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Abstract

Bayesian networks represent relations between variables using
a directed acyclic graph (DAG). Learning the DAG is an NP-
hard problem and exact learning algorithms are feasible only
for small sets of variables. We propose two scalable heuristics
for learning DAGs in the linear structural equation case. Our
methods learn the DAG by alternating between unconstrained
gradient descent-based step to optimize an objective function
and solving a maximum acyclic subgraph problem to enforce
acyclicity. Thanks to this decoupling, our methods scale up
beyond thousands of variables.

Introduction
Bayesian networks are probabilistic graphical models that
represent joint distributions among random variables. They
consist of a structure which is a directed acyclic graph (DAG)
representing conditional independencies and parameters that
specify local conditional distributions.

Bayesian networks can handle both discrete and contin-
uous variables. In this work, we concentrate on continuous
variables. Specifically, we study linear structural equation
models (SEMs) where the local conditional distribution in a
node is a Gaussian whose mean is a linear combination of
the values of its parents.

Traditionally, there are two main approaches for learning
DAGs. In constraint-based approach (see, e.g., (Pearl 2000;
Spirtes, Glymour, and Scheines 2000)), one performs condi-
tional independence tests and tries to construct a DAG that
expresses the same conditional independencies as the test
results. We take the score-based approach (see, e.g., (Cooper
and Herskovits 1992; Heckerman, Geiger, and Chickering
1995)) where one tries to find a DAG that maximizes a score.
Typically, one uses decomposable scores, that is, the score of
a DAG is a sum of local scores for each node-parent set pair.
This leads to a combinatorial optimization problem where
one picks a parent set for each node while satisfying the
constraint that the resulting graph is acyclic.

The combinatorial learning problem is NP-hard (Chicker-
ing 1996) and developing scalable methods is challenging.
Indeed, state-of-the-art exact learning methods scale only
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up to few hundred nodes (Cussens 2011) and scalable algo-
rithms for SEMs rely on approaches such as local modifica-
tions (Aragam, Gu, and Zhou 2019). A recent breakthrough,
NOTEARS (Zheng et al. 2018) circumvents the combina-
torial problem by formulating a continuous acyclicity con-
straint. This enables usage of gradient-based optimization
methods. The bottleneck with respect to scalability lies in
the cubic complexity for the calculation of the acyclicity
function which involves the computation of a matrix expo-
nential. GOLEM (Ng, Ghassami, and Zhang 2020) is similar
to NOTEARS but replaces the generalized LASSO objective
found in NOTEARS by a log-likelihood-based fitness func-
tion. It shares however the same computational bottleneck as
NOTEARS due to the acyclicity constraint. Some methods
circumvent this bottleneck by finding a sparse graph without
the acyclicity constraint and impose acyclicity afterwards
(Varando 2020; Yu and Gao 2020).

Our goal is to develop a fast heuristic for learning DAGs in
the linear SEM setting. In other words, we trade accuracy for
speed. We speed-up learning by decoupling the optimization
of the objective function from the acyclicity constraint in a
similar fashion as (Park and Klabjan 2017)1. At a general
level, we learn by iteratively repeating the following steps:

1. Given an acyclic graph, find a graph (possibly cyclic)
which is better in terms of the objective function value.

2. Given a cyclic graph, find an acyclic graph.

The first step can be solved efficiently using state-of-the-art
gradient-based solvers. We present two variants for this step.
ProxiMAS uses proximal gradient descent whereas OptiMAS
uses standard automatic differentiation and gradient-based
updates.

In the second step, the cyclic solution from the first step is
converted into an acyclic one. The quality of the final solution
depends crucially on the quality of this conversion. We solve
an instance of maximum acyclic subgraph (MAS) problem
which has been previously used to learn DAGs (Gillot and
Parviainen 2020). Intuitively, we prefer keeping arcs whose
weights are far from zero. Solving the MAS problem exactly
is NP-hard but there exists efficient heuristics for solving its
complement, the feedback arc set (FAS) problem (Simpson,
Srinivasan, and Thomo 2016).

1Differences are discussed in Section ”Proposed method”.
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Our experiments show that our methods can quickly find
reasonable solutions on datasets with thousands of variables
and beyond, even with modest running time. OptiMAS and
ProxiMAS perform well compared to GD, NOTEARS and
GOLEM in large-scale learning when resources are limited
in terms of processors and memory.

Background
Linear Structural Equation Models and Bayesian
Network Structure Learning
A Bayesian network is a representation of a joint proba-
bility distribution. It consists of two parts: a structure and
parameters. The structure of a Bayesian network is a DAG
G = (N,A) where N is the node set and A is the directed ad-
jacency matrix; we denote the parent set of a node v by Pav .
Parameters specify local conditional distributions P (v | Pav)
and the joint probability distribution is represented by a fac-
torization

P (N) =
∏
v∈N

P (v | Pav).

We consider linear structural equation models (SEMs)
where local conditional distributions are Gaussian distribu-
tions whose mean is a linear combination of the values of
the parents of the variable. The structure of a linear SEM
is determined by a weights matrix W ∈ Rd×d; W (i, j) is
non-zero if and only if A(i, j) = 1, that is, there is an arc
from i to j. For a d-dimensional data vector x, we have

x = xW + e,

where e is a d-dimensional noise vector. The elements of e
are independent of each other.

The goal in Bayesian network structure learning is to find
a DAG G that fits the data. We are given a data matrix X ∈
Rn×d with n samples of d-dimensional vectors. Our goal is
to find a weights matrix W ∈ Rd×d that represents an acyclic
graph. To quantify how well the DAG and the weights fit
the data, we can use the least-squares loss 1

2n∥XW −X∥22.
Furthermore, we want to induce sparsity and therefore we add
a regularization term g(W ), which we require to be convex.
This leads to the following optimization problem.

argmin
W

1

2n
∥XW −X∥22 + λ1g(W )

s.t. W is acyclic.
(1)

In the above formulation, λ1 is a user-defined constant that
determines the strength of regularization. To induce sparsity,
we regularize with L1-norm, that is, g(W ) = ∥W∥1 =∑

i,j |W (i, j)|.

Maximum Acyclic Subgraph and Feedback Arc Set
Formally, the maximum acyclic subgraph (MAS) problem is
defined as follows. We are given a directed graph G = (V,E)
and a weight function w(e) that assigns a weight for each
arc e ∈ E. The goal is to find an acyclic graph G′ = (V,E′)
such that E′ ⊆ E and

∑
e∈E′ w(e) is maximized.

The maximum acyclic subgraph problem has a dual (or
complementary) problem: the feedback arc set (FAS) prob-
lem. In FAS, we are given a directed graph G = (V,E)

and a weight function w(e) just like in MAS. The goal
is to find an arc set E′′ such that G′′ = (V,E \ E′′) is
acyclic and

∑
e∈E′′ w(e) is minimized. It is well known that

E′ = E \E′′. Thus, MAS can be solved by first solving FAS
and then performing a simple subtraction of sets to obtain the
corresponding solution to MAS.

Both MAS and FAS are NP-hard (Karp 1972). There-
fore, exact algorithms are intractable on large graphs. Fortu-
nately, there exists fast heuristics for FAS (Berger and Shor
1990; Eades, Lin, and Smyth 1993; Simpson, Srinivasan, and
Thomo 2016).

Proposed Method
A critical difficulty in solving Equation 1 stems from a com-
bination of two problems:
• The quadratic objective function for the linear SEM prob-

lem has at most nd3 quadratic terms. Indeed, the quadratic
expression ∥XW − X∥22 is a sum of n×d squared ex-
pressions

(
(XW )i,j −Xi,j

)2
, where each (XW )i,j is a

linear expression consisting of d terms. As X is a contin-
uous data matrix, one can rarely simplify the quadratic
objective function significantly.

• Enforcing acyclicity. Standard constraints lead to NP-
hard combinatorial problems. In the continuous setting, a
smooth function exists that encodes acyclicity but with a
prohibitive cubic complexity.

The main contribution of this work therefore is to address
these two concerns. First, we decompose the quadratic op-
timization problem into a sequence of easier subproblems
using iterative optimization techniques. Second, we separate
entirely the quadratic optimization from the acyclicity con-
straints. Acyclicity is enforced by solving a MAS task as a
proxy. The outline of the proposed method is shown in Al-
gorithm 1 which iteratively does the following steps at each
iteration k:
1. A new objective function is created based on the acyclic

solution Wk−1 obtained at the end of the previous itera-
tion, which penalizes the original linear SEM objective
by the least-square term λ2

2 ∥W −Wk−1∥22.
2. An optimization step is performed on the MAS-penalized

problem, leading to a new cyclic solution W̃k.
3. An acyclic projection Wk of the previously obtained

cyclic solution W̃k is extracted, based on the squared
values of W̃k. Formally, we attempt to compute Wk =

W̃k ⊙Ak, where Ak is the solution of the following MAS
problem:

Ak = argmax
A

∑
i,j

|W̃k(i, j)|2A(i, j)

s.t. A ∈ {0,1}d×d is acyclic.
(2)

As mentioned before, finding optimal solutions for MAS
is usually too time consuming and one has to resort to
heuristics. We use a vectorized version of the approxima-
tion algorithm by Eades (Eades, Lin, and Smyth 1993)
to find the acyclic weighted adjacency matrix Wk (Algo-
rithm 2).
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Intuitively, steps 1-2 are designed such that the updated
weights matrix W̃k will be constrained to remain in the vicin-
ity of the previously found acyclic solution Wk−1 returned
by the MAS heuristic. In that sense, we approximate the
acyclicity function used in NOTEARS and GOLEM by a pro-
jection term toward acyclic solutions which is much easier to
compute and differentiate. Step 3 aims to preserve edges that
represent the most important dependencies. In other words,
we want to keep the weights that are far from zero. Solving
MAS using weights that are squares of the original weights is
equivalent to minimizing ∥Wk − W̃k∥2, which corresponds
to finding the acyclic solutions that are closest to the cyclic
solutions returned by the iterative optimization process. By
alternating between optimization steps and MAS extractions
via the repetition of steps 1-3, we aim to navigate through the
search space of the original linear SEM problem by “follow-
ing the trail” of a sequence of dynamically generated acyclic
solutions.

The GD algorithm introduced by Park and Klabjan (2017)
follows a similar strategy. It proceeds by repeating the three
following steps: 1) make a gradient step for the linear SEM
objective, 2) project the current cyclic solution to its MAS
solution and 3) fit the linear SEM problem constrained by
the newly found acyclic structure; as an optional fourth
step, when the progress is too small they resort to an order-
swapping heuristic. The main difference compared to our
method is that we do not perform steps 3 and 4. The GD algo-
rithm is greedier than our method, since we do not attempt to
optimize the parameters of every discovered acyclic structure.
From a practical standpoint, at each step of the GD algorithm,
d LASSO instances have to be solved which becomes in-
tractable for large-scale structure learning. In comparison, by
directly plugging in step 1 the MAS projections to the linear
SEM objective as dynamically evolving penalization terms,
our approach circumvents entirely the need to solve these
LASSO instances.

Connection with Online Convex Optimization
Perhaps surprisingly, the dynamic nature of the proposed op-
timization procedure is not particularly challenging to work
with in practice. Algorithm 1 can, indeed, be seen as a special
case of an online convex optimization (OCO) problem. In his
seminal paper, Zinkevich (2003) introduces this framework
which he defines as such:

• F ⊂ Rn is a feasible set (assumed bounded, closed and
non-empty).

• (ck)k is an infinite sequence of smooth convex functions
from F to R, with bounded gradients.

• At each step k, an element xk ∈ F is selected, then
assigned the cost ck(xk).

In OCO, the standard optimization error becomes ill-defined
and one seeks to optimize instead the so-called regret defined
as

regret =
∑
k≤K

ck(xk)−min
x∈F

∑
k≤K

ck(x).

Zinkevich was the first to extend the gradient descent al-
gorithm to its online form. It is well known that assuming

convexity of the ck and boundedness of the gradients, on-
line gradient descent achieves O(

√
K) regret bound and this

bound is improved to O
(
log(K)

)
assuming strong convexity

of the ck (Hazan 2019). More general classes of OCO algo-
rithms have been studied (Hu, Pan, and Kwok 2009; Zhao,
Qiu, and Liu 2018), notably (accelerated) proximal gradi-
ent descent algorithms concerned about composite convex
functions of the form ϕk = fk + g where only the fk are
smooth. Improved regret bounds again hold assuming strong
convexity of the ϕk.

The proposed method is therefore theoretically well be-
haved: by considering the functions fk : W 7→ 1

2n∥XW −
X∥22 + λ2

2 ∥W −Wk−1∥22 and ϕk : W 7→ fk(W ) + λ1g(W )
(Algorithm 1 line 2), notice that every ϕk is λ2-strongly con-
vex since for each k, the function W 7→ ϕk(W )− λ2

2 ∥W −
Wk−1∥22 = 1

2n∥XW−X∥22+λ1g(W ) is convex; Algorithm
1 therefore inherits aforementioned regret bounds from the
OCO setting assuming boundedness of the gradients.

Implementation Details
We implemented two variants of the proposed method:

• The first implementation, ProxiMAS, is designed to take
full advantage of the properties of the objective functions
ϕk, owing to the decoupling with acyclicity. Recall that
we have fk : W 7→ 1

2n∥XW −X∥22+ λ2

2 ∥W −Wk−1∥22
and ϕk : W 7→ fk(W ) + λ1g(W ), where g is con-
vex and the fk are smooth and convex. By smooth, we
mean that every fk is differentiable with its gradient de-
fined as ∇fk(W ) = 1

nX
tX(W − I) + λ2(W −Wk−1)

and one can easily show that every fk has a Lipschitz-
continuous gradient with optimal Lipschitz constant Lk

upper-bounded by L = 1
n∥X

tX + nλ2I∥2, a value that
does not depend on k. We can therefore use a proximal gra-
dient descent optimization scheme as a backbone for our
implementation, hence the name ProxiMAS. In practice,
we use the FISTA algorithm (Beck and Teboulle 2009), an
accelerated proximal algorithm with O( 1

k2 ) convergence
rate (where k is the number of steps in an offline optimiza-
tion setting). One should notice that the running time of
ProxiMAS does not depend on the number of samples n,
since the proximal updates depend only on the covariance
matrix XtX ∈ Rd×d which can be pre-computed.

• The second implementation, OptiMAS, replaces the prox-
imal gradient descent by gradient descent-like steps. The
main interest in doing so is that automatic differentia-
tion will handle the optimization using a generic gradient
descent-based solver. Despite the linear SEM objective
being non-differentiable when the regularization term is
the L1 norm, automatic differentiation frameworks can in
practice optimize such non-smooth objective. Thus, Opti-
MAS is agnostic to the choice of the optimizer. In princi-
ple, one can use any variant of gradient-based optimizers.
In our implementation, we have used Adam (Kingma and
Ba 2015) as a backbone for automatic differentiation.

We stress that both variants are taking full advantage of vec-
torization and are thus GPU accelerated, first because we
lifted the need to solve a sequence of LASSO instances at
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Algorithm 1: Proposed method

Require: Data X∈Rn×d, initialization W0∈Rd×d, number
of iterations K, λ1 > 0, λ2 > 0, optimizer

Ensure: Approximate solution to Equation 1
1: for 1 ≤ k ≤ K do
2: Define fk :W 7→ 1

2n∥XW−X∥22+ λ2

2 ∥W−Wk−1∥22
—-aaa ϕk :W 7→ fk(W ) + λ1g(W )

3: Do a descent step on ϕk: W̃k =step(ϕk, optimizer)
4: Project updated weights to their MAS approximation:

Wk = greedy MAS
(
W̃k

)
5: end for
6: return WK

Algorithm 2: Vectorized greedy MAS

Require: W̃ ∈Rd×d

Ensure: Approximate solution to Equation 2
1: Ŵ = W̃ ⊙ W̃
2: scores = Ŵ.sum(dim=0)
3: order = zeros(size=d)
4: ub = (d+ 1)×max(scores)
5: for 0 ≤ i < d do
6: node = argmin(scores)
7: order[−(i+ 1)] = node
8: scores[node] = ub
9: scores = scores − Ŵ [node, :]

10: end for
11: order−1 = argsort(order)
12: W = triangle low

(
W̃ [order, order]

)
[order−1, order−1]

13: return W

each step, second because the MAS heuristic (Algorithm 2)
is efficiently vectorized and runs quasi-linearly with respect
to the number of nodes d when a GPU is available.

Experiments
We now present our experimental pipeline. We choose to
compare the proposed algorithms (ProxiMAS and OptiMAS)
against an iterative method (GD (Park and Klabjan 2017))
and the current state-of-the-art methods for sparse linear
SEM structure recovery (NOTEARS (Zheng et al. 2018) and
GOLEM (Ng, Ghassami, and Zhang 2020)).

Data Generation
We adopt a similar setup as in (Zheng et al. 2018; Ng, Ghas-
sami, and Zhang 2020): we first generate random DAGs based
on Erdős-Rényi (”ER”) and scale-free (”SF”) models. We
consider three sparsity regimes: sampled DAGs have k × d
edges, where d is the number of nodes and k ∈ {1, 2, 4}.
Graphs are denoted by ”ERk” or ”SFk” depending on their
graph model and sparsity. Then, we generate the weighted
adjacency matrices W by assigning random weights uni-
formly sampled in the range [−2,−0.5] ∪ [0.5, 2]. Finally,

we generate samples X following the linear SEM model:
X = E(I −W )−1, where E ∈ Rn×d represents n i.i.d. sam-
ples from either a Gaussian, exponential or Gumbel distribu-
tion in Rd. For all distributions, we investigate both the equal
variance (”EV”) setting with scale 1.0 for all variables and
the non-equal variance (”NV”) setting where every variable
has its scale sampled uniformly in the range [0.5, 1.5]. Unless
stated otherwise, n samples are generated both for the train-
ing data and for the validation data, with n ∈ {1000, 10000}.

Metrics
In order to evaluate the performance of the different meth-
ods, we compute the false negative rate (FNR), false positive
rate (FPR) and the normalized structural Hamming distance
(SHD) between predicted and groundtruth adjacency matri-
ces. We proceed similarly with the undirected adjacency ma-
trices. The Gaussian negative log-likelihood is also computed
on the validation data (unseen during training). Aforemen-
tioned metrics are extracted at different thresholding values
of the predicted weights matrices. Different methods behave
differently at a fixed thresholding value. For example, we
observed in our large-scale tests with limited running time
that, for any fixed threshold, OptiMAS tends to produce sig-
nificantly sparser graphs than NOTEARS and GOLEM. Thus,
OptiMAS has lower FPR and higher FNR. In order to get a
general performance score independent from the choice of a
thresholding value, we additionally consider the average pre-
cision score as implemented in the scikit-learn package. This
metric is robust against strong class imbalance as it occurs
in large-scale sparse structure recovery. For brevity, only a
fraction of the figures are shown in this paper.

Implementation
The two proposed methods (ProxiMAS and OptiMAS) are
implemented in pytorch 1.8. The GOLEM method comes in
two variations GOLEM-EV and GOLEM-NV originally im-
plemented in tensorflow. In order to streamline benchmarking
these variations were re-implemented in pytorch. The tensor-
flow and pytorch implementations were compared at fixed
seed and produce nearly identical results given the same
data; speedwise, we found the difference between the two
implementations to be insignificant for large scale graphs
with thousands of nodes. The original implementation of
NOTEARS relies on a L-BFGS-B solver implemented in
scipy and as mentioned in (Ng, Ghassami, and Zhang 2020)
it does not scale to large instances with thousands of vari-
ables, thus for fairness we re-implemented it in pytorch as
well. The existing implementation of the GD algorithm is
written in R and uses the highly optimized package glmnet,
thus we did not alter the implementation. All methods have
full GPU support, with the exception of GD which relies on
the LASSO implementation from the glmnet package and
is restricted to CPU. For equal comparison, all methods are
tested in a multi-threaded setting, without GPU.

Hyperparameters
All the tested methods have a hyperparameter λ1 to pro-
mote sparsity; an additional hyperparameter λ2 exists for all
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tested methods except GD to enforce ”dagness” (see Table
1). The values of these two hyperparameters yield different
behavior depending on the method. The chosen value of
λ1 for NOTEARS and the chosen values of λ1 and λ2 for
GOLEM are those recommended by their authors. The orig-
inal NOTEARS implementation is based on an augmented
Lagrangian method and does not use the λ2 hyperparameter.
We added this hyperparameter to our pytorch implementation
of NOTEARS the same way as in the GOLEM implementa-
tion. We do not claim to have performed any model selection,
but chose values that worked well in our tests.

λ1 λ2

OptiMAS 0.1 20.0
ProxiMAS 0.1 20.0
NOTEARS 0.1 5.0
GOLEM-EV/NV 0.02/0.002 5.0
GD 0.1 -

Table 1: Sparsity (λ1) and dagness (λ2) hyperparameters

Additionally, in all experiments ProxiMAS and OptiMAS
are configured to start enforcing acyclicity after 50 minutes
of solving time, whereas NOTEARS and GOLEM enforce
acyclicity the entire time as in their original papers. As sug-
gested in (Ng, Ghassami, and Zhang 2020), we warm-start
GOLEM-NV with a solution returned by GOLEM-EV when
working on NV-generated data: the first half of the allowed
running time runs GOLEM-EV whereas the second half runs
GOLEM-NV. Finally, the methods that rely on automatic dif-
ferentiation (NOTEARS, GOLEM and OptiMAS) all use the
Adam optimizer (Kingma and Ba 2015) with default learning
rate 0.001 as in (Ng, Ghassami, and Zhang 2020).

Benchmarking Pipeline
We present three different experiments to emphasize the ad-
vantageous scaling of the proposed methods comparatively
to the state of the art. The experiments were run on a cluster
with Intel Xeon-Gold 6138 2.0 GHz / 6230 2.1 GHz CPUs.
The number of cores and amount of memory used in each
experiment are shown in Tables 2, 3, 4.

Results

Parameters Values
d 1000, 5000
k 1, 2, 4
n 1000, 10000
Graph type ER, SF
Noise type Gaussian, exponential, Gumbel
Scale type EV, NV
Repetitions 10
Total instances 1440
CPU cores 4
Memory (GB) 16
Runtime (h) 1

Table 2: Experiment 1 parameters

In the first experiment (see Table 2), we generated data
with different noise models. We show selected results in Fig-
ures 1, 2. OptiMAS and ProxiMAS outperform the bench-

Gaussian-EV

Gaussian-NV

Figure 1: Mean average precisions for Gaussian noise distri-
butions (EV and NV), d = number of nodes, n = number of
samples. Confidence intervals show the standard deviation.
Statistics are computed over 10 datasets.

mark methods in most instances, especially when d = 5000.
Generally, GD performs equally good as OptiMAS and Prox-
iMAS when d = 1000 or n = 1000. However, it becomes
slow when datasets grow. Especially, GD usually fails to even
find a solution when there are lots of samples (n = 10000).
Most of the time, NOTEARS and GOLEM are on par with
GD or slightly better. Comparing OptiMAS and ProxiMAS,
we notice that their performance is usually similar to each
other. The main difference is that OptiMAS performs signifi-
cantly better on more complex graphs (ER4) with d = 1000;
we suspect this important disparity to be caused by numerical
instabilities.

We also wanted to analyze how the available running time
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Exponential-EV

Gumbel-EV

Figure 2: Mean average precisions for non-Gaussian noise
distributions (EV), d = number of nodes, n = number of
samples. Confidence intervals show the standard deviation.
Statistics are computed over 10 datasets.

Parameters Values
d 5000
k 1
n 1000, 10000
Graph type ER
Noise type Gaussian
Scale type EV, NV
Repetitions 1
Total instances 4
CPU cores 4
Memory (GB) 16
Runtime (h) 24

Table 3: Experiment 2 parameters

affected each method. Therefore, we generated datasets from
an ER1 model with 5000 nodes and Gaussian noise (see Ta-
ble 3) and let all methods run for 24 hours. We recorded a
snapshot of the weights matrix W every hour. Average preci-
sions in the EV case are shown in Figure 3. We observe that

Figure 3: Average precision measured at different time points.
Data generated from ER1 with 5000 nodes and Gaussian-EV
noise. Note that on the top plot, the curves for OptiMAS and
ProxiMAS are overlapping.

both OptiMAS and ProxiMAS find good solutions quickly.
However, improvement after the first hour is negligible. GD
starts slowly but eventually catches up with OptiMAS and
ProxiMAS and often ends up with a slightly better solution.
As in Experiment 1, we notice that the scalability of GD suf-
fers from having lots of observations. Initially, NOTEARS is
far behind but keeps improving significantly afterwards and
after 24 hours it has found a solution that is almost as good
as the ones found by OptiMAS and ProxiMAS. GOLEM
performs similarly with NOTEARS when there are 10000
samples but struggles with 1000 samples.

Parameters Values
d 5000, 10000, 15000, 20000
k 1
n 1000, 10000
Graph type ER
Noise type Gaussian
Scale type EV
Repetitions 1
Total instances 8
CPU cores 32
Memory (GB) 128
Runtime (h) 1

Table 4: Experiment 3 parameters

Next, we study the scalability of the different methods. To
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this end, we generated datasets from an ER1 model with vary-
ing number of nodes between 5000 and 20000 and Gaussian-
EV noise (see Table 4). All methods were given 1 hour run-
ning time. Average precisions are shown in Figure 4. We

Figure 4: Scalability of different methods. Average precision
is measured for different number of nodes d. Data generated
from ER1 with Gaussian-EV noise.

notice that with 1000 samples the average precision for Op-
tiMAS is high for all dataset sizes and decreases only little
when the number of nodes grows. However, with 10000 sam-
ples average precision drops faster when the number of nodes
grows. This may seem counter-intuitive as one would expect
that more observations would lead to better performance. The
likely explanation for this behavior is that, due to the fixed
running time, OptiMAS performed fewer iterations and this
countered the effect of increasing the number of observations
at this scale. We can contrast this behavior to ProxiMAS
whose running time does not depend on the number of obser-
vations. With n = 1000, ProxiMAS starts with nearly as high
average precision as OptiMAS but its performance deterio-
rates quickly after 10000 nodes. However, with n = 10000,
the drop is less significant and ProxiMAS clearly outper-
forms OptiMAS when there are 10000 or more nodes. We
also notice that GOLEM and NOTEARS struggle to learn
anything within an hour when there are more than 10000
nodes. GD performs better than GOLEM and NOTEARS
when n = 1000 but when n = 10000 it only finds a solution
for d = 5000 in the imparted time.

Table 5 shows rough memory usage of the different meth-
ods and their time per iteration (with acyclicity enforced for
NOTEARS, GOLEM, OptiMAS and ProxiMAS) when the
number of samples is small comparatively to the number of
nodes (n < d). We see that in this regime, OptiMAS is the
most time and memory efficient. ProxiMAS uses more time
and memory than OptiMAS but much less than NOTEARS
and GOLEM, while GD falls in between. Time per iteration
for GD is very inconsistent due to the order-swapping heuris-

tic it uses at certain iterations, thus we omitted it; as a rule,
we observed that GD scales very unfavorably with respect to
the number of samples especially.

Memory (GB) Time/iteration (s)
d (×1000) 5 10 15 20 5 10 15 20

OptiMAS 1 6 13 24 1 2 4 6
ProxiMAS 1 7 14 25 1 3 7 13
NOTEARS 6 23 52 92 6 40 100 250
GOLEM 6 23 53 94 6 45 120 280
GD 4 12 27 47 − − − −

Table 5: Estimation of the memory usage and time per itera-
tion (32 cores, ER1, Gaussian-EV, n = 1000)

Discussion
We presented two different heuristics (ProxiMAS and Opti-
MAS) for the structure recovery problem in the linear SEM
case, revolving around a decoupling of the acyclicity con-
straints from the continuous optimization itself. We observed
that both methods have excellent scaling (both space and
time). OptiMAS scales particularly well when the number of
samples n is small. On the contrary, ProxiMAS has invariant
scaling with respect to n and scales in practice better than
OptiMAS when the number of samples is large.

In our observations, both ProxiMAS and OptiMAS tend to
get stuck on local extremum: the sequence of acyclic DAGs
returned by the two methods is conditioned by the initial
cyclic solution provided to them. This drawback can be alle-
viated by “warm-starting”: run the algorithm initially without
the MAS penalization and extraction steps (Algorithm 1 lines
2 and 4), then add these steps at some point during the execu-
tion. This strategy is made viable since a single MAS step is
enough to guarantee acyclicity. Our experiments show that
in practice, very good DAGs can be found even when most
of the running time is dedicated to fitting the model without
enforcing acyclicity.

Based on our experiments, OptiMAS and ProxiMAS are
most competitive in situations where there is a large number
of nodes and limited amount of computational resources. If
there are a couple of thousands of nodes or less, the current
state of the art is preferred. Similarly, if one can afford to
run GD, NOTEARS or GOLEM for a long enough period
of time, these algorithms will eventually outperform Proxi-
MAS/OptiMAS. However, in such a situation one could use
OptiMAS or ProxiMAS to find an initial solution and use it
to “warm-start” GD, NOTEARS or GOLEM.

Another limitation of our methods is that it is unclear at
the moment how the theoretical results from online convex
optimization translate with respect to the original problem.
Currently, we are not aware of any necessary condition for
local convergence of the proposed methods. This opens up
an avenue of future research: Can we prove anything about
the quality of the solutions? Can we say something for a
specific type of data? Does the fact that we use a heuristic to
find a maximum acyclic subgraph have an impact and would
improving MAS also translate in better structure learning?
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