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Abstract

When designing algorithms for finite-time-horizon episodic
reinforcement learning problems, a common approach is to
introduce a fictitious discount factor and use stationary poli-
cies for approximations. Empirically, it has been shown that
the fictitious discount factor helps reduce variance, and sta-
tionary policies serve to save the per-iteration computational
cost. Theoretically, however, there is no existing work on
convergence analysis for algorithms with this fictitious dis-
count recipe. This paper takes the first step towards analyz-
ing these algorithms. It focuses on two vanilla policy gradi-
ent (VPG) variants: the first being a widely used variant with
discounted advantage estimations (DAE), the second with an
additional fictitious discount factor in the score functions of
the policy gradient estimators. Non-asymptotic convergence
guarantees are established for both algorithms, and the addi-
tional discount factor is shown to reduce the bias introduced
in DAE and thus improve the algorithm convergence asymp-
totically. A key ingredient of our analysis is to connect three
settings of Markov decision processes (MDPs): the finite-
time-horizon, the average reward and the discounted settings.
To our best knowledge, this is the first theoretical guarantee
on fictitious discount algorithms for the episodic reinforce-
ment learning of finite-time-horizon MDPs, which also leads
to the (first) global convergence of policy gradient methods
for finite-time-horizon episodic reinforcement learning.

1 Introduction
This paper studies episodic reinforcement learning with each
episode consisting of a finite-time-horizon Markov decision
process (MDP). For such finite-time-horizon episodic rein-
forcement learning problems, a popular heuristic approach
is to introduce a fictitious discount factor and use station-
ary policies when designing algorithms; see for instance, the
renowned DQN (Mnih et al. 2015), DDPG (Lillicrap et al.
2015), and recent works of (François-Lavet, Fonteneau, and
Ernst 2015; Xu, van Hasselt, and Silver 2018; Burda et al.
2018; Hessel et al. 2018; Fedus et al. 2019; Tessler and Man-
nor 2020).

Empirically, it has been shown that discount factors serve
to reduce variance (Thomas 2014; Haarnoja et al. 2017),
and stationary policies help save per-iteration computational
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costs. Theoretically, fictitious discount algorithms designed
for average reward MDPs have been analyzed (Marbach
1998; Marbach and Tsitsiklis 2001) and the asymptotic local
convergence1 has been established (Marbach and Tsitsiklis
2003).

It remains open, however, to establish the non-asymptotic
global convergence for this fictitious-discount-factor ap-
proach in the finite-time-horizon framework. The major
challenges are to characterize the bias introduced by the dis-
count factor, and to close the gap between the non-stationary
optimal policies for finite-time-horizon MDPs and the sta-
tionary algorithm policies.

This paper takes the first steps towards rigorously ana-
lyzing the global and non-asymptotic convergence of fic-
titious discount algorithms for finite-time-horizon episodic
reinforcement learning. It focuses on the convergence anal-
ysis of two concrete algorithms in the context of policy gra-
dient methods. The first one is a widely used variant of the
vanilla policy gradient (VPG) method with discounted ad-
vantage estimations (DAE). This variant was originally pro-
posed for average reward problems (Marbach 1998; Bax-
ter and Bartlett 1999, 2001; Marbach and Tsitsiklis 2001),
later extended to episodic deep reinforcement learning set-
ting (Schulman et al. 2015b) and implemented in popular
solvers such as Spinning Up (Achiam 2018). The second one
is a new doubly discounted variant of VPG, with the intro-
duction of an additional fictitious discount factor in the score
functions of the policy gradient estimators. This additional
discount factor is shown to help reduce the bias in DAE and
thus improve asymptotically the algorithm convergence.

Our approach. There are three main ingredients in our
analysis. The first is establishing quantitative connections
among three settings of MDPs: the finite-time-horizon, the
average award, and the discounted settings (cf. §2). These
relations enable us to connect the finite-time-horizon sub-
optimality gap with the average reward (cf. Theorem 14) and
the discounted (cf. Theorem 18) ones. The second is utiliz-
ing the convergence property of value iteration algorithms to
analyze the gap between the stationary policies of the aver-
age reward MDPs and the non-stationary optimal policies of

1In this paper, “local convergence” indicates convergence to sta-
tionary points of value functions, and “global convergence” means
convergence in terms of the value function sub-optimality gaps.
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the finite-time-horizon MDPs (cf. Lemma 6). The third one
is deriving the gradient domination (cf. Lemma 8) and Lips-
chitz gradient (cf. Lemma 10) properties for average reward
MDPs, which is critical to obtain the sub-optimality of algo-
rithm policies for the average reward problem (cf. Theorem
13).

Contributions. The contributions of this paper are two-fold:

• It establishes the first (and non-asymptotic) connections
between (a) the sub-optimality gap in finite-time-horizon
MDPs and (b) the sub-optimality gaps in the average re-
ward and the discounted reformulations (cf. Theorems 14
and 18).

• It obtains, for the first time, theoretical guarantees on fic-
titious discount algorithms for the episodic reinforcement
learning of finite-time-horizon MDPs (cf. Theorems 15
and 19). The convergence is global, and not asymptotic.
Moreover, it demonstrates explicit dependencies on both
the time horizon and the fictitious discount factor. The
analysis in this paper leads to the first global conver-
gence of policy gradient methods for finite-time-horizon
episodic reinforcement learning.

Related work. Since the seminal work of D. Blackwell
(Blackwell 1962), earlier works on the relationship among
different settings of MDPs have been focusing on the dis-
counted and average reward settings (Hordijk and Yushke-
vich 2002; Lasserre 1988; Kakade 2001a; Lewis and Put-
erman 2002; Mahadevan 1996; Schneckenreither 2020). In
contrast, our focus is on the remaining two relations, namely
(i) the connection between the finite-time-horizon and the
discounted problems and (ii) the connection between the
finite-time-horizon and the average reward problems.

Theoretical study on policy gradient methods started with
the asymptotic local convergence (Sutton et al. 2000; Konda
and Tsitsiklis 2003; Marbach and Tsitsiklis 2001). Later,
non-asymptotic rate of such local convergence has been es-
tablished in a series of works (Papini et al. 2018; Xu, Gao,
and Gu 2019). Recently, more attention has been shifted to
the global convergence of policy gradient methods. How-
ever, the majority of these results have been on the dis-
counted settings (Zhang et al. 2019; Bhandari and Russo
2019; Agarwal et al. 2019b; Wang et al. 2019; Shani, Efroni,
and Mannor 2019; Mei et al. 2020; Cen et al. 2020; Zhang
et al. 2020b). Recent progress has been made on a particu-
lar class of finite-time-horizon MDPs, i.e., linear quadratic
finite-time-horizon MDPs and their variants (Hambly, Xu,
and Yang 2020) (Zhang et al. 2021), (Hambly, Xu, and Yang
2021). This paper, instead, studies global convergence of
policy gradient methods for finite-time-horizon, finite-state-
action MDPs with general dynamics and rewards.

Outline. §2 introduces three settings of MDPs and their
mutual connections. §3 introduces DAE REINFORCE and
establishes its global sub-optimality guarantee. A doubly
discounted variant is then proposed in §4 with its global
convergence analysis, showing the benefits of the additional
discount factor. §5 concludes.

2 Problem Setup and Preliminaries
2.1 Problem Setup
Consider a Markov decision process M with a finite
state space S = {1, . . . , S}, a finite action space A =
{1, . . . , A}, a transition probability p(s′|s, a) for the prob-
ability of transitioning from state s to state s′ when taking
action a, and a reward function r(s, a) denoting the (deter-
ministic) instantaneous reward for taking action a in state
s. Here, the initial state is assumed to follow a distribution
ρ ∈ P(S), where P(S) ⊆ R|S| denotes the set of probabil-
ity measures on over the set S . Denote Rmax the maximum
reward such that Rmax = maxs∈S,a∈A |r(s, a)|.

The focus of this paper is the finite-time-horizon MDP.
Given a finite time horizon H ≥ 1, decisions are made in
the duration of timestamps from h = 0 to h = H − 1. This
duration is also referred to as an “episode”. Such a horizon
can either be naturally defined by the expiration time (e.g.,
the length of a video game) or manually specified by the de-
cision maker (e.g., the length of affordable decision period).
A (randomized) policy π : S → P(A) is a mapping from
the state space to a distribution over the action space. For
notational simplicity, we use π(a|s) to denote the a-th en-
try of π(s), i.e., the probability of taking action a at state
s under a policy π. Then for any (randomized) policy se-
quence πH = {πh}H−1

h=0 , the performance metric V H(πH)
is the mean reward collected over the finite horizon episode
of length H , i.e.,

V H(πH) =
1

H
E
∑H−1

h=0
r(sh, ah), (1)

where s0 ∼ ρ, ah ∼ πh(sh) and sh+1 ∼ p(·|sh, ah) for
h = 0, . . . ,H − 2. The finite-time-horizon problem is the
following optimization problem:

maximizeπH={π0,...,πH−1} V
H(πH). (2)

Note that the optimal policy sequence πH,? = {πH,?h }H−1
h=0

of problem (2) may be nonstationary, and we write V H,? =
V H(πH,?). When the policy sequence πH = {π}H−1

h=0 is
stationary, we will write it as π for notational simplicity.
Here and below we use Pπ ∈ RS×S to denote the transi-
tion probability of the Markov chain induced by policy π,
i.e., Pπ(s, s′) =

∑
a∈A p(s

′|s, a)π(a|s).
Throughout this paper, we make the following assump-

tion as in (Ortner 2020). Note that this assumption naturally
holds when the transition probability p is component-wisely
positive.
Assumption 1. For any deterministic stationary policy π,
the induced Markov chain with transition matrix Pπ is irre-
ducible and aperiodic.

With Assumption 1, we have the following proposition.
Proposition 1. Given Assumption 1, then there exist con-
stants Cp,S,A > 1 and αp,S,A ∈ [0, 1) that depend only on
the transition probability model p, number of states S and
number of actions A of the MDPM, such that for any pol-
icy π and h ≥ 0,

dTV(ρPhπ , µπ) ≤ Cp,S,Aαhp,S,A, (3)
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where µπ is the (unique) stationary distribution of the tran-
sition matrix Pπ .

The analysis of the above finite-time-horizon MDP will
rely on two related MDPs: the average reward problem and
the discounted one, both of which have stationary optimal
policies under Assumption 1.

Discounted problem. It is to consider an infinite horizon
and solve for

maximizeπ={πh}∞h=0
V γ(π)

with

V γ(π) = (1− γ)E
∑∞

h=0
γhr(sh, ah),

where s0 ∼ ρ, ah ∼ πh(sh) and sh+1 ∼ p(·|sh, ah) for
h ≥ 0. Here γ ∈ [0, 1) is the discount factor, penaliz-
ing future rewards. It is well-known that for this discounted
problem, there exists a stationary optimal policy sequence
πγ,? = {πγ,?h }∞h=0, where all πγ,?h = πγ,? (h ≥ 0) are equal
(Puterman 2014). Similarly, we denote V γ,? = V γ(πγ,?).
Again, when the policy sequence π = {π}∞h=0 is stationary,
we will write it as π for notational simplicity.

Average reward problem. The infinite horizon average
reward of a (stationary) policy π is defined as

η(π) = lim
H→∞

V H(π) = lim
H→∞

1

H
E
H−1∑
h=0

r(sh, ah)

=
∑

s∈S, a∈A
µπ(s)π(a|s)r(s, a),

(4)

where µπ is defined in Proposition 1. The goal is to find π
that maximizes η(·). Note η(π) is well-defined as the limit
in (4) is guaranteed to exist and be finite, and independent of
the initial state distribution ρ under Assumption 1 (Puterman
2014). Since |η(π)| ≤ Rmax and the set of all (stationary)
policies (viewed as a subset RSA) is compact, the optimal
(stationary) policy π? (that maximizes η(·)) exists and we
denote the corresponding value function as η? = η(π?).

2.2 Connections of Finite-time-horizon with
Discounted and Average Reward Problems

Now we introduce our first set of main results, which char-
acterize the connections within these three different MDP
problems.

The first result bounds the error between V γ(π) (for the
discounted problem) and V H(π) (for the finite-time-horizon
problem) under an arbitrary stationary policy π.
Lemma 2. Given Assumption 1, then for any stationary pol-
icy π,

|V γ(π)− V H(π)| ≤ 2RmaxCp,S,A

(
γ

H(1− γ)
αHp,S,A

+
αp,S,A + |H(1− γ)− 1|

(1− αp,S,A)H

)
,

(5)

where Cp,S,A > 1 and αp,S,A ∈ [0, 1) are the constants in
Proposition 1, and depend only on the transition probability
model p, the number of states S and the number of actions
A ofM, the underlying MDP.

The next lemma establishes a bound between V γ(π) (for
the discounted problem) and η(π) (for the average reward
problem) under any stationary policy π.

Lemma 3. Given Assumption 1, then

|V γ(π)− η(π)| ≤ 2(1− γ)RmaxCp,S,A
1− αp,S,A

, (6)

where the constants Cp,S,A > 1 and αp,S,A ∈ [0, 1) are the
same as in Lemma 2.

Maximizing over π, then immediately from Lemma 3, we
have

Corollary 4. Given Assumption 1, then

|V γ,? − η?| ≤ 2(1− γ)RmaxCp,S,A
1− αp,S,A

, (7)

where the constants Cp,S,A > 1 and αp,S,A ∈ [0, 1) are the
same as in Lemma 2.

The following statement controls the gap between V H(π)
(for the finite-time-horizon problem) and η(π) (for the aver-
age reward problem) under any stationary policy π.

Lemma 5. Given Assumption 1, then

|V H(π)− η(π)| ≤ 2RmaxCp,S,A
H(1− αp,S,A)

, (8)

where the constants Cp,S,A > 1 and αp,S,A ∈ [0, 1) are the
same as in Lemma 2.

And finally, the bound of the gap between the optimal
value functions V H,? (for the finite-time-horizon problem)
and η? (for the average reward problem) is as follows.

Lemma 6. Given Assumption 1, then

|V H,? − η?| ≤ 2RmaxDp,S,A

H
, (9)

where Dp,S,A > 1 is a constant that depends only on the
transition probability model p, the number of states S and
the number of actions A of the underlying MDPM.

Remark 1. Lemma 6 cannot be directly implied by Lemma
5. The key issue is that the optimal policy for the average
reward value function η(·) is stationary, while the optimal
policy for the finite-horizon value function V H(·) may be
non-stationary. To bridge this gap between stationary and
non-stationary policies, we need the convergence property
of value iteration algorithms (cf. Appendix A.2).

These properties show that the three different settings are
closely related for a large horizon H , and are critical for the
subsequent analyses.

2.3 Gradient Properties
In this section, we review the basics of policy gradient meth-
ods and state some useful properties of policy gradients in
the average reward and the discounted settings.
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Policy gradient methods. Policy gradient methods start
by parametrizing the policy with parameter θ ∈ Θ, which
we denote as πθ. Here Θ is the parameter space and the
parametrization maps θ to a randomized policy πθ : S →
P(A). The (vanilla) policy gradient (VPG) methods then
proceed by performing stochastic gradient ascent on a (reg-
ularized) value function in the parameter space, namely, for
each iteration k, θk is updated to θk+1 with

θk+1 = θk + αkgk. (10)

Here θ0 is the initial parameter, αk is the step-size, and gk
is a (possibly biased) stochastic gradient estimator of a reg-
ularized value function.

Throughout this paper, we will focus on the following reg-
ularized value function of the average reward problem:

L̄(θ) = η(πθ) + Ω(θ),

and the regularized value function of the discounted prob-
lem:

Lγ(θ) =
1

1− γ
V γ(πθ) + Ω(θ).

Here Ω : Θ → R is a regularization term that serves to
improve the convergence (Zhao et al. 2016; Mnih et al. 2016;
Henkel 2018).

Below we specify additional assumptions about the prob-
lem setting. Note that the same set of assumptions have been
made in (Agarwal et al. 2019b; Zhang et al. 2020a).
Assumption 2. (Setting)
• The policy is a soft-max policy parameterization, i.e.,
πθ(a|s) =

exp(θs,a)∑
a′∈A exp(θs,a′ )

, with Θ = RSA.
• The regularization term is (with λ > 0)

Ω(θ) =
λ

SA

∑
s∈S,a∈A

log πθ(a|s).

• The initial distribution is component-wisely positive, i.e.,
ρ(s) > 0 for any s ∈ S .

• The reward function r(s, a) ∈ [0, 1], ∀ s ∈ S, a ∈ A.
Some remarks on Assumption 2:
• The soft-max policy parametrization is simple yet forms

the basis of the widely-used (neural network) energy
based policies (Haarnoja et al. 2017).

• The regularization term is a simplified version of the
popular (relative) entropy regularization terms (Peters,
Mülling, and Altun 2010; Schulman, Chen, and Abbeel
2017), and has been demonstrated to be necessary to
avoid exponential lower bounds when working with the
soft-max policy parametrization in (Li et al. 2021).

• The positivity assumption on the initial distribution is
standard in the global convergence literature of policy
gradient methods (Agarwal et al. 2019b; Bhandari and
Russo 2019; Mei et al. 2020).

• The last assumption on the range of r is merely for
the simplicity of the subsequent discussions and can be
easily relaxed to the general constant bound r(s, a) ∈
[−Rmax, Rmax], ∀ s ∈ S, a ∈ A.

Properties of policy gradients. We are now ready to pro-
vide some useful properties regarding the gradients of the
discounted and the average reward problems.

We first slightly tighten the gradient domination property
established in (Agarwal et al. 2019b, Theorem 5.2) for the
discounted problems by utilizing the uniform ergodic prop-
erty in Assumption 1.
Proposition 7. (Gradient domination for discounted
problems) Given Assumptions 1 and 2, suppose that
‖∇θLγ(θ)‖2 ≤ λ/(2SA). Then

V γ,?−V γ(πθ) ≤ 2λmin

{∥∥∥∥∥dπ
γ,?

ρ

ρ

∥∥∥∥∥
∞

,
S‖dπ

γ,?

ρ ‖∞
(1− γ)(1− αp,S,A)

}
.

Here for any (randomized) policy π : S → P(A),

dπρ (s) = (1− γ)
∞∑
t=0

γtProbπρ (st = s)

is the discounted state visitation distribution, where
Probπρ (st = s) is the probability of arriving at s in step
t starting from s0 ∼ ρ following policy π inM. In addition,
the division in dπ

?

ρ /ρ is component-wise.
We next establish analogously the gradient domination

property for the average reward problem.
Lemma 8. (Gradient domination for average reward
problems) Given Assumptions 1 and 2, suppose that
‖∇θL̄(θ)‖2 ≤ λ/(2SA). Then

η? − η(πθ) ≤ λ
S‖µπ?‖∞
1− αp,S,A

,

where µπ? and αp,S,A are defined as in Proposition 1.

The two statements above on gradient domination capture
the sub-optimality results for policies satisfying certain gra-
dient conditions.

Now recall the strongly smoothness property of the objec-
tives for discounted problems (Agarwal et al. 2019b).
Proposition 9. (Strongly smoothness for discounted
problems (Agarwal et al. 2019b, Lemma D.4)) Given As-
sumptions 1 and 2, Lγ is strongly smooth with parameter
βλ = 8

(1−γ)3 + 2λ
S , i.e.,

‖∇θLγ(θ1)−∇θLγ(θ2)‖2 ≤ βλ‖θ1 − θ2‖2
for any θ1, θ2 ∈ Θ.

We can establish analogously the strongly smoothness
property for the average reward problem.
Lemma 10. (Strongly smoothness for average reward
problems) Under Assumptions 1 and 2, L̄ is strongly smooth

with parameter β̄λ = 22
√
S
(

2Cp,S,A
1−αp,S,A + 1

)3

+ 2λ/S, i.e.,

‖∇θL̄(θ1)−∇θL̄(θ2)‖2 ≤ β̄λ‖θ1 − θ2‖2,

for any θ1, θ2 ∈ Θ. Here the constants Cp,S,A > 1 and
αp,S,A ∈ [0, 1) are defined as in Proposition 1.

These two statements are critical for the subsequent anal-
yses of the algorithms.
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3 DAE REINFORCE Algorithm
In this section, we first introduce a widely used vanilla pol-
icy gradient implementation (Achiam 2018), which we call
the DAE REINFORCE algorithm (following its usage of
DAE in (Schulman et al. 2015b)). In DAE REINFORCE,
a stationary parametrized policy πθ(a|s) is considered, and
the parameter is updated by

θk+1 = θk + αkĝk, (11)

where

ĝk =
1

NH

∑N

i=1

∑H−1

h=0
∇θ log πθk(aih|sih)

×

advantage function︷ ︸︸ ︷(∑H−1

h′=h
γh
′−hrih′ − b(sih)

)
+∇θΩ(θk).

(12)

Here γ ∈ (0, 1) is a fictitious discount factor, N is the
mini-batch size of the updates, rih = r(sih, a

i
h), τi =

(si0, a
i
0, r

i
0, . . . , s

i
H−1, a

i
H−1, r

i
H−1) (i = 1, . . . , N , h =

0, . . . ,H−1) are i.i.d. trajectories sampled under policy πθk ,
and b is a baseline function that is independent of the trajec-
tories. Throughout the paper, we assume that the baseline b
is a.s. uniformly bounded, i.e., maxs∈S |b(s)| ≤ B a.s. for
some constant B > 0.

In the rest of the section, we establish the convergence of
(a slightly modified version of) DAE REINFORCE, which
we call Truncated DAE REINFORCE and summarize in Al-
gorithm 1. Note that the estimator ĝk is truncated in (13)
(and for notational simplicity under the same symbol) with
a truncation parameter β ∈ (0, 1). The same truncation has
been adopted for studying the standard REINFORCE algo-
rithm (without DAE) in (Zhang et al. 2020a), where β is
introduced to ensure that the advantage function estimation
is sufficiently accurate.2

Algorithm 1: Truncated DAE REINFORCE

1: Input: Initialization θ0, step-sizes αk for k ≥ 0.
2: for k = 0, 1, . . . do
3: SampleN i.i.d. trajectories {τi}Ni=1 under policy πθk .
4: Compute gradient estimator ĝk as

ĝk =
1

NbβHc

N∑
i=1

bβHc−1∑
h=0

∇θ log πθk (aih|sih)

×
(∑H−1

h′=h
γh
′−hrih′ − b(sih)

)
+∇θΩ(θk).

(13)

5: Update θk+1 = θk + αkĝk.
6: end for

The main idea behind our convergence analysis is to use
the average reward as a bridge to connect the original finite-
time-horizon MDP and the DAE REINFORCE algorithm.
The proof consists of two parts. The first part is to establish
the sub-optimality of θk, evaluated for the average reward

2In §4, we show that β can be dropped if an additional discount
factor is introduced in the gradient estimator.

problem. The second part is to establish the convergence
of the algorithm for the finite-horizon problem by utilizing
the connection between the average reward setting and the
finite-horizon setting.

We begin the analysis by estimating the (upper) bound
on the difference between the exact gradient and the sam-
ple gradient. Hereafter, we use Ek to denote the conditional
expectation given the k-th iteration θk.
Lemma 11. Given Assumptions 1 and 2, then∥∥∥Ek[ĝk]−∇L̄(θk)

∥∥∥
2

≤ 16Cp,S,A
bβHc(1− αp,S,A)

(
1 +

Cp,S,A
1− αp,S,A

)
+ 8Cp,S,A

1− γ
(1− αp,S,A)2

+ 4γ(1−β)H

(
1 +

Cp,S,A
1− αp,S,A

)
.

(14)

Here the constants Cp,S,A > 1 and αp,S,A ∈ [0, 1) are
defined in Proposition 1.

This lemma leads to the following bounds on the stochas-
tic gradients, which are key to establishing the convergence
of Algorithm 1.

Lemma 12. Given Assumptions 1 and 2, then

‖ĝk‖2 ≤ Gγ + 2λ a.s.,

Ekĝ
T
k∇θL̄(θk) ≥ ‖∇θLγ(θk)‖22 − (Ḡ+ 2λ)∆̄,

Ek‖ĝk‖22 ≤ 2‖∇θL̄(θk)‖22 + M̄.

Here Gγ = 2(1+(1−γ)B)
1−γ , Ḡ = 4

(
1 +

Cp,S,A
1−αp,S,A

)
, M̄ =

2∆̄2 + (Gγ + 2λ)2/N , ∆̄ is the right-hand side of (14), the
constants Cp,S,A > 1 and αp,S,A ∈ [0, 1) are defined in
Proposition 1.

Remark 2. The second bound in Lemma 12 shows that
ĝk is nearly unbiased, while the third bound shows that ĝk
satisfies a bounded second-order moment growth condition.
These conditions slightly generalize the standard ones used
in analyzing stochastic gradient methods (Bottou, Curtis,
and Nocedal 2018).

Now, we obtain first the sub-optimality behavior of θk
from the Truncated DAE REINFORCE algorithm (cf. Al-
gorithm 1) in the average reward setting.

Theorem 13. Given Assumptions 1 and 2, let β̄λ =

22
√
S
(

2Cp,S,A
1−αp,S,A + 1

)3

+ 2λ/S. For a fixed β ∈ (0, 1) and

any ε > 0, δ ∈ (0, 1), set αk = 1
2β̄λ

1√
k+3 log2(k+3)

and λ
is the positive (larger) root of the following quadratic equa-
tion:

2(Ḡ+ 2λ)∆̄ = (λ− ε)2/(4S2A2),

where Ḡ and ∆̄ are defined as in Lemma 12. Then

min
k=0,...,K

η? − η(πθk) ≤ ‖µπ
?‖∞

1− αp,S,A
(
Sε+ 4S3A2∆̄

+4S2A
√

∆̄ε+ 4S2A2∆̄2 + Ḡ∆̄
) (15)
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with probability at least 1− δ, for any K such that

K ≥O

(
S4A4β̄2

λ(D̄ +
√

2C̄γ log(2/δ))2

ε4

× log2

(
SAβ̄λ(D̄ +

√
2C̄γ log(2/δ))

ε

))
.

(16)

Here the constants Cp,S,A > 1 and αp,S,A ∈ [0, 1) are
defined in Proposition 1, and the constants D̄ and C̄γ are
bounded by
D̄ = O(M̄ + λ+ 1),

C̄γ = O

(
(Gγ + 2λ)2

S

(
C2
p,S,A

(1− αp,S,A)2
+ λ2 + (Gγ + 2λ)2

))
,

(17)

where the constants hidden in the big-O notation may de-
pend on θ0.

Next, by Lemma 5 and Lemma 6, we have the following
theorem.
Theorem 14. Given Assumption 1, for any H ≥ 1, if there
exists a policy π̂ such that |η? − η(π̂)| ≤ ε for some ε > 0,
then

V H,? − V H(π̂) ≤ 2RmaxDp,S,A
H

+ ε+
2RmaxCp,S,A
H(1− αp,S,A)

. (18)

Here the constants Cp,S,A > 1, Dp,S,A > 1 and αp,S,A ∈
[0, 1) are the constants in Proposition 1 and Lemma 6, which
depend only on the transition probability model p, the num-
ber of states S and the number of actionsA of the underlying
MDPM.

Combining Theorems 13 and 14 we can derive the con-
vergence for Truncated DAE REINFORCE algorithm.
Theorem 15. Given Assumptions 1 and 2, let γ = 1−H−σ
for some σ ∈ (0, 1). For a fixed β ∈ (0, 1) and any ε > 0,
δ ∈ (0, 1), set λ, β̄λ and αk to be the same as in Theorem 13.
Then for any K such that (16) is satisfied, 3 with probability
at least 1− δ,

min
k=0,...,K

V H,? − V H(πθk)

≤ O
(

S

1− αp,S,A
ε

)
+ biasDAE

H ,
(19)

where

biasDAE
H =O

(
S2AC3

p,S,A

(1− αp,S,A)4
H−σ/2

+
S3A2C2

p,S,A

(1− αp,S,A)3
H−σ

+

(
Dp,S,A +

Cp,S,A
1− αp,S,A

)
H−1

)
.

(20)

Here Cp,S,A > 1, Dp,S,A > 1 and αp,S,A ∈ [0, 1) are the
constants in Proposition 1 and Lemma 6.

The choice of γ is for ease of presentation. See also (Liu
and Su 2020; Dong, Van Roy, and Zhou 2021).

3See Appendix B.4 for more explicit bounds on the constants
involved in (16).

4 Doubly Discounted REINFORCE
Algorithm

In Algorithm 1, a fictitious discount factor is introduced
when computing advantage function estimates, while for the
rest part it remains undiscounted. This introduces a bias term
biasDAE

H as shown in Theorem 15, which remains nonzero
for a fixed planning horizon H even when the number of it-
erations K goes to infinity and ε goes to 0. In this section,
we propose the Doubly Discounted REINFORCE algorithm
(cf. Algorithm 2) to reduce the bias introduced by DAE.

Algorithm 2: Doubly Discounted REINFORCE

1: Input: Initialization θ0, step-sizes αk for k ≥ 0.
2: for k = 0, 1, . . . do
3: SampleN i.i.d. trajectories {τi}Ni=1 under policy πθk .
4: Compute gradient estimator g̃k as

g̃k =
1

N

N∑
i=1

H−1∑
h=0

γh∇θ log πθk (aih|sih)

×

(
H−1∑
h′=h

γh
′−hrih′ − b(sih)

)
+∇θΩ(θk).

(21)

5: Update θk+1 = θk + αkg̃k.
6: end for

Compared with Algorithm 1, Algorithm 2 introduces an
additional discount factor when computing the score func-
tions and gets rid of the artificial parameter β ∈ (0, 1)
needed in Truncated DAE REINFORCE. As a result, the es-
timator (21) coincides with the vanilla policy gradient esti-
mator for solving discounted problems (Zhang et al. 2020a)
with a fixed-length trajectory truncation (Liu et al. 2020).
Note that a similar observation has been made for natural
actor-critic methods in (Thomas 2014).

Similar to the idea of §3, we first establish the sub-
optimality of the Doubly Discounted REINFORCE algo-
rithm, evaluated for the discounted problem. Parallel to
Lemma 12, we have the following stochastic gradient
bounds.
Lemma 16. Given Assumptions 1 and 2, then

‖g̃k‖2 ≤ G+ 2λ a.s.,

Ekg̃
T
k∇θLγ(θk) ≥ ‖∇θLγ(θk)‖22 − (G+ 2λ)∆,

Ek‖g̃k‖22 ≤ 2‖∇θLγ(θk)‖22 +M.

Here G = 2(1+B(1−γ))
(1−γ)2 , and the constants ∆ and M are

defined by

∆ = 2
γH

1− γ

(
H +

1

1− γ

)
, M = 2∆2 +(G+2λ)2/N.

Based on the above conditions, we now establish the sub-
optimality of θk from the Doubly Discounted REINFORCE
algorithm for the discounted problem.
Theorem 17. Given Assumptions 1 and 2, let βλ = 8/(1−
γ)3 + 2λ/S. For any ε > 0 and δ ∈ (0, 1), set αk =
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1
2βλ

1√
k+3 log2(k+3)

and λ to be the positive (larger) root of
the following quadratic equation:

2(G+ 2λ)∆ = (λ− ε)2/(4S2A2).

Then

min
k=0,...,K

V γ,? − V γ(πθk )

≤ min

{∥∥∥∥∥dπ
γ,?

ρ

ρ

∥∥∥∥∥
∞

,
S‖dπ

γ,?

ρ ‖∞
(1− γ)(1− αp,S,A)

}
× (2ε+ 8S2A2∆ + 8SA

√
∆ε+ 4S2A2∆2 +G∆)

(22)

with probability at least 1− δ, for any K such that

K ≥O

(
S4A4β2

λ(D +
√

2C log(2/δ))2

ε4

× log2

(
SAβλ(D +

√
2C log(2/δ))

ε

))
.

(23)

Here the constant αp,S,A ∈ (0, 1) is defined in Proposition
1, and the constants D and C are bounded by

D = O(M + 1/(1− γ) + λ),

C = O((G+ 2λ)2(1/(1− γ)4 + λ2 + (G+ 2λ)2)),
(24)

where the constants hidden in the big-O notation may de-
pend on θ0.

The next result is parallel to Theorem 14, and is based on
Lemma 2, Corollary 4, and Lemma 6.
Theorem 18. Given Assumption 1, if there exists a policy π̂
such that V γ,? − V γ(π̂) ≤ ε for some ε > 0, then for any
H ≥ 1,

V H,? − V H(π̂) ≤ 2RmaxCp,S,A
γ

H(1− γ)
αHp,S,A + ε

+
2Rmax

H

(
Cp,S,A(H(1− γ) + αp,S,A)

1− αp,S,A
+Dp,S,A

)
,

(25)

where Cp,S,A > 1, Dp,S,A > 1 and αp,S,A ∈ [0, 1) are the
constants in Proposition 1 and Lemma 6, which depend only
on the transition probability model p, the number of states S
and the number of actions A of the underlying MDPM.

Combining Theorems 17 and 18, we obtain the final con-
vergence result for the Doubly Discounted REINFORCE al-
gorithm (in parallel to Theorem 15).
Theorem 19. Given Assumptions 1 and 2, let γ = 1−H−σ
for some σ ∈ (0, 1). For any ε > 0, δ ∈ (0, 1), set λ, βλ and
αk to be the same as in Theorem 17. Then for any K such
that (23) is satisfied, 4 with probability at least 1− δ,

min
k=0,...,K

V H,? − V H(πθk)

≤ O
(
εmin

{∥∥∥∥1

ρ

∥∥∥∥
∞
,

SHσ

1− αp,S,A

})
+ biasDD

H ,
(26)

4See Appendix C.2 for more explicit bounds on the constants
involved in (23).

where

biasDD
H = O

(
Cp,S,A

1− αp,S,A
H−σ +Dp,S,AH

−1

+
S3A2

1− αp,S,A
H

1+5σ
2 e−H

1−σ/2

+Cp,S,Aα
H
p,S,AH

−(1−σ)
)
.

(27)

Here Cp,S,A > 1, Dp,S,A > 1 and αp,S,A ∈ [0, 1) are the
constants in Proposition 1 and Lemma 6.

Comparison with DAE REINFORCE. Here we com-
pare the convergence of (truncated) DAE REINFORCE (cf.
Algorithm 1) and Doubly Discounted REINFORCE (cf. Al-
gorithm 2). Note that in both (19) and (26), the global sub-
optimality bounds consist of two parts: a vanishing ε term
that goes to zero as the number of iterations K goes to infin-
ity and a remaining bias term (biasDAE

H and biasDD
H , respec-

tively) resulting from the fictitious discount factor. Below we
focus on comparing the bias terms with the same fictitious
discount factor γ = 1−H−σ , with σ ∈ (0, 1). Recall that

biasDAE
H = O

(
S2AC3

p,S,A

(1− αp,S,A)4
H−

σ
2

)
+ lower order terms,

biasDD
H = O

(
Cp,S,A

1− αp,S,A
H−σ

)
+ lower order terms.

Comparing the above two bounds, we see the power of
the additional discounting. Indeed, with further discount-
ing, Doubly Discounted REINFORCE improves over DAE
REINFORCE, especially in terms of H (from H−σ/2 to
H−σ) as it grows. More precisely, the constant before the
H−σ term is improved fromO(S3A2C2

p,S,A/(1−αp,S,A)3)

to O(Cp,S,A/(1 − αp,S,A)), the constant before the H−1

term is improved from O(Dp,S,A + Cp,S,A/(1− αp,S,A) to
O(Dp,S,A), while the H−σ/2 term is improved to be expo-
nentially decaying as H grows.

5 Conclusion and Extensions
This paper focuses on two concrete fictitious discount al-
gorithms in the context of policy gradient methods, namely
DAE REINFORCE and Doubly Discounted REINFORCE.
Rigorous convergence analyses are established for the two
algorithms, which, for the first time, shed light on the non-
asymptotic global convergence of fictitious discount algo-
rithms.

Given recent development in (global) convergence anal-
ysis of algorithms in the discounted setting (Agarwal et al.
2019b; Wang et al. 2019; Shani, Efroni, and Mannor 2019)
and in the average reward framework (Neu, Jonsson, and
Gómez 2017; Abbasi-Yadkori et al. 2019), it is natural to ex-
tend our study for natural policy gradient (Kakade 2001b),
natural actor-critic (Peters and Schaal 2008), TRPO (Schul-
man et al. 2015a), PPO (Schulman et al. 2017), as well as
deep learning based algorithms such as DQN (Mnih et al.
2015) and DDPG (Lillicrap et al. 2015).

Meanwhile, it remains to see if one can generalize our
work to more general state and action spaces, and to remove
the need for an exploratory initial distribution (i.e., ρ > 0
component-wisely).
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Neu, G.; Jonsson, A.; and Gómez, V. 2017. A unified view
of entropy-regularized Markov decision processes. arXiv
preprint arXiv:1705.07798.
Ortner, R. 2020. Regret bounds for reinforcement learning
via Markov chain concentration. Journal of Artificial Intel-
ligence Research, 67: 115–128.
Papini, M.; Binaghi, D.; Canonaco, G.; Pirotta, M.; and
Restelli, M. 2018. Stochastic variance-reduced policy gra-
dient. arXiv preprint arXiv:1806.05618.
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