
Learning Action Translator for Meta
Reinforcement Learning on Sparse-Reward Tasks

Yijie Guo1, Qiucheng Wu1, Honglak Lee1,2

1University of Michigan, 2LG AI Research
guoyijie@umich.edu, wuqiuche@umich.edu

Abstract

Meta reinforcement learning (meta-RL) aims to learn a pol-
icy solving a set of training tasks simultaneously and quickly
adapting to new tasks. It requires massive amounts of data
drawn from training tasks to infer the common structure
shared among tasks. Without heavy reward engineering, the
sparse rewards in long-horizon tasks exacerbate the problem
of sample efficiency in meta-RL. Another challenge in meta-
RL is the discrepancy of difficulty level among tasks, which
might cause one easy task dominating learning of the shared
policy and thus preclude policy adaptation to new tasks. This
work introduces a novel objective function to learn an action
translator among training tasks. We theoretically verify that
the value of the transferred policy with the action translator
can be close to the value of the source policy and our objective
function (approximately) upper bounds the value difference.
We propose to combine the action translator with context-
based meta-RL algorithms for better data collection and more
efficient exploration during meta-training. Our approach em-
pirically improves the sample efficiency and performance of
meta-RL algorithms on sparse-reward tasks.

1 Introduction
Deep reinforcement learning (DRL) methods achieved re-
markable success in solving complex tasks (Mnih et al.
2015; Silver et al. 2016; Schulman et al. 2017). While
conventional DRL methods learn an individual policy for
each task, meta reinforcement learning (meta-RL) algo-
rithms (Finn, Abbeel, and Levine 2017; Duan et al. 2016;
Mishra et al. 2017) learn the shared structure across a dis-
tribution of tasks so that the agent can quickly adapt to un-
seen related tasks in the test phase. Unlike most of the ex-
isting meta-RL approaches working on tasks with dense re-
wards, we instead focus on the sparse-reward training tasks,
which are more common in real-world scenarios without ac-
cess to carefully designed reward functions in the environ-
ments. Recent works in meta-RL propose off-policy algo-
rithms (Rakelly et al. 2019; Fakoor et al. 2019) and model-
based algorithms (Nagabandi, Finn, and Levine 2018; Naga-
bandi et al. 2018) to improve the sample efficiency in meta-
training procedures. However, it remains challenging to effi-
ciently solve multiple tasks that require reasoning over long

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Source Tasks Target Tasks

Select better
Policy

Action
Translator

Source
Policy

Learned Policy

=

Transferred
Policy

Figure 1: Illustration of our policy transfer. Size of arrows
represents avg. episode reward of learned or transferred pol-
icy on target tasks. Different colors indicate different tasks.

horizons with sparse rewards. In these tasks, the scarcity of
positive rewards exacerbates the issue of sample efficiency,
which plagues meta-RL algorithms and makes exploration
difficult due to a lack of guidance signals.

Intuitively, we hope that solving one task facilitates learn-
ing of other related tasks since the training tasks share a
common structure. However, it is often not the case in prac-
tice (Rusu et al. 2015; Parisotto, Ba, and Salakhutdinov
2015). Previous works (Teh et al. 2017; Yu et al. 2020a)
point out that detrimental gradient interference might cause
an imbalance in policy learning on multiple tasks. Policy dis-
tillation (Teh et al. 2017) and gradient projection (Yu et al.
2020a) are developed in meta-RL algorithms to alleviate this
issue. However, this issue might become more severe in the
sparse-reward setting because it is hard to explore each task
to obtain meaningful gradient signals for policy updates.
Good performance in one task does not automatically help
exploration on the other tasks since the agent lacks positive
rewards on the other tasks to learn from.

In this work, we aim to fully exploit the highly-rewarding
transitions occasionally discovered by the agent in the ex-
ploration. The good experiences in one task should not only
improve the policy on this task but also benefit the policy on
other tasks to drive deeper exploration. Specifically, once the
agent learns from the successful trajectories in one training
task, we transfer the good policy in this task to other tasks to

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6792

get more positive rewards on other training tasks. In Fig. 1, if
the learned policy π performs better on task T (2) than other
tasks, then our goal is to transfer the good policy π(·, T (2))
to other tasks T (1) and T (3). To enable such transfer, we
propose to learn an action translator among multiple training
tasks. The objective function forces the translated action to
behave on the target task similarly to the source action on the
source task. We consider the policy transfer for any pair of
source and target tasks in the training task distribution (see
the colored arrows in Fig. 1). The agent executes actions fol-
lowing the transferred policy if the transferred policy attains
higher rewards than the learned policy on the target task in
recent episodes. This approach enables the agent to leverage
relevant data from multiple training tasks, encourages the
learned policy to perform similarly well on multiple training
tasks, and thus leads to better performance when applying
the well-trained policy to test tasks.

We summarize the contributions: (1) We introduce a novel
objective function to transfer any policy from a source
Markov Decision Process (MDP) to a target MDP. We
prove a theoretical guarantee that the transferred policy can
achieve the expected return on the target MDP close to the
source policy on the source MDP. The difference in expected
returns is (approximately) upper bounded by our loss func-
tion with a constant multiplicative factor. (2) We develop
an off-policy RL algorithm called Meta-RL with Context-
conditioned Action Translator (MCAT), applying a policy
transfer mechanism in meta-RL to help exploration across
multiple sparse-rewards tasks. (3) We empirically demon-
strate the effectiveness of MCAT on a variety of simulated
control tasks with the MuJoCo physics engine (Todorov,
Erez, and Tassa 2012), showing that policy transfer improves
the performance of context-based meta-RL algorithms.

2 Related Work
Context-based Meta-RL Meta reinforcement learning has
been extensively studied in the literature (Finn, Abbeel, and
Levine 2017; Stadie et al. 2018; Sung et al. 2017; Xu, van
Hasselt, and Silver 2018) with many works developing the
context-based approaches (Rakelly et al. 2019; Ren et al.
2020; Liu et al. 2020). Duan et al. (2016); Wang et al.
(2016); Fakoor et al. (2019) employ recurrent neural net-
works to encode context transitions and formulate the policy
conditioning on the context variables. The objective func-
tion of maximizing expected return trains the context en-
coder and policy jointly. Rakelly et al. (2019) leverage a
permutation-invariant encoder to aggregate experiences as
probabilistic context variables and optimizes it with vari-
ational inference. The posterior sampling is beneficial for
exploration on sparse-reward tasks in the adaptation phase,
but there is access to dense rewards during training phase.
Li, Pinto, and Abbeel (2020) considers a task-family of re-
ward functions. Lee et al. (2020); Seo et al. (2020) trains the
context encoder with forward dynamics prediction. These
model-based meta-RL algorithms assume the reward func-
tion is accessible for planning. In the sparse-reward setting
without ground-truth reward functions, they may struggle to
discover non-zero rewards and accurately estimating the re-
ward for model-based planning may be problematic as well.

Policy Transfer in RL Policy transfer studies the knowl-
edge transfer in target tasks given a set of source tasks and
their expert policies. Policy distillation (Rusu et al. 2015;
Yin and Pan 2017; Parisotto, Ba, and Salakhutdinov 2015)
minimize the divergence of action distributions between the
source policy and the learned policy on the target task. Along
this line of works, Teh et al. (2017) create a centroid policy
in multi-task reinforcement learning and distills the knowl-
edge from the task-specific policies to this centroid policy.
Alternatively, inter-task mapping between the source and
target tasks (Zhu, Lin, and Zhou 2020) can assist the policy
transfer. Most of these works (Gupta et al. 2017; Konidaris
and Barto 2006; Ammar and Taylor 2011) assume existence
of correspondence over the state space and learn the state
mapping between tasks. Recent work (Zhang et al. 2020c)
learns the state correspondence and action correspondence
with dynamic cycle-consistency loss. Our method differs
from this approach, in that we enable action translation
among multiple tasks with a simpler objective function. Im-
portantly, our approach is novel to utilize the policy transfer
for any pair of source and target tasks in meta-RL.

Bisimulation for States in MDPs Recent works on
state representation learning (Ferns, Panangaden, and Pre-
cup 2004; Zhang et al. 2020a; Agarwal et al. 2021) inves-
tigate the bismilarity metrics for states on multiple MDPs
and consider how to learn a representation for states leading
to almost identical behaviors under the same action in di-
verse MDPs. In multi-task reinforcement learning and meta
reinforcement learning problems, Zhang et al. (2020a,b) de-
rives transfer and generalization bounds based on the task
and state similarity. We also bound the value of policy trans-
fer across tasks but our approach is to establish action equiv-
alence instead of state equivalence.

3 Method
In this section, we first describe our approach to learn a con-
text encoder capturing the task features and learn a forward
dynamics model predicting next state distribution given the
task context (Sec. 3.2). Then we introduce an objective func-
tion to train an action translator so that the translated action
on the target task behaves equivalently to the source action
on the source task. The action translator can be conditioned
on the task contexts and thus it can transfer a good policy
from any arbitrary source task to any other target task in the
training set (Sec. 3.3). Finally, we propose to combine the
action translator with a context-based meta-RL algorithm
to transfer the good policy from any one task to the others.
During meta-training, this policy transfer approach helps ex-
ploit the good experiences encountered on any one task and
benefits the data collection and further policy optimization
on other sparse-reward tasks (Sec. 3.4). Fig. 2 provides an
overview of our approach MCAT.

3.1 Problem Formulation
Following meta-RL formulation in previous work (Duan
et al. 2016; Mishra et al. 2017; Rakelly et al. 2019), we as-
sume a distribution of tasks p(T) and each task is a Markov
decision process (MDP) defined as a tuple (S,A, p, r, γ, ρ0)

6793

(e)

(a)

Replay Buffer

Context
Encoder

C

Forward
Model

F

Latent Context

(c)

Action
Translat

or H
Forward
Model

F
Context
Encoder

C

Context Embedding z

(b)

(d)

Context
Encoder

C

Latent Context
Critic Q
Actor .

Connecting states in
temporal order
Sampling batch data

Forward calculation
Back-propagation through
neural networks

Figure 2: Overview of MCAT. (a) We use forward dynamics prediction loss to train the context encoder C and forward model
F . (b) We regularize the context encoder C with the contrastive loss, so context vectors of transition segments from the same
task cluster together. (c) With fixed C and F , we learn the action translator H for any pair of source task T (j) and target task
T (i). The action translator aims to generate action ã(i) on the target task leading to the same next state s

(j)
t+1 as the source

action a
(j)
t on the source task. (d) With fixed C, we learn the critic Q and actor π conditioning on the context feature. (e)

If the agent is interacting with the environment on task T (i), we compare learned policy π(s, z(i)) and transferred policy
H(s, π(s, z(j)), z(j), z(i)), which transfers a good policy π(s, z(j)) on source task T (j) to target task T (i). We select actions
according to the policy with higher average episode rewards in the recent episodes. Transition data are pushed into the buffer.
We remark that the components C,F,H,Q, π are trained alternatively not jointly and this fact facilitates the learning process.

with state space S , action space A, transition function
p(s′|s, a), reward function r(s, a, s′), discounting factor γ,
and initial state distribution ρ0. We can alternatively define
the reward function as r(s, a) =

∑
s′∈S p(s′|s, a)r(s, a, s′).

In context-based meta-RL algorithms, we learn a policy
π(·|s(i)t , z

(i)
t) shared for any task T (i) ∼ p(T), where t de-

notes the timestep in an episode, i denotes the index of a
task, the context variable z(i)t ∈ Z captures contextual infor-
mation from history transitions on the task MDP and Z is the
space of context vectors. The shared policy is optimized to
maximize its value V π(T (i)) = E

ρ
(i)
0 ,π,p(i) [

∑∞
t=0 γ

tr
(i)
t] on

each training task T (i). Following prior works in meta-RL
(Yu et al. 2017; Nagabandi et al. 2018; Nagabandi, Finn, and
Levine 2018; Zhou, Pinto, and Gupta 2019; Lee et al. 2020),
we study tasks with the same state space, action space, re-
ward function but varying dynamics functions. Importantly,
we focus on more challenging setting of sparse rewards.
Our goal is to learn a shared policy robust to the dynamic
changes and generalizable to unseen tasks.

3.2 Learning Context & Forward Model
In order to capture the knowledge about any task T (i),
we leverage a context encoder C : SK ×AK → Z , where
K is the number of past steps used to infer the context.
Related ideas have been explored by (Rakelly et al. 2019;
Zhou, Pinto, and Gupta 2019; Lee et al. 2020). In Fig. 2a,

given K past transitions (s
(i)
t−K , a

(i)
t−K , · · · , s(i)t−1, a

(i)
t−1),

context encoder C produces the latent context
z
(i)
t = C(s

(i)
t−K , a

(i)
t−K , · · · , s(i)t−2, a

(i)
t−2, s

(i)
t−1, a

(i)
t−1). We

train the context encoder C and forward dynamics F with
an objective function to predict the forward dynamics in fu-
ture transitions s(i)t+m (1 ≤ m ≤ M) within M future steps.
The state prediction in multiple future steps drives latent
context embeddings z

(i)
t to be temporally consistent. The

learned context encoder tends to capture dynamics-specific,
contextual information (e.g. environment physics parame-
ters). Formally, we minimize the negative log-likelihood of
observing the future states under dynamics prediction.

Lforw = −
M∑

m=1

logF (s
(i)
t+m|s(i)t+m−1, a

(i)
t+m−1, z

(i)
t). (1)

Additionally, given trajectory segments from the same
task, we require their context embeddings to be similar,
whereas the contexts of history transitions from different
tasks should be distinct (Fig. 2b). We propose a contrastive
loss (Hadsell, Chopra, and LeCun 2006) to constrain em-
beddings within a small distance for positive pairs (i.e. sam-
ples from the same task) and push embeddings apart with
a distance greater than a margin value m for negative pairs
(i.e. samples from different tasks). z(i)t1 , z(j)t2 denote context
embeddings of two trajectory samples from T (i), T (j). The
contrastive loss function is defined as:

6794

Lcont = 1i=j∥z(i)t1 −z
(j)
t2 ∥2+1i̸=j max(0,m−∥z(i)t1 −z

(j)
t2 ∥)

(2)
where 1 is indicator function. During meta-training, re-

cent transitions on each task T (i) are stored in a buffer B(i)

for off-policy learning. We randomly sample a fairly large
batch of trajectory segments from B(i), and average their
context embeddings to output task feature z(i). z(i) is rep-
resentative for embeddings on task T (i) and distinctive from
features z(l) and z(j) for other tasks. We note the learned em-
bedding maintains the similarity across tasks. z(i) is closer
to z(l) than to z(j) if task T (i) is more akin to T (l). We uti-
lize task features for action translation across multiple tasks.
Appendix D.5 visualizes context embeddings to study Lcont.

3.3 Learning Action Translator
Suppose that transition data s

(j)
t , a

(j)
t , s

(j)
t+1 behave well

on task T (j). We aim to learn an action translator
H : S ×A×Z × Z → A. ã(i) = H(s

(j)
t , a

(j)
t , z(j), z(i))

translates the proper action a
(j)
t from source task T (j) to

target task T (i). In Fig. 2c, if we start from the same
state s

(j)
t on both source and target tasks, the translated ac-

tion ã(i) on target task should behave equivalently to the
source action a

(j)
t on the source task. Thus, the next state

s
(i)
t+1 ∼ p(i)(s

(j)
t , ã(i)) produced from the transferred action

ã(i) on the target task should be close to the real next state
s
(j)
t+1 gathered on the source task. The objective function of

training the action translator H is to maximize the proba-
bility of getting next state s

(j)
t+1 under the next state distri-

bution s
(i)
t+1 ∼ p(i)(s

(j)
t , ã(i)) on the target task. Because the

transition function p(i)(s
(j)
t , ã(i)) is unavailable and might

be not differentiable, we use the forward dynamics model
F (·|s(j)t , ã(i), z(i)) to approximate the transition function.
We formulate objective function for action translator H as:

Ltrans = − logF (s
(j)
t+1|s

(j)
t , ã(i), z(i)) (3)

where ã(i) = H(s
(j)
t , a

(j)
t , z(j), z(i)). We assume to start

from the same initial state, the action translator is to find the
action on the target task so as to reach the same next state as
the source action on the source task. This intuition to learn
the action translator is analogous to learn inverse dynamic
model across two tasks.

With a well-trained action translator conditioning on task
features z(j) and z(i), we transfer the good deterministic pol-
icy π(s, z(j)) from any source task T (j) to any target task
T (i). When encountering a state s(i) on T (i), we query a
good action a(j) = π(s(i), z(j)) which will lead to a satisfac-
tory next state with high return on the source task. Then H
translates this good action a(j) on the source task to action
ã(i) = H(s(i), a(j), z(j), z(i)) on the target task. Executing
the translated action ã(i) moves the agent to a next state on
the target task similarly to the good action on the source task.
Therefore, transferred policy H(s(i), π(s(i), z(j)), z(i), z(j))
can behave similarly to source policy π(s, z(j)). Sec. 5.1
demonstrates the performance of transferred policy in a va-
riety of environments. Our policy transfer mechanism is re-
lated to the action correspondence discussed in (Zhang et al.
2020c). We extend their policy transfer approach across two

domains to multiple domains(tasks) and theoretically vali-
date learning of action translator in Sec. 4.

3.4 Combining with Context-based Meta-RL
MCAT follows standard off-policy meta-RL algorithms to
learn a deterministic policy π(st, z

(i)
t) and a value function

Q(st, at, z
(i)
t), conditioning on the latent task context vari-

able z
(i)
t . In the meta-training process, using data sampled

from B, we train the context model C and dynamics model
F with Lforw and Lcont to accurately predict the next state
(Fig. 2a 2b). With the fixed context encoder C and dynam-
ics model F , the action translator H is optimized to min-
imize Ltrans (Fig. 2c). Then, with the fixed C, we train
the context-conditioned policy π and value function Q ac-
cording to LRL (Fig. 2d). In experiments, we use the objec-
tive function LRL from TD3 algorithm (Fujimoto, Hoof, and
Meger 2018). See pseudo-code of MCAT in Appendix B.

On sparse-reward tasks where exploration is challenging,
the agent might luckily find transitions with high rewards on
one task T (j). Thus, the policy learning on this task might
be easier than other tasks. If the learned policy π performs
better on one task T (j) than another task T (i), we consider
the policy transferred from T (j) to T (i). At a state s(i), we
employ the action translator to get a potentially good action
H(s(i), π(s(i), z(j)), z(j), z(i)) on target task T (i). As illus-
trated in Fig. 2e and Fig. 1, in the recent episodes, if the
transferred policy earns higher scores than the learned pol-
icy π(s(i), z(i)) on the target task T (i), we follow the trans-
lated actions on T (i) to gather transition data in the current
episode. These data with better returns are pushed into the
replay buffer B(i) and produce more positive signals for pol-
icy learning in the sparse-reward setting. These transition
samples help improve π on T (i) after policy update with off-
policy RL algorithms. As described in Sec. 3.3, our action
translator H allows policy transfer across any pair of tasks.
Therefore, with the policy transfer mechanism, the learned
policy on each task might benefit from good experiences and
policies on any other tasks.

4 Theoretical Analysis
In this section, we theoretically support our objective func-
tion (Equation 3) to learn the action translator. Given s on
two MDPs with the same state and action space, we de-
fine that action a(i) on T (i) is equivalent to action a(j) on
T (j) if the actions yielding exactly the same next state dis-
tribution and reward, i.e. p(i)(·|s, a(i)) = p(j)(·|s, a(j)) and
r(i)(s, a(i)) = r(j)(s, a(j)) . Ideally, the equivalent action
always exists on the target MDP T (i) for any state-action
pair on the source MDP T (j) and there exists an action
translator function H : S ×A → A to identify the exact
equivalent action. Starting from state s, the translated ac-
tion ã = H(s, a) on the task T (i) generates reward and next
state distribution the same as action a on the task T (j) (i.e.
ãBsa). Then any deterministic policy π(j) on the source task
T (j) can be perfectly transferred to the target task T (i) with
π(i)(s) = H(s, π(j)(s)). The value of the policy π(j) on the
source task T (j) is equal to the value of transferred policy
π(i) on the target task T (i).

6795

Without the assumption of existence of a perfect
correspondence for each action, given any two deter-
ministic policies π(j) on T (j) and π(i) on T (i), we
prove that the difference in the policy value is upper
bounded by a scalar d

1−γ depending on L1-distance be-
tween reward functions |r(i)(s, π(i)(s))− r(j)(s, π(j)(s))|
and total-variation distance between next state distributions
DTV (p

(i)(·|s, π(i)(s)), p(j)(·|s, π(j)(s))). Detailed theorem
(Theorem 1) and proof are in Appendix A.

For a special case where reward function r(s, a, s′) only
depends on the current state s and next state s′, the upper
bound of policy value difference is only related to the dis-
tance in next state distributions.

Proposition 1 Let T (i) = {S,A, p(i), r(i), γ, ρ0} and
T (j) = {S,A, p(j), r(j), γ, ρ0} be two MDPs sam-
pled from the distribution of tasks p(T). π(i), π(j)

is the deterministic policy on T (i), T (j). Assume the
reward function only depends on the state and next
state r(i)(s, a(i), s′) = r(j)(s, a(j), s′) = r(s, s′). Let
d = sups∈S 2MDTV (p

(j)(·|s, π(j)(s)), p(i)(·|s, π(i)(s)))
and M = sups∈S,s′∈S |r(s, s′) + γV π(j)

(s, T (j))|. ∀s ∈ S ,
we have ∣∣∣V π(i)

(s, T (i))− V π(j)

(s, T (j))
∣∣∣ ≤ d

1− γ
(4)

According to Proposition 1, if we can optimize the
action translator H to minimize d for policy π(j) and
π(i)(s) = H(s, π(j)(s)), the value of the transferred pol-
icy π(i) on the target task can be close to the value of
source policy π(j). In many real-world scenarios, especially
sparse-reward tasks, the reward heavily depends on the state
and next state instead of action. For example, robots run-
ning forward receive rewards according to their velocity (i.e.
the location difference between the current and next state
within one step); robot arms manipulating various objects
earn positive rewards only when they are in the target po-
sitions. Thus, our approach focuses on the cases with re-
ward function approximately as r(s, s′) under the assump-
tion of Proposition 1. For any state s ∈ S , we minimize the
total-variation distance between two next state distributions
DTV (p

(j)(·|st, π(j)(st)), p
(i)(·|st, π(i)(st))) on source and

target MDPs. Besides, we discuss the policy transfer for
tasks with a general reward function in Appendix C.3.

There is no closed-form solution of DTV and DTV is
related with Kullback–Leibler (KL) divergence DKL by
the inequality DTV (p∥q)2 ≤ DKL(p∥q) Thus, we instead
consider minimizing DKL between two next state dis-
tributions. DKL(p

(j)||p(i)) is −
∑

s′ p
(j)(s′) log p(i)(s′) +∑

s′ p
(j)(s′) log p(j)(s′). The second term does not in-

volve H and thus can be viewed as a constant term when
optimizing H . We focus on minimizing the first term
−
∑

s′ p
(j)(s′) log p(i)(s′). F is a forward model approxi-

mating p(i)(s′). We sample transitions s, π(j)(s), s′ from the
source task. s′ follows the distribution p(j)(s′). Thus, min-
imizing the negative log-likelihood of observing the next
state Ltrans = − logF (s′|s, π(i)(s)) is to approximately
minimize DKL. Experiments in Sec. 5.1 suggest that this
objective function works well for policy transfer across
two MDPs. Sec. 3.3 explains the motivation behind Ltrans

(Equation 3) to learn an action translator among multiple
MDPs instead of only two MDPs.

5 Experiment
We design and conduct experiments to answer the follow-
ing questions: (1) Does the transferred policy perform well
on the target task (Tab. 1, Fig. 4)? (2) Can we transfer the
good policy for any pair of source and target tasks (Fig. 5)?
(3) Does policy transfer improve context-based Meta-RL al-
gorithms (Fig. 3, Tab. 2, Tab. 3)? (4) Is the policy transfer
more beneficial when the training tasks have sparser rewards
(Tab. 4)? Experimental details can be found in Appendix C.

5.1 Policy Transfer with Fixed Dataset
We test our proposed action translator with fixed datasets of
transitions aggregated from pairs of source and target tasks.
On MuJoCo environments HalfCheetah and Ant, we create
tasks with varying dynamics as in (Zhou, Pinto, and Gupta
2019; Lee et al. 2020; Zhang et al. 2020c). We keep de-
fault physics parameters in source tasks and modify them
to yield noticeable changes in the dynamics for target tasks.
On HalfCheetah, the tasks differ in the armature. On Ant, we
set different legs crippled. A well-performing policy is pre-
trained on the source task with TD3 algorithm (Fujimoto,
Hoof, and Meger 2018) and dense rewards. We then gather
training data with mediocre policies on the source and target
tasks. We also include object manipulation tasks on Meta-
World benchmark (Yu et al. 2020b). Operating objects with
varied physics properties requires the agent to handle dif-
ferent dynamics. The knowledge in grasping and pushing a
cylinder might be transferrable to tasks of moving a coffee
mug or a cube. The agent gets a reward of 1.0 if the object
is in the goal location. Otherwise, the reward is 0. We use
the manually-designed good policy as the source policy and
collect transition data by adding noise to the action drawn
from the good policy.

Setting Source
policy

Transferred
policy

(Zhang et al. 2020c)

Transferred
policy
(Ours)

HalfCheetah 2355.0 3017.1(±44.2) 2937.2(±9.5)
Ant 55.8 97.2(±2.5) 208.1(±8.2)

Cylinder-Mug 0.0 308.1(±75.3) 395.6(±19.4)
Cylinder-Cube 0.0 262.4(±48.1) 446.1(±1.1)

Table 1: Mean (± standard error) of episode rewards over 3
runs, comparing source and transferred policy on target task.

As presented in Tab. 1, directly applying a good source
policy on the target task performs poorly. We learn dynam-
ics model F on target task with Lforw and action translator
H with Ltrans. From a single source task to a single target
task, the transferred policy with our action translator (with-
out conditioning on the task context) yields episode rewards
significantly better than the source policy on the target task.
Fig. 4 visualizes moving paths of robot arms. The transferred
policy on target task resembles the source policy on source

6796

0.00 0.40 0.80 1.20 1.60 2.00
TLPHstHSs

0

500

1000

1500

2000

Av
Hr

Dg
H

(v
DO

uD
tLR

Q
5H

w
Dr

d
HRSSHr 6LzH (THst)

04L
PHDrO
DLstrDO
HLP-B0DP
0CAT (2urs)

(a) Hopper Size

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (THst)

(b) HalfCheetah Armature

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah 0ass (THst)

(c) HalfCheetah Mass

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

0

100

200

300

400

500

600

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

Ant DDmping (Test)

(d) Ant Damping

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

0

100

200

300

400

Av
er

ag
e

(v
al

ua
tiR

n
Re

w
ar

d

Ant Cripple (Test)

(e) Ant Cripple

Figure 3: Learning curves of episode rewards on test tasks, averaged over 3 runs. The x-axis is total number of timesteps and
the y-axis is average episode reward. Shadow areas indicate standard error.

Start End

(a) Source policy on
source task

Start
End

(b) Source policy on
target task

Start
End

(c) Transferred pol-
icy on target task

Figure 4: Robot arm moving paths on source (pushing a
cylinder) or target task (moving a mug to a coffee machine).

task, while the source policy has trouble grasping the cof-
fee mug on target task. Videos of agents’ behavior are in
supplementary materials. Tab. 1 reports experimental results
of baseline (Zhang et al. 2020c) transferring the source pol-
icy based on action correspondence. It proposes to learn an
action translator with three loss terms: adversarial loss, do-
main cycle-consistency loss, and dynamic cycle-consistency
loss. Our loss Ltrans (Equation 3) draws upon an idea anal-
ogous to dynamic cycle-consistency though we have a more
expressive forward model F with context variables. When
F is strong and reasonably generalizable, domain cycle-
consistency loss training the inverse action translator and ad-
versarial loss constraining the distribution of translated ac-
tion may not be necessary. Ours with a simpler objective
function is competitive with Zhang et al. (2020c).

Target
Source

(a) HalfCheetah

Source
Target

(b) Ant

Figure 5: Improvement transferred policy over source policy.

We extend the action translator to multiple tasks by con-
ditioning H on context variables of source and target tasks.
We measure the improvement of our transferred policy over

the source policy on the target tasks. On HalfCheetah tasks
T (1) · · · T (5), the armature becomes larger. As the physics
parameter in the target task deviates more from source task,
the advantage of transferred policy tends to be more signifi-
cant (Fig. 5a), because the performance of transferred policy
does not drop as much as source policy. We remark that the
unified action translator is for any pair of source and target
tasks. So action translation for the diagonal elements might
be less than 0%. For each task on Ant, we set one of its
four legs crippled, so any action applied to the crippled leg
joints is set as 0. Ideal equivalent action does not always ex-
ist across tasks with different crippled legs in this setting.
Therefore, it is impossible to minimize d in Proposition 1
as 0. Nevertheless, the inequality proved in Proposition 1
still holds and policy transfer empirically shows positive im-
provement on most source-target pairs (Fig. 5b).

5.2 Comparison with Context-based Meta-RL
We evaluate MCAT combining policy transfer with context-
based TD3 in meta-RL problems. The action translator is
trained dynamically with data maintained in replay buffer
and the source policy keeps being updated. On MuJoCo,
we modify environment physics parameters (e.g. size, mass,
damping) that affect the transition dynamics to design tasks.
We predefine a fixed set of physics parameters for training
tasks and unseen test tasks. In order to test algorithms’ abil-
ity in tackling difficult tasks, environment rewards are de-
layed to create sparse-reward RL problems (Oh et al. 2018;
Tang 2020). In particular, we accumulate dense rewards over
n consecutive steps, and the agent receives the delayed feed-
back every n step or when the episode terminates. To fully
exploit the good data collected from our transferred policy,
we empirically incorporate self-imitation learning (SIL) (Oh
et al. 2018), which imitates the agent’s own successful past
experiences to further improve the policy.

We compare with several context-based meta-RL meth-
ods: MQL (Fakoor et al. 2019), PEARL (Rakelly et al.
2019), Distral (Teh et al. 2017), and HiP-BMDP (Zhang
et al. 2020b). Although the baselines perform well on Mu-
JoCo environments with dense rewards, the delayed envi-
ronment rewards degrade policy learning (Tab. 2, Fig. 3)
because the rare transitions with positive rewards are not
fully exploited. In contrast, MCAT shows a substantial ad-
vantage in performance and sample complexity on both
the training tasks and the test tasks. Notably, the perfor-
mance gap is more significant in more complex environ-

6797

ments (e.g. HalfCheetah and Ant with higher-dimensional
state and sparser rewards). We additionally analyze effect of
SIL in Appendix D.4. SIL brings improvements to baselines
but MCAT still shows obvious advantages.

Setting Hopper
Size

Half
Cheetah

Armature

Half
Cheetah

Mass

Ant
Damp

Ant
Cripple

MQL 1607.5 -77.9 -413.9 103.1 38.2
PEARL 1755.8 -18.8 25.9 73.2 3.5
Distral 1319.8 566.9 -29.5 90.5 -0.1

HiP-BMDP 1368.3 -102.4 -74.8 33.1 7.3
MCAT(Ours) 1914.8 2071.5 1771.1 624.6 281.6

Table 2: Test rewards at 2M timesteps, averaged over 3 runs.

5.3 Ablative Study

Effect of Policy Transfer Our MCAT is implemented by
combining context-based TD3, self-imitation learning, and
policy transfer (PT). We investigate the effect of policy
transfer. In Tab. 3. MCAT significantly outperforms MCAT
w/o PT, because PT facilitates more balanced performance
across training tasks and hence better generalization to test
tasks. This empirically confirms that policy transfer is bene-
ficial in meta-RL on sparse-reward tasks.

Setting Hopper
Size

Half
Cheetah

Armature

Half
Cheetah

Mass

Ant
Damp

Ant
Cripple

MCAT w/o PT 1497.5 579.1 -364.3 187.7 92.4
MCAT 1982.1 1776.8 67.1 211.8 155.7

Improve(%) 32.3 206.8 118.4 12.8 68.5

Table 3: Test rewards at 1M timesteps. We report improve-
ments brought by policy transfer (PT).

Sparser Rewards We analyze MCAT when rewards are de-
layed for different numbers of steps (Tab. 4). When rewards
are relatively dense (i.e. delay step is 200), during training,
the learned policy can reach a high score on each task with-
out the issue of imbalanced performance among multiple
tasks. MCAT w/o PT and MCAT perform comparably well
within the standard error. However, as the rewards become
sparser, it requires longer sequences of correct actions to ob-
tain potentially high rewards. Policy learning struggles on
some tasks and policy transfer plays an important role to ex-
ploit the precious good experiences on source tasks. Policy
transfer brings more improvement on sparser-reward tasks.

In Appendix, we further provide ablative study about
More Diverse Tasks (D.3), Effect of SIL (D.4) and Effect
of Contrastive Loss (D.5). Appendix D.6 shows that triv-
ially combining the complex action translator (Zhang et al.
2020c) with context-based meta-RL underperforms MCAT.

Setting Armature Mass

Delay steps 200 350 500 200 350 500

MCAT w/o PT 2583.2 1771.7 579.1 709.6 156.6 -364.2
MCAT 2251.8 2004.5 1776.8 666.7 247.8 67.1

Improve(%) -12.8 13.1 206.9 -6.1 58.2 118.4

Table 4: Test rewards at 1M timestpes averaged over 3 runs,
on HalfCheetah with armature / mass changing across tasks.

6 Discussion
The scope of MCAT is for tasks with varying dynamics,
same as many prior works (Yu et al. 2017; Nagabandi et al.
2018; Nagabandi, Finn, and Levine 2018; Zhou, Pinto, and
Gupta 2019). our theory and method of policy transfer can
be extended to more general cases (1) tasks with varying re-
ward functions (2) tasks with varying state & action spaces.

Following the idea in Sec. 4, on two general MDPs, we are
interested in equivalent state-action pairs achieving the same
reward and transiting to equivalent next states. Similar to
Proposition 1, we can prove that, on two general MDPs, for
two correspondent states s(i) and s(j), the value difference
|V π(i)

(s(i), T (i))− V π(j)

(s(j), T (j))| is upper bounded by
d

1−γ , where d depends on DTV between the next state dis-
tribution on source task and the probability distribution of
correspondent next state on target task. As an extension,
we learn a state translator jointly with our action translator
to capture state and action correspondence. Compared with
Zhang et al. (2020c) learning both state and action transla-
tor, we simplify the objective function training action trans-
lator and afford the theoretical foundation. For (1) tasks with
varying reward functions, we conduct experiments on Meta-
World moving the robot arm to a goal location. The reward
at each step is inversely proportional to its distance from
the goal location. We fix a goal location on source task and
set target tasks with distinct goal locations. Furthermore, we
evaluate our approach on 2-leg and 3-leg HalfCheetah. We
can test our idea on (2) tasks with varying state and action
spaces of different dimensions because the agents have dif-
ferent numbers of joints on the source and target task. Exper-
iments demonstrate that ours with a simpler objective func-
tion than the baseline (Zhang et al. 2020c) can transfer the
source policy to perform well on the target task. Details of
theorems, proofs, and experiments are in Appendix E.

7 Conclusion
Meta-RL with long-horizon, sparse-reward tasks is chal-
lenging because an agent can rarely obtain positive rewards,
and handling multiple tasks simultaneously requires massive
samples from distinctive tasks. We propose a simple yet ef-
fective objective function to learn an action translator for
multiple tasks and provide the theoretical ground. We de-
velop a novel algorithm MCAT using the action translator
for policy transfer to improve the performance of off-policy,
context-based meta-RL algorithms. We empirically show its
efficacy in various environments and verify that our policy
transfer can offer substantial gains in sample complexity.

6798

Acknowledgements
This work was supported in part by NSF CAREER IIS-
1453651, NSF SES 2128623, and LG AI Research. Any
opinions, findings, conclusions or recommendations ex-
pressed here are those of the authors and do not necessarily
reflect views of the sponsor.

References
Agarwal, R.; Machado, M. C.; Castro, P. S.; and Bellemare,
M. G. 2021. Contrastive Behavioral Similarity Embed-
dings for Generalization in Reinforcement Learning. arXiv
preprint arXiv:2101.05265.
Ammar, H. B.; and Taylor, M. E. 2011. Reinforce-
ment learning transfer via common subspaces. In Interna-
tional Workshop on Adaptive and Learning Agents, 21–36.
Springer.
Duan, Y.; Schulman, J.; Chen, X.; Bartlett, P. L.; Sutskever,
I.; and Abbeel, P. 2016. Rl 2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779.
Fakoor, R.; Chaudhari, P.; Soatto, S.; and Smola, A. J. 2019.
Meta-q-learning. arXiv preprint arXiv:1910.00125.
Ferns, N.; Panangaden, P.; and Precup, D. 2004. Metrics
for Finite Markov Decision Processes. In UAI, volume 4,
162–169.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In In-
ternational Conference on Machine Learning, 1126–1135.
PMLR.
Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In In-
ternational Conference on Machine Learning, 1587–1596.
PMLR.
Gupta, A.; Devin, C.; Liu, Y.; Abbeel, P.; and Levine,
S. 2017. Learning invariant feature spaces to trans-
fer skills with reinforcement learning. arXiv preprint
arXiv:1703.02949.
Hadsell, R.; Chopra, S.; and LeCun, Y. 2006. Dimension-
ality reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, 1735–1742.
IEEE.
Konidaris, G.; and Barto, A. 2006. Autonomous shaping:
Knowledge transfer in reinforcement learning. In Proceed-
ings of the 23rd international conference on Machine learn-
ing, 489–496.
Lee, K.; Seo, Y.; Lee, S.; Lee, H.; and Shin, J. 2020. Context-
aware dynamics model for generalization in model-based re-
inforcement learning. In International Conference on Ma-
chine Learning, 5757–5766. PMLR.
Li, A. C.; Pinto, L.; and Abbeel, P. 2020. General-
ized hindsight for reinforcement learning. arXiv preprint
arXiv:2002.11708.
Liu, E. Z.; Raghunathan, A.; Liang, P.; and Finn, C.
2020. Explore then Execute: Adapting without Rewards via

Factorized Meta-Reinforcement Learning. arXiv preprint
arXiv:2008.02790.
Mishra, N.; Rohaninejad, M.; Chen, X.; and Abbeel, P.
2017. A simple neural attentive meta-learner. arXiv preprint
arXiv:1707.03141.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature.
Nagabandi, A.; Clavera, I.; Liu, S.; Fearing, R. S.;
Abbeel, P.; Levine, S.; and Finn, C. 2018. Learning to
adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347.
Nagabandi, A.; Finn, C.; and Levine, S. 2018. Deep online
learning via meta-learning: Continual adaptation for model-
based rl. arXiv preprint arXiv:1812.07671.
Oh, J.; Guo, Y.; Singh, S.; and Lee, H. 2018. Self-imitation
learning. In International Conference on Machine Learning,
3878–3887. PMLR.
Parisotto, E.; Ba, J. L.; and Salakhutdinov, R. 2015. Actor-
mimic: Deep multitask and transfer reinforcement learning.
arXiv preprint arXiv:1511.06342.
Rakelly, K.; Zhou, A.; Finn, C.; Levine, S.; and Quillen, D.
2019. Efficient off-policy meta-reinforcement learning via
probabilistic context variables. In International conference
on machine learning, 5331–5340. PMLR.
Ren, H.; Zhu, Y.; Leskovec, J.; Anandkumar, A.; and Garg,
A. 2020. OCEAN: Online Task Inference for Compositional
Tasks with Context Adaptation. In Conference on Uncer-
tainty in Artificial Intelligence, 1378–1387. PMLR.
Rusu, A. A.; Colmenarejo, S. G.; Gulcehre, C.; Desjardins,
G.; Kirkpatrick, J.; Pascanu, R.; Mnih, V.; Kavukcuoglu, K.;
and Hadsell, R. 2015. Policy distillation. arXiv preprint
arXiv:1511.06295.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Seo, Y.; Lee, K.; Clavera, I.; Kurutach, T.; Shin, J.; and
Abbeel, P. 2020. Trajectory-wise Multiple Choice Learn-
ing for Dynamics Generalization in Reinforcement Learn-
ing. arXiv preprint arXiv:2010.13303.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484.
Stadie, B. C.; Yang, G.; Houthooft, R.; Chen, X.; Duan, Y.;
Wu, Y.; Abbeel, P.; and Sutskever, I. 2018. Some consider-
ations on learning to explore via meta-reinforcement learn-
ing. arXiv preprint arXiv:1803.01118.
Sung, F.; Zhang, L.; Xiang, T.; Hospedales, T.; and Yang,
Y. 2017. Learning to learn: Meta-critic networks for sample
efficient learning. arXiv preprint arXiv:1706.09529.

6799

Tang, Y. 2020. Self-imitation learning via generalized lower
bound q-learning. arXiv preprint arXiv:2006.07442.
Teh, Y. W.; Bapst, V.; Czarnecki, W. M.; Quan, J.; Kirk-
patrick, J.; Hadsell, R.; Heess, N.; and Pascanu, R. 2017.
Distral: Robust multitask reinforcement learning. arXiv
preprint arXiv:1707.04175.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 5026–
5033. IEEE.
Wang, J. X.; Kurth-Nelson, Z.; Tirumala, D.; Soyer, H.;
Leibo, J. Z.; Munos, R.; Blundell, C.; Kumaran, D.; and
Botvinick, M. 2016. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763.
Xu, Z.; van Hasselt, H.; and Silver, D. 2018. Meta-gradient
reinforcement learning. arXiv preprint arXiv:1805.09801.
Yin, H.; and Pan, S. 2017. Knowledge transfer for deep
reinforcement learning with hierarchical experience replay.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 1.
Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.; and
Finn, C. 2020a. Gradient surgery for multi-task learning.
arXiv preprint arXiv:2001.06782.
Yu, T.; Quillen, D.; He, Z.; Julian, R.; Hausman, K.; Finn,
C.; and Levine, S. 2020b. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 1094–1100. PMLR.
Yu, W.; Tan, J.; Liu, C. K.; and Turk, G. 2017. Preparing
for the unknown: Learning a universal policy with online
system identification. arXiv preprint arXiv:1702.02453.
Zhang, A.; Lyle, C.; Sodhani, S.; Filos, A.; Kwiatkowska,
M.; Pineau, J.; Gal, Y.; and Precup, D. 2020a. Invariant
causal prediction for block mdps. In International Confer-
ence on Machine Learning, 11214–11224. PMLR.
Zhang, A.; Sodhani, S.; Khetarpal, K.; and Pineau, J. 2020b.
Learning robust state abstractions for hidden-parameter
block {mdp} s. In International Conference on Learning
Representations.
Zhang, Q.; Xiao, T.; Efros, A. A.; Pinto, L.; and Wang,
X. 2020c. Learning Cross-Domain Correspondence for
Control with Dynamics Cycle-Consistency. arXiv preprint
arXiv:2012.09811.
Zhou, W.; Pinto, L.; and Gupta, A. 2019. Environment prob-
ing interaction policies. arXiv preprint arXiv:1907.11740.
Zhu, Z.; Lin, K.; and Zhou, J. 2020. Transfer Learning in
Deep Reinforcement Learning: A Survey. arXiv preprint
arXiv:2009.07888.

6800

