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Abstract

Neural network quantization has become increasingly popu-
lar due to efficient memory consumption and faster compu-
tation resulting from bitwise operations on the quantized net-
works. Even though they exhibit excellent generalization ca-
pabilities, their robustness properties are not well-understood.
In this work, we systematically study the robustness of quan-
tized networks against gradient based adversarial attacks and
demonstrate that these quantized models suffer from gradi-
ent vanishing issues and show a fake sense of robustness. By
attributing gradient vanishing to poor forward-backward sig-
nal propagation in the trained network, we introduce a simple
temperature scaling approach to mitigate this issue while pre-
serving the decision boundary. Despite being a simple modi-
fication to existing gradient based adversarial attacks, exper-
iments on multiple image classification datasets with multi-
ple network architectures demonstrate that our temperature
scaled attacks obtain near-perfect success rate on quantized
networks while outperforming original attacks on adversari-
ally trained models as well as floating-point networks.

Introduction
Neural Network (NN) quantization has become increasingly
popular due to reduced memory and time complexity en-
abling real-time applications and inference on resource-
limited devices. Such quantized networks often exhibit ex-
cellent generalization capabilities despite having low ca-
pacity due to reduced precision for parameters and acti-
vations. However, their robustness properties are not well-
understood. In particular, while parameter quantized net-
works are claimed to have better robustness against gradi-
ent based adversarial attacks (Galloway, Taylor, and Moussa
2018), activation only quantized methods are shown to be
vulnerable (Lin, Gan, and Han 2019).

In this work1, we consider the extreme case of Binary
Neural Networks (BNNs) and systematically study the ro-
bustness properties of parameter quantized models, as well
as both parameter and activation quantized models against
gradient based adversarial attacks. Our analysis reveals that
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1Open-source implementation available at https://github.com/
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these quantized models suffer from gradient masking is-
sues (Athalye, Carlini, and Wagner 2018) and in turn show
fake robustness. We attribute this vanishing gradients is-
sue to poor forward-backward signal propagation caused by
trained binary weights, and our idea is to improve signal
propagation of the network without changing the prediction.

There is a body of work on improving signal propagation
in a neural network (e.g., (Glorot and Bengio 2010; Penning-
ton, Schoenholz, and Ganguli 2017; Lu, Gould, and Ajan-
than 2020)), however, we are facing a unique challenge of
improving signal propagation while preserving the decision
boundary, since our ultimate objective is to generate adver-
sarial attacks. To this end, we first discuss the conditions to
ensure informative gradients and then resort to a temperature
scaling approach (Guo et al. 2017) (which scales the logits
before applying softmax cross-entropy) to show that, even
with a single positive scalar the vanishing gradients issue in
BNNs can be alleviated achieving near perfect success rate.

Specifically, we introduce two techniques to choose the
temperature scale: 1) based on the singular values of the
input-output Jacobian, 2) by maximizing the norm of the
Hessian of the loss with respect to the input. The justification
for the first case is that if the singular values of input-output
Jacobian are concentrated around 1 (defined as dynamical
isometry (Pennington, Schoenholz, and Ganguli 2017)) then
the network is said to have good signal propagation. On the
other hand, the intuition for maximizing the Hessian norm
is that if the Hessian norm is large, then the gradient of the
loss with respect to the input is sensitive to an infinitesimal
change in the input. This is a sufficient condition for the net-
work to have good signal propagation as well as informative
gradients under the assumption that the network does not
have any randomized or non-differentiable components.

In summary, this paper makes the following contributions:
• We first show via various empirical checks that BNNs pos-

sess fake robustness against gradient based adversarial at-
tacks such as FGSM (Goodfellow, Shlens, and Szegedy
2014) and PGD (Madry et al. 2017).

• By accounting poor signal propagation for the failure of
gradient based adversarial attacks, we present tempera-
ture scaling based solution to improve the existing attacks
without changing the prediction of the network.

• In order to estimate appropriate scalar for temperature
scaling in gradient based adversarial attacks, we present
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two variants namely Network Jacobian Scaling (NJS) and
Hessian Norm Scaling (HNS) motivated from point of
view of improving the signal propagation.

• With experimental evaluations using several network ar-
chitectures on CIFAR-10/100 datasets, we show that our
proposed techniques to modify existing gradient based ad-
versarial attacks achieve near perfect success rate on BNNs
with weight quantized (BNN-WQ) and weight and activa-
tion quantized (BNN-WAQ). Furthermore, our variants im-
proves attack success even on adversarially trained mod-
els as well as floating point networks, showing the signif-
icance of signal propagation for adversarial attacks.

Preliminaries
We first provide some background on the neural network
quantization and adversarial attacks.

Neural Network Quantization
Neural Network (NN) quantization is defined as training net-
works with parameters constrained to a minimal, discrete
set of quantization levels. This primarily relies on the hy-
pothesis that since NNs are usually overparametrized, it is
possible to obtain a quantized network with performance
comparable to the floating point network. Given a dataset
D = {xi,yi}ni=1, NN quantization can be written as:

min
w∈Qm

L(w;D) :=
1

n

n∑
i=1

ℓ(w; (xi,yi)) . (1)

Here, ℓ(·) denotes the input-output mapping composed with
a standard loss function (e.g., cross-entropy loss), w is them
dimensional parameter vector, and Q is a predefined discrete
set representing quantization levels (e.g., Q = {−1, 1} in
the binary case).

Most of the NN quantization approaches (Ajanthan et al.
2019, 2021; Bai, Wang, and Liberty 2019; Hubara et al.
2017) convert the above problem into an unconstrained
problem by introducing auxiliary variables and optimize via
(stochastic) gradient descent. To this end, the algorithms
differ in the choice of quantization set (e.g., keep it dis-
crete (Courbariaux, Bengio, and David 2015), relax it to
the convex hull (Bai, Wang, and Liberty 2019) or convert
the problem into a lifted probability space (Ajanthan et al.
2019)), the projection used, and how differentiation through
projection is performed. In the case when the constraint set
is relaxed, a gradually increasing annealing hyperparameter
is used to enforce a quantized solution (Ajanthan et al. 2019,
2021; Bai, Wang, and Liberty 2019). We refer the interested
reader to respective papers for more detail. In this paper,
we use BNN-WQ obtained using MD-tanh-S (Ajanthan et al.
2021) and BNN-WAQ obtained using obtained using Straight
Through Estimation (Hubara et al. 2017). Briefly MD-tanh-
S represents network binarization method based on mirror
descent optimization where the mirror map is derived using
tanh projection function.

Adversarial Attacks
Adversarial examples consist of imperceptible perturbations
to the data that alter the model’s prediction with high con-
fidence. Existing attacks can be categorized into white-box

Method
ResNet-18 VGG-16

Clean Adv.(1) Adv.(20) Clean Adv.(1) Adv.(20)

REF 94.46 0.00 0.00 93.31 0.04 0.00
BNN-WQ 93.18 26.98 17.91 91.53 47.32 38.49
BNN-WAQ 87.67 8.57 1.94 89.69 78.01 59.26

Table 1: Clean and adversarial accuracy (PGD attack with
L∞ bound) on the test set of CIFAR-10 using ResNet-18 and
VGG-16. In brackets, we mention number of random restarts
used to perform the attack. Note, BNNs yield higher adver-
sarial accuracy than floating point networks consistently.

and black-box attacks where the difference lies in the knowl-
edge of the adversaries. White-box attacks allow the adver-
saries access to the target model’s architecture and param-
eters, whereas black-box attacks can only query the model.
Since white-box gradient based attacks are popular, we sum-
marize them below.

First-order gradient based attacks can be compactly writ-
ten as Projected Gradient Descent (PGD) on the negative of
the loss function (Madry et al. 2017). Formally, let x0 ∈ IRN

be the input image, then at iteration t, the PGD update can be
written as:

xt+1 = P
(
xt + η gt

x

)
, (2)

where P : IRN → X is a projection, X ⊂ IRN is the con-
straint set that bounds the perturbations, η > 0 is the step
size, and gt

x is a form of gradient of the loss with respect
to the input x evaluated at xt. With this general form, the
popular gradient based adversarial attacks can be specified:
• Fast Gradient Sign Method (FGSM): This is a one step

attack introduced in (Goodfellow, Shlens, and Szegedy
2014). Here, P is the identity mapping, η is the
maximum allowed perturbation magnitude, and gt

x =
sign (∇xℓ(w

∗; (xt,y))), where ℓ denotes the loss func-
tion, w∗ is the trained weights and y is the ground truth
label corresponding to the image x0.

• PGD with L∞ bound: Arguably the most popular adver-
sarial attack introduced in (Madry et al. 2017) and some-
times referred to as Iterative Fast Gradient Sign Method
(IFGSM). Here, P is the L∞ norm based projection, η is a
chosen step size, and gt

x = sign (∇xℓ(w
∗; (xt,y))), the

sign of gradient same as FGSM.
• PGD with L2 bound: This is also introduced in (Madry

et al. 2017) which performs the standard PGD in the Eu-
clidean space. Here, P is the L2 norm based projection,
η is a chosen step size, and gt

x = ∇xℓ(w
∗; (xt,y)) is

simply the gradient of the loss with respect to the input.
These attacks have been further strengthened by a random
initial step (Tramèr et al. 2017). In this paper, we perform
this single random initialization for all experiments with
FGSM/PGD attack unless otherwise mentioned.

Robustness Evaluation of BNNs
We start by evaluating the adversarial accuracy (i.e. accu-
racy on the perturbed data) of BNNs using the PGD attack
with perturbation bound of 8 pixels (assuming each pixel in
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(a) Attack iterations does not improve attack. (b) Attack radius does not improve attack. (c) Black-box attacks perform better.
Figure 1: Gradient masking checks in ResNet-18 on CIFAR-10 for PGD attack with L∞ bound. While (a), (c) show signs of
gradient masking, (b) does not. We attribute this discrepancy to the random initial step before PGD.

the image is in [0, 255]) with respect to L∞ norm, step size
η = 2 and the total number of iterations T = 20. The attack
details are the same in all evaluated settings unless stated
otherwise. We perform experiments on CIFAR-10 dataset us-
ing ResNet-18 and VGG-16 architectures and report the clean
accuracy and PGD adversarial accuracy with 1 and 20 ran-
dom restarts in Table 1. It can be clearly and consistently
observed that binary networks have high adversarial accu-
racy compared to the floating point counterparts. Even with
20 random restarts, BNNs clearly outperform floating point
networks in terms of adversarial accuracy. Since this result is
surprising, we investigate this phenomenon further to under-
stand whether BNNs are actually robust to adversarial per-
turbations or they show a fake sense of security due to ob-
fuscated gradients (Athalye, Carlini, and Wagner 2018).

Identifying Obfuscated Gradients. Recently, it has been
shown that several defense mechanisms intentionally or un-
intentionally break gradient descent and cause obfuscated
gradients and thus exhibit a false sense of security (Atha-
lye, Carlini, and Wagner 2018). Several gradient based ad-
versarial attacks tend to fail to produce adversarial pertur-
bations in scenarios where the gradients are uninformative,
referred to as gradient masking. Gradient masking can occur
due to shattered gradients, stochastic gradients or exploding
and vanishing gradients. We try to identify gradient mask-
ing in binary networks based on the empirical checks pro-
vided in (Athalye, Carlini, and Wagner 2018). If any of these
checks fail, it indicates gradient masking issue in BNNs.

To illustrate this, we analyse the effects of varying dif-
ferent hyperparameters of PGD attack on BNNs trained on
CIFAR-10 using ResNet-18 architecture. Even though varying
PGD perturbation bound does not show any signs of gradient
masking, varying attack iterations and black-box vs white-
box results (on ResNet-18 and VGG-16) clearly indicate gra-
dient masking issues as depicted in Fig. 1. The black-box at-
tack outperforming white-box attack for BNNs certainly in-
dicates gradient masking issues since the black-box attack
do not use the gradient information from model being at-
tacked. Here, our black-box model to a BNN is the analo-
gous floating point network trained on the same dataset and
the attack is the same PGD with L∞ bound.

These checks demonstrate that BNNs are prone to gra-
dient masking and exhibit fake robustness. Note, shattered

gradients occur due to non-differentiable components in the
defense mechanism and stochastic gradients are caused by
randomized gradients. Since BNNs are trainable from scratch
and does not have randomized gradients, we narrow down
gradient masking issue to vanishing or exploding gradients.
Since, vanishing or exploding gradients occur due to poor
signal propagation, by introducing a single scalar, we dis-
cuss two approaches to mitigate this issue, which lead to al-
most 100% success rate for gradient based attacks on BNNs.

Signal Propagation of Neural Networks
We first describe how poor signal propagation in neural net-
works can cause vanishing or exploding gradients. Then we
discuss the idea of introducing a single scalar to improve the
existing gradient based attacks without affecting the predic-
tion (i.e., decision boundary) of the trained models.

We consider a neural network fw for an input x0, having
post-activations al, for l ∈ {1 . . .K} up to K layers and
logits aK = fw(x0). Now, since softmax cross-entropy is
usually used as the loss function, we can write:

ℓ(aK ,y) = −yT log(p) , p = softmax(aK) , (3)

where y ∈ IRd is the one-hot encoded target label and log is
applied elementwise.

For various gradient based adversarial attacks discussed
earlier, gradient of the loss ℓ is used with respect to the input
x0, which can also be formulated using chain rule as,

∂ℓ(aK ,y)

∂x0
=
∂ℓ(aK ,y)

∂aK
∂aK

∂x0
= ψ(aK ,y)J , (4)

where ψ denotes the error signal and J ∈ Rd×N is the input-
output Jacobian. Here we use the convention that ∂v/∂u is
of the form v-size × u-size.

Notice there are two components that influence the gradi-
ents, 1) the Jacobian J and 2) the error signal ψ. Gradient
based attacks would fail if either the Jacobian is poorly con-
ditioned or the error signal has saturating gradients, both of
these will lead to vanishing gradients in ∂ℓ/∂x0.

The effects of Jacobian on the signal propagation is stud-
ied in dynamical isometry and mean-field theory litera-
ture (Pennington, Schoenholz, and Ganguli 2017; Saxe, Mc-
Clelland, and Ganguli 2013) and it is known that a network
is said to satisfy dynamical isometry if the singular values
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of J are concentrated near 1. Under this condition, error sig-
nals ψ backpropagate isometrically through the network, ap-
proximately preserving its norm and all angles between error
vectors. Thus, as dynamical isometry improves the trainabil-
ity of the floating point networks, a similar technique can be
useful for gradient based attacks as well.

In fact, almost all initialization techniques (e.g., (Glorot
and Bengio 2010)) approximately ensures that the Jacobian
J is well-conditioned for better trainability and it is hypothe-
sized that approximate isometry is preserved even at the end
of the training. But, for BNNs, the weights are constrained
to be {−1, 1} and hence the weight distribution at end of
training is completely different from the random initializa-
tion. Furthermore, it is not clear that fully-quantized net-
works can achieve well-conditioned Jacobian, which guided
some research activity in utilizing layerwise scalars (either
predefined or learned) to improve BNN training (McDonnell
2018; Rastegari et al. 2016). We would like to point out that
the focus of this paper is to improve gradient based attacks
on already trained BNNs. To this end learning a new scalar
to improve signal propagation at each layer is not useful as
it can alter the decision boundary of the network and thus
cannot be used in practice on already trained model.

Temperature Scaling for better Signal Propagation. In
this paper, we propose to use a single scalar per network to
improve the signal propagation of the network using tem-
perature scaling. In fact, one could replace softmax with a
monotonic function such that the prediction is not altered,
however, we will show in our experiments that a single
scalar with softmax has enough flexibility to improve sig-
nal propagation and yields almost 100% success rate with
PGD attacks. Essentially, we can use a scalar, β > 0 without
changing the decision boundary of the network by preserv-
ing the relative order of the logits. Precisely, we consider the
following:

p(β) = softmax(āK) , āK = β aK . (5)

Here, we write the softmax output probabilities p as a func-
tion of β to emphasize that they are softmax output of tem-
perature scaled logits. Now since in this context, the only
variable is the temperature scale β, we denote the loss and
the error signal as functions of only β. With this simplified
notation the gradient of the temperature scaled loss with re-
spect to the inputs can be written as:

∂ℓ(β)

∂x0
=
∂ℓ(β)

∂āK
∂āK

∂aK
∂aK

∂x0
= ψ(β)β J . (6)

Note that β affects the input-output Jacobian linearly while
it nonlinearly affects the error signal ψ. To this end, we hope
to obtain a β that ensures the error signal is useful (i.e., not
all zero) as well as the Jacobian is well-conditioned to allow
the error signal to propagate to the input.

We acknowledge that while one can find a β > 0 to obtain
softmax output ranging from a uniform distribution (β = 0)
to one-hot vectors (β → ∞), β only scales the Jacobian.
Therefore, if the Jacobian J has zero singular values, our
approach has no effect in those dimensions. However, since
most of the modern networks consist of ReLU nonlineari-
ties (generally positive homogeneous functions), the effect

of a single scalar would be equivalent (ignoring the biases)
to having layerwise scalars such as in (McDonnell 2018).
Thus, we believe a single scalar is sufficient for our purpose.

Improved Gradients for Adversarial Attacks
Now we discuss strategies to choose a scalar β such that the
gradients with respect to input are informative. Let us first
analyze the effect of β on the error signal. To this end,

ψ(β) =
∂ℓ(β)

∂p(β)

∂p(β)

∂āK
= −(y − p(β))T . (7)

where y is the one-hot encoded target label, and p(β) is the
softmax output of scaled logits.

For adversarial attacks, we only consider the correctly
classified images (i.e., argmaxj yj = argmaxj pj(β)) as
there is no need to generate adversarial examples corre-
sponding to misclassified samples. From the above formula,
it is clear that when p(β) is one-hot encoding then the error
signal is 0. This is one of the reason for vanishing gradi-
ent issue in BNNs. Even if this does not happen for a given
image, one can increase β → ∞ to make this error sig-
nal 0. Similarly, when p(β) is the uniform distribution, the
norm of the error signal is at the maximum. This can be ob-
tained by setting β = 0. However, this would also make
∂ℓ(β)/∂x0 = 0 as the singular values of the input-output
Jacobian would all be 0.

This analysis indicates that the optimal β cannot be ob-
tained by simply maximizing the norm of the error signal
and we need to balance both the Jacobian as well as the er-
ror signal. To summarize, the scalar β should be chosen such
that the following properties are satisfied:

1. ∥ψ(β)∥2 > ρ for some ρ > 0.
2. The Jacobian β J is well-conditioned, i.e., the singular

values of β J is concentrated around 1.
Network Jacobian Scaling (NJS). We now discuss a
straightforward, two-step approach to attain the aforemen-
tioned properties. Firstly, to ensure βJ is well-conditioned,
we simply choose β to be the inverse of the mean of singular
values of J. This guarantees that the mean of singular values
of βJ is 1.

After this scaling, it is possible that the resulting error
signal is very small. To ensure that ∥ψ(β)∥2 > ρ > 0,
we ensure that the softmax output pk(β) corresponding to
the ground truth class k is at least ρ away from 1. We now
state it as a proposition to derive β given a lowerbound on
1− pk(β).
Proposition 1. Let aK ∈ IRd with d > 1 and aK1 ≥ aK2 ≥
. . . ≥ aKd and aK1 −aKd = γ. For a given 0 < ρ < (d− 1)/d,
there exists a β > 0 such that 1− softmax(βaK1 ) > ρ, then
β < − log(ρ/(d− 1)(1− ρ))/γ.
Proof. This is derived via a simple algebraic manipulation
of softmax. Please refer to Appendix.

This β can be used together with the one computed using
inverse of mean Jacobian Singular Values (JSV). We provide
the pseudocode for our proposed PGD++ (NJS) attack in Sec-
tion A of Appendix. Similar approach can also be applied
for FGSM++. Notice that, this approach is simple and it adds
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negligible overhead to the standard PGD attacks. However,
it has a hand-designed hyperparameter ρ. To mitigate this,
next we discuss a hyperparameter-free approach to obtain β.

Hessian Norm Scaling (HNS). We now discuss another
approach to obtain informative gradients. Our idea is to max-
imize the Frobenius norm of the Hessian of the loss with
respect to the input, where the intuition is that if the Hes-
sian norm is large, then the gradient ∂ℓ/∂x0 is sensitive to
an infinitesimal change in x0. This means, the infinitesimal
perturbation in the input is propagated in the forward pass to
the last layer and propagated back to the input layer without
attenuation (i.e., the returned signal is not zero), assuming
there are no randomized or non-differentiable components
in the network. This clearly indicates that the network has
good signal propagation as well as the error signals are not
all zero. This objective can now be written as:

β∗ = argmax
β>0

∥∥∥∥∂2ℓ(β)∂(x0)2

∥∥∥∥
F

= argmax
β>0

∥∥∥∥∥β
[
ψ(β)

∂J

∂x0
+ β

(
∂p(β)

∂āK
J

)T

J

]∥∥∥∥∥
F

.

(8)

The derivation is provided in Appendix. Note, since J
does not depend on β, J and ∂J/∂x0 are computed only
once, β is optimized using grid search as it involves only a
single scalar. In fact, it is easy to see from the above equa-
tion that, when the Hessian is maximized, β cannot be zero.
Similarly, ψ(β) cannot be zero because if it is zero, then the
prediction p(β) is one-hot encoding (Eq. (7)), consequently
∂p(β)/∂āK = 0 and this cannot be a maximum for the
Hessian norm. Hence, this ensures that ∥ψ(β∗)∥2 > ρ for
some ρ > 0 and β∗ is bounded according to Proposition 1.
Therefore, the maximum is obtained for a finite value of β.
Even though, it is not clear how exactly this approach would
affect the singular values of the input-output Jacobian (β J),
we know that they are finite and not zero.

Furthermore, there are some recent works (Moosavi-
Dezfooli et al. 2019; Qin et al. 2019) show that adversar-
ial training makes the loss surface locally linear around the
vicinity of training samples and enforcing local linearity
constraint on loss curvature can achieve better robust to ad-
versarial attacks. On the contrary, our idea of maximizing
the Hessian, i.e., increasing the nonlinearity of ℓ, could make
the network more prone to adversarial attacks and we intend
to exploit that. The psuedocode for PGD++ attack with HNS
is summarized in Section A of Appendix.

Experiments
We evaluate robustness accuracies of BNNs with weight
quantized (BNN-WQ), weight and activation quantized
(BNN-WAQ), floating point networks (REF). We evaluate
our two PGD++ variants corresponding to HNS and NJS
on CIFAR-10 and CIFAR-100 datasets with multiple network
architectures. In order to demonstrate the effectiveness of
our proposed variants on adversarially robust models, we
also performed comparisons against stronger attacks such
as DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016)

and Brendel & Bethge Attack (BBA) (Brendel et al. 2019)
on adversarially trained REF and BNN-WQ. We further pro-
vide experimental comparisons against more recent gradi-
ent based/free attacks (Auto-PGD (Croce and Hein 2020),
Square Attack (Andriushchenko et al. 2020)) proposed to
alleviate the issue of gradient obfuscation. More analysis on
signal propagation issue in BNNs and our variants success in
improving it is provided in Section C.5 of Appendix.

We use state of the art models trained for binary quanti-
zation (where all layers are quantized) for our experimental
evaluations. We provide adversarial attack parameters used
for FGSM/PGD in Table ?? of Appendix and for other attacks,
we use default parameters used in Foolbox (Rauber, Bren-
del, and Bethge 2017). We also provide some other experi-
mental comparisons such as comparisons against combina-
torial attack proposed in (Khalil, Gupta, and Dilkina 2019)
in the Appendix. For our HNS variant, we sweep β from a
range such that the hessian norm is maximized for each im-
age, as explained in Appendix. For our NJS variant, we set
the value of ρ = 0.01. In fact, our attacks are not very sensi-
tive to ρ and we provide the ablation study in the Appendix.

Results
Our comparisons against the original PGD (L2/L∞) and
FGSM attack for different BNN-WQ are reported in Table 2.
Our PGD++ variants consistently outperform original PGD
on all networks on both datasets. Even being a gradient
based attack, our proposed PGD++ (L2/L∞) variants can
in fact reach adversarial accuracy close to 0 on CIFAR-
10 dataset, demystifying the fake robustness binarized net-
works tend to exhibit due to poor signal propagation.

Similarly, for one step FGSM attack, our modified versions
outperform original FGSM attacks by a significant margin
consistently for both datasets on various network architec-
tures. We would like to point out such an improvement in the
above two attacks is considerably interesting, knowing the
fact that FGSM, PGD withL∞ attacks only use the sign of the
gradients so improved performance indicates, our tempera-
ture scaling indeed makes some zero elements in the gradi-
ent nonzero. We would like to point out here that one can
use several random restarts to increase the success rate of
original form of FGSM/PGD attack further but to keep com-
parisons fair we use single random restart for both original
and modified attacks. Nevertheless, as it has been observed
in Table 1 even with 20 random restarts PGD adversarial ac-
curacies for BNNs cannot reach zero, whereas our proposed
PGD++ variants consistently achieve perfect success rate.

The adversarial accuracies of REF and BNN-WAQ trained
on CIFAR-10 using ResNet-18/50, VGG-16 and DenseNet-121
for our variants against original counterparts are reported in
Table 3. Overall, for both REF and BNN-WAQ, our variants
outperform the original counterparts consistently. Particu-
larly interesting, PGD++ variants improve the attack success
rate on REF networks. This effectively expands the appli-
cability of our PGD++ variants and encourages to consider
signal propagation of any trained network to improve gra-
dient based attacks. PGD++ with L∞ variants achieve near-
perfect success rate on all BNN-WAQs, again validating the
hypotheses of fake robustness of BNNs.
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Network
Adversarial Accuracy (%)

FGSM
FGSM++

PGD (L∞) PGD++ (L∞)
PGD (L2) PGD++ (L2)

NJS HNS NJS HNS NJS HNS

C
IF

A
R

-1
0 ResNet-18 40.49 3.46 2.51 26.98 0.00 0.00 55.68 0.05 0.05

VGG-16 57.55 4.00 3.43 47.32 0.00 0.00 56.66 0.35 1.32
ResNet-50 57.62 6.44 5.35 43.14 0.00 0.00 59.11 0.11 0.08
DenseNet-121 26.80 4.67 4.24 9.11 0.00 0.00 45.78 0.03 0.06
MobileNet-V2 33.50 6.42 5.42 26.86 0.00 0.00 34.40 0.12 0.09

C
IF

A
R

-1
00 ResNet-18 25.22 14.08 1.80 8.23 2.45 0.00 25.20 6.79 0.26

VGG-16 19.82 7.98 1.76 17.44 0.88 0.16 16.25 3.17 0.63
ResNet-50 37.76 16.33 14.17 25.71 2.33 2.73 30.77 7.90 7.41
DenseNet-121 28.32 12.21 10.86 8.87 1.15 1.09 24.65 4.54 4.16
MobileNet-V2 12.09 10.18 8.79 1.44 0.57 0.66 6.12 3.39 3.01

Table 2: Adversarial accuracy on the test set for BNN-WQ. Both our NJS and HNS variants consistently outperform original
L∞ bounded FGSM and PGD attack, and L2 bounded PGD attack.

Network
Adversarial Accuracy (%)

FGSM
FGSM++

PGD (L∞) PGD++ (L∞)
PGD (L2) PGD++ (L2)

NJS HNS NJS HNS NJS HNS

R
E

F

ResNet-18 7.62 5.55 5.35 0.00 0.00 0.00 1.12 0.09 0.05
VGG-16 11.01 10.04 9.66 0.04 0.00 0.00 2.23 0.78 1.10
ResNet-50 21.64 6.08 5.70 0.69 0.00 0.00 0.37 0.07 0.09
DenseNet-121 11.40 7.58 7.30 0.00 0.00 0.00 0.65 0.08 0.06

B
N

N
-W

A
Q ResNet-18 40.84 19.46 19.09 8.57 0.03 0.04 25.24 2.33 2.59

VGG-16 79.92 15.96 15.39 78.01 0.01 0.02 85.62 0.49 0.62
ResNet-50 33.16 25.89 27.05 0.49 0.23 0.45 19.41 6.68 8.77
DenseNet-121 37.20 23.89 24.69 0.81 0.10 0.18 48.37 3.72 6.17

Table 3: Adversarial accuracy on the test set of CIFAR-10 for REF and BNN-WAQ. Both our NJS and HNS variants consistently
outperform original FGSM and PGD (L∞/L2 bounded) attacks.

To further demonstrate the efficacy of proposed attack
variants, we first adversarially trained the BNN-WQs (quan-
tized using BC (Courbariaux, Bengio, and David 2015), GD-
tanh/MD-tanh-S (Ajanthan et al. 2021)) and floating point
networks in a similar manner as in (Madry et al. 2017), us-
ing L∞ bounded PGD with T = 7 iterations, η = 2 and
ϵ = 8. We report the adversarial accuracies of L∞ bounded
attacks and our variants on CIFAR-10 using ResNet-18 in Ta-
ble 4. These results further strengthens the usefulness of our
proposed PGD++ variants. Moreover, with a heuristic choice
of β = 0.1 to scale down the logits before performing gradi-
ent based attacks performs even worse. Finally, even against
stronger attacks (DeepFool, BBA) under the same L∞ per-
turbation bound, our variants outperform consistently on
these adversarially trained models in Table 4. We would like
to point out that our variants have negligible computational
overhead over the original gradient based attacks, whereas
stronger attacks are much slower in practice requiring 100-
1000 iterations with an adversarial starting point (instead of
random initial perturbation).

To illustrate the effectiveness of our proposed variants in
improving signal propagation, we compare against gradi-
ent based attacks performed using recently proposed Dif-
ference of Logits Ratio (DLR) loss (Croce and Hein 2020)

that aims to avoid the issue of saturating error signals. Also,
we provide comparisons against recently introduced Auto-
PGD (APGD) attack performed using DLR loss and a gradi-
ent free attack namely, Square Attack (Andriushchenko et al.
2020). We show these experimental comparisons performed
on ResNet-18 models trained on CIFAR-10 dataset in Table 5.
The attack parameters are same as used for the other experi-
ments. It can be observed that our proposed variants perform
better than both PGD or APGD with DLR loss and Square At-
tack, consistently achieving 0% adversarial accuracy. Infact,
much computationally expensive Square attack is unable to
achieve 0% adversarial accuracy in any of the cases under
the enforced L∞ bound. The margin of difference is signifi-
cant in case of FGSM attack and adversarial trained models.
Infact, it is important to note that gradient based attacks with
DLR loss and Square Attack perform worse on adversarially
trained models than the original gradient based attacks.

ImageNet. For other large scale datasets such as Ima-
geNet, BNNs are hard to train with full binarization of pa-
rameters and result in poor performance. Thus, most exist-
ing works (Yang et al. 2019) on BNNs keep the first and
the last layers floating point and introduce several layer-
wise scalars to achieve good results on ImageNet. In such
experimental setups, according to our experiments, trained
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Network
Adversarial Accuracy (%)

FGSM
FGSM FGSM++

PGD
PGD Deep BBA PGD++

β = 0.1 NJS HNS β = 0.1 Fool NJS HNS

REF 62.38 69.52 61.43 61.40 48.73 61.27 51.01 48.43 47.17 48.54
BC 53.91 62.46 52.90 52.27 41.29 54.24 42.65 40.14 39.35 39.34
GD-tanh 56.13 65.06 55.54 54.81 42.77 56.78 44.78 42.94 42.14 42.30
MD-tanh-S 55.10 63.42 54.74 53.82 41.34 54.22 43.46 40.69 40.76 40.67

Table 4: Adversarial accuracy on CIFAR-10 with ResNet-18 for adversarially trained REF and BNN-WQ using different quantiza-
tion methods (BC, GD-tanh, MD-tanh-S). Our improved attacks are compared against FGSM, PGD (L∞), a heuristic choice of
β = 0.1, DeepFool and BBA. Albeit on adversarially trained networks, our methods outperform all the comparable methods.

Network
Adversarial Accuracy (%)

FGSM
FGSM FGSM++

PGD
PGD

APGD
Square PGD++

(DLR) NJS HNS (DLR) Attack NJS HNS

REF 7.62 19.48 5.55 5.35 0.00 0.00 0.00 0.55 0.00 0.00
BNN-WQ 40.49 19.72 3.46 2.51 26.98 0.00 0.00 0.41 0.00 0.00
BNN-WAQ 40.84 41.78 19.46 19.09 8.57 4.57 6.32 21.45 0.03 0.04

REF∗ 62.38 66.39 61.43 61.40 48.73 49.73 49.00 54.05 47.17 48.54
BNN-WQ∗ 55.10 59.14 54.74 53.82 41.34 41.42 40.85 46.67 40.76 40.67

Table 5: Adversarial accuracy for REF, BNN-WQ, and BNN-WAQ trained on CIFAR-10 using ResNet-18. Here ∗ denotes ad-
versarially trained models. Both our NJS and HNS variants consistently outperform L∞ bounded FGSM, PGD and Auto-PGD
(APGD) (Croce and Hein 2020) attack performed using Difference of Logits Ratio (DLR) loss and a gradient free attack namely,
Square Attack (Andriushchenko et al. 2020) under L∞ bound (8/255). Notice, FGSM, PGD and APGD attack with DLR loss and
Square Attack perform even worse than their original form on adversarially trained models in most cases.

BNNs do not exhibit gradient masking issues or poor sig-
nal propagation and thus are easier to attack using original
FGSM/PGD attacks with complete success rate. In such ex-
periments, our modified versions perform equally well com-
pared to the original forms of these attacks.

Related Work
Adversarial examples are first observed in (Szegedy et al.
2014) and subsequently efficient gradient based attacks
such as FGSM (Goodfellow, Shlens, and Szegedy 2014) and
PGD (Madry et al. 2017) are introduced. There exist re-
cent stronger attacks such as (Moosavi-Dezfooli, Fawzi, and
Frossard 2016; Carlini and Wagner 2017; Yao et al. 2019;
Finlay, Pooladian, and Oberman 2019; Brendel et al. 2019),
however, compared to PGD, they are much slower to be
used for adversarial training in practice. For a comprehen-
sive survey related to adversarial attacks, we refer the reader
to (Chakraborty et al. 2018).

Some recent works focus on the adversarial robustness of
BNNs (Bernhard, Moellic, and Dutertre 2019; Sen, Ravin-
dran, and Raghunathan 2020; Galloway, Taylor, and Moussa
2018; Khalil, Gupta, and Dilkina 2019; Lin, Gan, and
Han 2019), however, a strong consensus on the robustness
properties of quantized networks is lacking. In particular,
while (Galloway, Taylor, and Moussa 2018) claims parame-
ter quantized networks are robust to gradient based attacks
based on empirical evidence, (Lin, Gan, and Han 2019)
shows activation quantized networks are vulnerable to such
attacks and proposes a defense strategy assuming the pa-

rameters are floating-point. Differently, (Khalil, Gupta, and
Dilkina 2019) proposes a combinatorial attack hinting that
activation quantized networks would have obfuscated gradi-
ents issue. Though as shown in the paper, the combinatorial
attack is not scalable and thus experiments were shown on
only few layered MLPs trained on MNIST. (Sen, Ravindran,
and Raghunathan 2020) shows ensemble of mixed precision
networks to be more robust than original floating point net-
works; however (Tramer et al. 2020) later shows the pre-
sented defense method can be attacked with minor modifica-
tion in the loss function. In short, although it has been hinted
that there maybe gradient masking in BNNs (especially in
activation quantized networks), a thorough understanding is
lacking on whether BNNs are robust, if not what is the rea-
son for the failure of most commonly used gradient based
attacks on binary networks. We answer this question in this
paper and introduce improved gradient based attacks.

Conclusion
In this work, we have shown that both BNN-WQ and BNN-
WAQ tend to show a fake sense of robustness on gradi-
ent based attacks due to poor signal propagation. To tackle
this issue, we introduced our two variants of PGD++ attack,
namely NJS and HNS. Our proposed PGD++ variants not
only possess near-complete success rate on binarized net-
works but also outperform standard L∞ and L2 bounded
PGD attacks on floating point networks. We finally show im-
provement in attack success on adversarially trained REF and
BNN-WQ against stronger attacks (DeepFool and BBA).
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Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2017. Ensemble adver-
sarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204.
Yang, J.; Shen, X.; Xing, J.; Tian, X.; Li, H.; Deng, B.;
Huang, J.; and Hua, X.-s. 2019. Quantization networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 7308–7316.
Yao, Z.; Gholami, A.; Xu, P.; Keutzer, K.; and Mahoney,
M. W. 2019. Trust region based adversarial attack on neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 11350–11359.

6818


