 0.9}
for AL (Bellemare et al. 2016). For SAL, we choose ω and
α among {0.2, 0.3, 0.5, 0.9}, but the hyperparameters sat-
isfy α < ω. For Munchausen-DQN (M-DQN) (Vieillard,

6661

0.0 0.3 0.6 0.9 1.2 1.5
Training steps (Million)

−100

0

100

200

300
A

ve
ra

ge
R

et
ur

n

DQN
AL
SAL

(a) LunarLander

0 1 2 3 4 5
Training steps (Million)

0

10

20

30

A
ve

ra
ge

R
et

ur
n

(b) Breakout

0 1 2 3 4 5
Training steps (Million)

0

10

20

30

40

A
ve

ra
ge

R
et

ur
n

(c) Asterix

0 1 2 3 4 5
Training steps (Million)

0

30

60

90

120

150

180

A
ve

ra
ge

R
et

ur
n

(d) Space invaders

0 1 2 3 4 5
Training steps (Million)

0

10

20

30

40

A
ve

ra
ge

R
et

ur
n

(e) Seaquest

0 1 2 3 4 5
Training steps (Million)

0

10

20

30

40

50

60

70

A
ve

ra
ge

R
et

ur
n

(f) Freeway

0 1 2 3 4 5
Training steps (Million)

0.00

0.04

0.08

0.12

A
ct

io
n

G
ap

(g) Asterix

0 1 2 3 4 5
Training steps (Million)

0.0

0.1

0.2

0.3

A
ct

io
n

G
ap

(h) Space invaders

Figure 3: Learning curves on the Gym and MinAtar environments. Performance of SAL vs. AL and DQN (a-f), and the action
gap of SAL and AL are evaluated (g-h).

0 1 2 3 4 5
Training steps (Million)

0.00

0.04

0.08

0.12

A
ct

io
n

G
ap

DQN
SAL,α=0.2,ω=0.3
SAL,α=0.2,ω=0.5
SAL,α=0.2,ω=0.9

(a) Asterix

0 1 2 3 4 5
Training steps (Million)

0.0

0.1

0.2

0.3

A
ct

io
n

G
ap

(b) Space invaders

Figure 4: The action gaps of SAL are evaluated under the
condition of α fixed.

Pietquin, and Geist 2020), we fix τ = 0.03, choose α from
the set of {0.2, 0.3, 0.5, 0.9}. Since G-VI is equivalent to M-
VI (M-DQN is a deep version of M-VI) (see the theorem 2.1
in Appendix), we don’t conduct this experiment for G-VI.
The number of target networksN is chosen from {2, 3, 5, 9}
for Average DQN (A-DQN) (Anschel, Baram, and Shimkin
2017). For a fair comparison, we optimize hyperparameter
settings for all the compared methods on each environment
before reporting the results. Please see Appendix for more
details about experimental settings.

Evaluation
Firstly, we evaluate the proposed smoothing advantage
learning algorithm (SAL) (see Algorithm 1 in Appendix)
with a series of comparative experiments (SAL vs. AL
(Bellemare et al. 2016)) on the Gym and MinAtar environ-
ments. As before, we evaluate the average of 10 test episodes
every 5000 steps across 5 independent runs. And we plot the
corresponding mean and 95% confidence interval in all fig-
ures.

0 1 2 3 4 5
Training steps (Million)

0.00

0.02

0.04

0.06

0.08

0.10

A
ct

io
n

G
ap

DQN
SAL,α=0.2,ω=0.9
SAL,α=0.3,ω=0.9
SAL,α=0.5,ω=0.9

(a) Asterix

0 1 2 3 4 5
Training steps (Million)

0.00

0.05

0.10

0.15

0.20

0.25

A
ct

io
n

G
ap

(b) Space invaders

Figure 5: The action gaps of SAL are evaluated under the
condition of ω fixed.

Figure 3 gives the results of the SAL algorithm. We ob-
served from the figure that compared to DQN, the origi-
nal AL seems to not improve the performance significantly.
And compared to DQN and the original AL, the SAL learns
slower at the early stage, but as the learning goes on, our
algorithm accelerates and finally outperforms the compared
ones at most of the time. This provides us some interest-
ing empirical evidence to support our conjecture that slow
update at the early stage of the learning procedure is benefi-
cial.

To further investigate the reason behind this, we evalu-
ate the action gap between the optimal and sub-optimal Q
values, by sampling some batches of state-action pairs from
the replay buffer, and then calculate the averaged action gap
values as the estimate. The figure (g) and (h) of Figure 3
gives the results. It shows that the action gap of SAL is two
to three times as much as that of DQN, and is much higher
than that of AL as well. From theorem 3.3, we know that
the performance of the algorithm is bounded by the conver-
gence speed term and the error term. These two terms have a

6662

Algorithm DQN DDQN A-DQN AL M-DQN SAL

LunarLander 189.11
(27.18)

179.12
(32.32)

203.01
(46.21)

224.67
(26.06)

220.31
(4.98)

234.33
(18.83)

Asterix 22.16
(2.97)

20.29
(2.65)

21.70
(2.19)

21.09
(1.18)

25.78
(2.01)

35.43
(2.92)

Breakout 18.85
(0.85)

16.17
(1.02)

17.19
(0.39)

20.25
(0.95)

28.71
(2.42)

26.95
(3.76)

Space invaders 87.41
(9.94)

83.81
(4.54)

89.54
(7.45)

106.97
(7.93)

110.25
(9.22)

155.61
(13.86)

Seaquest 25.31
(5.88)

20.50
(5.55)

25.54
(7.01)

28.29
(6.68)

41.23
(3.91)

34.70
(9.42)

Freeway 60.79
(0.65)

59.22
(0.67)

59.83
(0.76)

61.33
(0.45)

61.54
(0.18)

61.14
(0.43)

Table 1: Mean of average return for different methods in LunarLander, Asterix (Asterix-MinAtar), Breakout (Breakout-
MinAtar), Space invaders (Space invaders-MinAtar), Seaquest (Seaquest-MinAtar) and Freeway (Freeway-MinAtar) games
(standard deviation in parenthesis).

direct effect on the behavior of our algorithm. In particular,
at the early stage of learning, since the accumulated error is
very small, the performance of the algorithm is mainly dom-
inated by convergence speed term. However, since the con-
vergence rate of approximate SAL is much slower than the
approximate AL and approximate VI (see remark 3.2), we
can see that the mixing update slows down the learning in
the beginning. After a certain number of iterations, the con-
vergence speed terms of all three algorithms (SAL, AL, and
VI) become very small (as Remark 3.2 indicates, this term
decreases exponentially with the number of iterations). Con-
sequently, the performance of the algorithm is mainly deter-
mined by the second term, i.e., the accumulated error term.
This explains why at the later stage, learning stabilizes and
leads to higher performance. In fact, by comparing (c) and
(g) of Figure 3 or comparing (d) and (h) of Figure 3, one can
see that the performance acceleration stage consistently cor-
responds to the increasing the action gap stage. Intuitively,
increasing the action gap which increase the gap between
the optimal value and the sub-optimal value help to improve
the algorithm’s performance, as this helps to enhance the
network’s ability to resist error/noise and uncertainty. This
verifies our theoretical analysis.

In addition, Figure 1 and Figure 3 aren’t contradictory.
Figure 1 shows the optimal parameter α = 0.9 in the origi-
nal paper of AL. In Figure 3, we search for the best parame-
ter separately on each environment for all algorithms among
the candidates. We also try to adjust the α value of AL sep-
arately to increase the action gap in Appendix, but we find
that the performance of the AL algorithm doesn’t improve
only by increasing the action gap value. We find that the ac-
tion gap values are incorrectly increased at the early stage of
learning. It is no benefit, as the target network tends to be un-
reliable in predicting the future return. And we also see that
incorrect action gap value is rectified at a later stage. Thus,
the difficulty of learning is increased, and the performance

of the algorithm is reduced. At the same time, our method
also tries to get a larger action gap value by adjusting the pa-
rameters ω and α in Appendix. One can see that our method
can adjust the parameters ω and α to steadily increase the ac-
tion gap value. By comparing these two methods, we know
that our proposed method can effectively alleviate the bad
factors by errors, thus can learn more quickly.

Secondly, we analyze the influence of ω and α on the ac-
tion gap values in SAL. Figure 4 and Figure 5 shows the
results. It can be seen that for a fixed α value, the action gap
value is decreasing monotonically w.r.t. ω, while for a fixed
ω, the action gap value is increasing monotonically w.r.t. α.
This is consistent with our previous theoretical analyses. In
practice, we would suggest setting a higher value for α and
a lower value for ω, so as to improve our robustness against
the risk of choosing the wrong optimal action.

Finally, Table 1 gives the mean and standard deviation of
average returns for all algorithms across the six games at
the end of training. According to these quantitative results,
one can see that the performance of our proposed method is
competitive with other methods.

Conclusion
In this work, we propose a new method, called smooth-
ing advantage learning (SAL). Theoretically, by analyzing
the convergence of the SAL, we quantify the action gap
value between the optimal and sub-optimal action values,
and show that our method can lead to a larger action gap
than the vanilla AL. By controlling the trade-off between
convergence rate and the upper bound of the approximation
errors, the proposed method helps to stabilize the training
procedure. Finally, extensive empirical performance shows
our algorithm is competitive with the current state-of-the-art
algorithm, M-DQN (Vieillard, Pietquin, and Geist 2020) on
several benchmark environments.

6663

Acknowledgements
This work is partially supported by National Science Foun-
dation of China (61976115, 61732006), and National Key
R&D program of China (2021ZD0113203). We would also
like to thank the anonymous reviewers, for offering thought-
ful comments and helpful advice on earlier versions of this
work.

References
Anschel, O.; Baram, N.; and Shimkin, N. 2017. Averaged-
DQN: Variance Reduction and Stabilization for Deep Re-
inforcement Learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML, volume 70,
176–185.
Azar, M. G.; Gómez, V.; and Kappen, H. J. 2012. Dynamic
policy programming. J. Mach. Learn. Res., 13: 3207–3245.
Baird, L. C. 1999. Reinforcement learning through gradient
descent. Ph.D. Dissertation, Carnegie Mellon University.
Bellemare, M. G.; Ostrovski, G.; Guez, A.; Thomas, P. S.;
and Munos, R. 2016. Increasing the Action Gap: New Op-
erators for Reinforcement Learning. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, 1476–
1483. AAAI Press.
Bellman, R. 1958. Dynamic Programming and Stochastic
Control Processes. Inf. Control., 1(3): 228–239.
Bellman, R.; and Dreyfus, S. 1959. Functional approxima-
tions and dynamic programming. Mathematics of Computa-
tion, 13(68): 247–247.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv preprint arXiv:1606.01540.
Farahmand, A. M. 2011. Action-Gap Phenomenon in Re-
inforcement Learning. In Advances in Neural Information
Processing Systems, 172–180.
Feinberg, A. 1996. Markov Decision Processes: Discrete
Stochastic Dynamic Programming (Martin L. Puterman).
SIAM, 38(4): 689.
Ferret, J.; Pietquin, O.; and Geist, M. 2021. Self-Imitation
Advantage Learning. In AAMAS ’21: 20th International
Conference on Autonomous Agents and Multiagent Systems,
501–509. ACM.
Fu, J.; Kumar, A.; Soh, M.; and Levine, S. 2019. Diagnosing
Bottlenecks in Deep Q-learning Algorithms. In Proceedings
of the 36th International Conference on Machine Learning,
ICML, volume 97 of Proceedings of Machine Learning Re-
search, 2021–2030.
Gan, Y.; Zhang, Z.; and Tan, X. 2021. Stabilizing Q Learn-
ing Via Soft Mellowmax Operator. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, 7501–7509.
Kim, S.; Asadi, K.; Littman, M. L.; and Konidaris, G. D.
2019. DeepMellow: Removing the Need for a Target Net-
work in Deep Q-Learning. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI, 2733–2739.

Kozuno, T.; Uchibe, E.; and Doya, K. 2017. Unifying Value
Iteration, Advantage Learning, and Dynamic Policy Pro-
gramming. arXiv preprint arXiv:1710.10866.
Lan, Q.; Pan, Y.; Fyshe, A.; and White, M. 2020. Maxmin
Q-learning: Controlling the Estimation Bias of Q-learning.
In International Conference on Learning Representations,
ICLR.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous con-
trol with deep reinforcement learning. In 4th International
Conference on Learning Representations, ICLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. volume 518, 529–533.
Munos, R. 2007. Performance Bounds in Lp-norm for Ap-
proximate Value Iteration. SIAM J. Control. Optim., 46(2):
541–561.
Scherrer, B.; Ghavamzadeh, M.; Gabillon, V.; Lesner, B.;
and Geist, M. 2015. Approximate modified policy iteration
and its application to the game of Tetris. J. Mach. Learn.
Res., 16: 1629–1676.
Smirnova, E.; and Dohmatob, E. 2020. On the Conver-
gence of Smooth Regularized Approximate Value Iteration
Schemes. In Advances in Neural Information Processing
Systems.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learn-
ing: an introduction. MIT Press.
Thrun, S.; and Schwartz, A. 1993. Issues in Using Function
Approximation for Reinforcement Learning. Proceedings of
the 4th Connectionist Models Summer School Hillsdale, NJ.
Lawrence Erlbaum, 1–9.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep Rein-
forcement Learning with Double Q-Learning. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, 2094–2100.
Vieillard, N.; Pietquin, O.; and Geist, M. 2020. Munchausen
Reinforcement Learning. In Advances in Neural Informa-
tion Processing Systems.
Watkins, C. 1989. Learning from Delayed Rewards. PhD
thesis, Kings College, Cambridge.
Young, K.; and Tian, T. 2019. MinAtar: An Atari-inspired
Testbed for More Efficient Reinforcement Learning Experi-
ments.

6664

