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Abstract

Label-specific features serve as an effective strategy to learn
from multi-label data with tailored features accounting for
the distinct discriminative properties of each class label. Ex-
isting prototype-based label-specific feature transformation
approaches work in a three-stage framework, where proto-
type acquisition, label-specific feature generation and classi-
fication model induction are performed independently. Intu-
itively, this separate framework is suboptimal due to its de-
coupling nature. In this paper, we make a first attempt to-
wards a unified framework for prototype-based label-specific
feature transformation, where the prototypes and the label-
specific features are directly optimized for classification. To
instantiate it, we propose modelling the prototypes proba-
bilistically by the normalizing flows, which possess adaptive
prototypical complexity to fully capture the underlying prop-
erties of each class label and allow for scalable stochastic op-
timization. Then, a label correlation regularized probabilistic
latent metric space is constructed via jointly learning the pro-
totypes and the metric-based label-specific features for clas-
sification. Comprehensive experiments on 14 benchmark data
sets show that our approach outperforms the state-of-the-art
counterparts.

Introduction
Multi-label classification deals with the problem where an
instance can be associated with multiple labels simultane-
ously (Zhang and Zhou 2014; Liu et al. 2021). As a learn-
ing paradigm that handles objects with multiple semantics,
researches on multi-label classification have been widely
driven by real-world applications, such as multimedia an-
notation (You et al. 2020), text categorization (Tang et al.
2020), and bioinformatics analysis (Chen et al. 2017), etc.

The most straightforward strategy for tackling multi-label
classification is to induce classification models with the
identical representation of an instance. This strategy might
be suboptimal as it fails to account for the distinct charac-
teristics of each class label. To improve this, the strategy of
label-specific features has been proposed to facilitate the dis-
crimination of each class label by tailoring its own features
(Zhang and Wu 2015; Huang et al. 2016; Zhang et al. 2018;
Jia, Zhu, and Li 2020; Yu and Zhang 2021). With the basic
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Figure 1: Intuitive illustration for the necessity of multi-
prototype learning for compact latent metric space construc-
tion. For clarity, we consider a learning scenario with two
labels. Label l1 is denoted by shape (circle for positive and
square for negative). Label l2 is presented by color (blue
for positive and orange for negative). (a) In single-prototype
learning case, contradictory forces exist between pairwise
clusters. For example, the clusters • and • are simultane-
ously pulled close and pushed away by label l1 and label l2
respectively. (b) In multi-prototype learning case, such con-
tradictory forces are eliminated.

assumption that the distinct characteristics of each class la-
bel can be captured via investigating the underlying proper-
ties of the training instances, the seminal work LIFT (Zhang
and Wu 2015) proposes a three-stage framework to per-
form prototype-based label-specific feature transformation:
firstly, clustering analysis is performed on positive/negative
instances of each class label to obtain its positive/negative
prototypes; then, label-specific features are generated via
querying distances between the original instances and the
prototypes; finally, classifiers are induced with the metric-
based label-specific features. Numerous studies have been
conducted to improve this three-stage framework by enhanc-
ing the process of prototype acquisition (Zhang, Fang, and
Li 2015; Zhan and Zhang 2017; Zhang and Li 2021) and
label-specific feature generation (Xu et al. 2016; Chen and
Zhang 2019; Guo et al. 2019; Lin et al. 2021). However, the
three stages still work independently, which might be sub-
optimal as it has no opportunity to optimize the prototypes
and the label-specific features directly for classification.

A feasible way to improve this is to jointly learn the pro-
totypes and the metric-based label-specific features in a la-
tent metric space where an instance is close to prototypes
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with the same category and away from prototypes with dif-
ferent category1, thus highly discriminative features specific
to each class label can be generated for improved classifica-
tion. Due to the inherent multi-semantic properties of multi-
label data, it is important to learn multiple prototypes for de-
scribing positive/negative instances of each class label when
constructing such latent metric space. Intuitively, the neces-
sity of multi-prototype learning for compact latent metric
space construction is illustrated in Figure 1. Existing works
acquire prototypes mainly by performing clustering analy-
sis (Snell, Swersky, and Zemel 2017; Allen et al. 2019),
conducting neighbor search (Liu and Tsang 2015; Rastin,
Jahromi, and Taheri 2021), maintaining a prototypical mem-
ory (Zhen et al. 2020), or directly learning the parameters
of prototypes (Shen et al. 2018). Nevertheless, these ap-
proaches may either fail to work when the optimal number
of prototypes is unknown, or be incompatible with stochas-
tic optimization methods, which makes the label-wise multi-
prototype learning challenging.

With the above observations, we present a unified frame-
work for prototype-based label-specific feature transforma-
tion, where prototypes and metric-based label-specific fea-
tures are optimized directly for classification in an end-
to-end manner. Following this framework, a novel ap-
proach named PACA, i.e. end-to-end Probabilistic lAbel-
speCific feAture learning for multi-label classification, is
proposed. Specifically, normalizing flows (Kobyzev, Prince,
and Brubaker 2021) are exploited to conduct probabilistic
modelling of prototypes, which can adaptively decide the
prototypical complexity in terms of underlying properties
of each class label and support stochastic optimization. In-
spired by the variational inference theory, a probabilistic la-
tent metric space is constructed via learning the prototypes
and the metric-based label-specific features jointly. We fur-
ther propose a label embedding-based regularizer to impose
constraints on the structure of the latent metric space, which
implicitly incorporates the label correlations into the pro-
totype learning process. Comprehensive experiments on 14
benchmark data sets show that our approach performs better
than well-established multi-label classification algorithms.

The rest of this paper is organized as follows. Section 2
briefly reviews related works. Section 3 presents details of
the proposed PACA approach. Section 4 reports experimen-
tal results over a wide range of multi-label data sets. Section
5 concludes this paper.

Related Work
Multi-label classification has been studied extensively in the
last decade (Zhang and Zhou 2014; Liu et al. 2021). Most
approaches focus on modelling the label correlations to fa-
cilitate the learning process, since the output space is ex-
ponential in size to the number of class labels. In terms
of the order of label correlations being considered, these
approaches can be roughly grouped into three categories,
namely first-order approaches (Boutell et al. 2004; Zhang
and Zhou 2007), second-order approaches (Elisseeff and
Weston 2001; Zhu, Kwok, and Zhou 2018) and high-order
approaches (Tsoumakas, Katakis, and Vlahavas 2010; Feng,

1Two categories exist for each label, i.e. positive and negative.

An, and He 2019; Xu and Guo 2021). Recently, deep learn-
ing has become a successful technique to jointly consider
the label correlation exploitation and classification model in-
duction. For example, the chain-like prediction process pro-
posed in (Read et al. 2011) is made into a single pipeline via
recurrent neural networks (Wang et al. 2016; Yazici et al.
2020) to better exploit the higher-order label dependencies
for classification. Graph neural networks (Chen et al. 2019b,
2020) are employed to explicitly encode pairwise label cor-
relations and impose constraints on the hypothesis space.
Some embedding approaches (Yeh et al. 2017; Chen et al.
2019a; Bai, Kong, and Gomes 2020) resort to deep neural
networks to embed and align features and labels in a latent
space, where the label correlations are implicitly encoded.

Besides, label-specific features have been proven to be
another effective strategy to improve multi-label classifi-
cation via manipulating the input space. Generally speak-
ing, label-specific features can be generated in two different
manners, i.e. label-specific feature selection and prototype-
based label-specific feature transformation.

Label-specific feature selection generates label-specific
features via retaining a specific subset of the original fea-
tures for each class label. As a representative work, LLSF
(Huang et al. 2015, 2016) introduces the classical lasso re-
gression for label-specific feature selection and considers
pairwise label correlations to encourage feature-sharing be-
tween closely-related labels. Follow-up works extend this
framework via incorporating regularized optimization into
the feature selection process (Huang et al. 2018b), impos-
ing non-sparse constraints over the selected feature subsets
(Weng et al. 2020), or performing selection in an embedded
feature space (Yu and Zhang 2021), etc. Under an embed-
ded selection framework, the processes of feature selection
and classification are inherently coupled. However, explicit
representations of label-specific features are absent.

On the other hand, label-specific features can also be ex-
plicitly generated by treating the prototypes of each class
label as the transformation bases. LIFT (Zhang and Wu
2015) proposes a three-stage framework for prototype-based
label-specific feature transformation, where prototype ac-
quisition, label-specific feature generation and classification
model induction are performed successively. Several cus-
tomized strategies have been proposed to enhance the three-
stage framework, such as replacing the k-means clustering
with spectral clustering (Zhang, Fang, and Li 2015) or clus-
tering ensemble (Zhang and Li 2021; Zhan and Zhang 2017)
to acquire more robust prototypes, removing redundant in-
formation with attribute reduction (Xu et al. 2016), enrich-
ing metric-based label-specific features with local neighbor
information (Weng et al. 2018), global spatial topology in-
formation (Guo et al. 2019), or informative features from
related class labels (Chen and Zhang 2019). However, each
stage in the three-stage framework still works independently,
with no guarantees on the optimality of the generated label-
specific features for classification.

To improve this, a first attempt towards a unified frame-
work for prototype-based label-specific feature transforma-
tion is presented in this paper. We will detail our approach
in the next section.
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Figure 2: Illustration of the proposed PACA approach. Prototypes are modelled by normalizing flows, where each peak in the
captured multimodal distribution is regarded as a prototype. (a) In a probabilistic latent metric space, label-specific features are
generated by computing distances between an instance and positive, negative prototypes of each class label. Then, classification
is performed on label-specific features in a label-wise manner. (b) The KL divergence is employed to measure an instance’s dis-
tance to the set of postive/negative prototypes for each class label, which reflects the instance’s distance to its nearest prototype
in the set.

The PACA Approach
Preliminaries
Let X = Rd denote the input space and Y = {l1, l2, . . . , lq}
denote the label space with q class labels. A multi-label ex-
ample is denoted as (x, Y ), where x ∈ X is its feature vector
and Y ⊆ Y is its set of relevant labels. Here, a q-dimensional
vector y = [y1, y2, . . . , yq] ∈ {0, 1}q is utilized to denote Y ,
where yk = 1 indicates lk ∈ Y and yk = 0 otherwise. For-
mally, multi-label classification aims to derive a multi-label
prediction function h : X → 2Y from a multi-label data
set D = {(xi, Yi)|1 ≤ i ≤ m}. Given an unseen instance
u ∈ X , its associated label set is predicted as h(u) ⊆ Y .

Specifically, existing prototype-based label-specific fea-
ture transformation approaches learn from multi-label data
under the following three-stage framework. Firstly, for each
class label, clustering analysis is performed on the set of pos-
itive/negative instances and resulting cluster centers are re-
garded as positive/negative prototypes, i.e.:

clustering(Pj ,K+)→ {pj1,p
j
2, . . . ,p

j
K+}

clustering(N j ,K−)→ {nj1,n
j
2, . . . ,n

j
K−}

(1)

where Pj = {xi|(xi, Yi) ∈ D, lj ∈ Yi}, K+ and
{pj1,p

j
2, . . . ,p

j
K+} denote the set of positive instances, the

number of positive clusters and derived positive prototypes
for label lj respectively. Similarly, the other symbols denote
corresponding variables of negative instances.

Then, for each class label, label-specific features are gen-
erated by querying distances between the original instances
and the corresponding prototypes, formalized as:
φj(x) = [d(x,pj1), . . . , d(x,p

j

K+), d(x,n
j
1), . . . , d(x,n

j

K−)] (2)

where d(·, ·) denotes the distance metric, which is gener-
ally instantiated by the Euclidean distance.

Finally, classifiers {g1, g2, . . . , gq} are induced with the
generated label-specific features. Given an unseen instance

u, its associated label set is predicted as:
Y = {lj |gj(φj(u)) > 0, 1 ≤ j ≤ q} (3)

Overview
The illustration of our PACA2 is shown in Figure 2. PACA’s
behavior in test stage is consistent with that of existing
prototype-based label-specific feature transformation ap-
proaches. An instance x is firstly embedded into a proba-
bilistic latent metric space. Then, label-specific features are
generated via computing distances of the instance’s latent
embedding against positive and negative probabilistic proto-
types for each class label. Finally, classification is performed
on the generated label-specific features.

Formally, the generated label-specific features are as fol-
lows:
φj(x) = [d(qϕ(z|x), p(z|Pj)), d(qϕ(z|x), p(z|N j))] (4)
where qϕ(z|x) is the instance’s latent embedding in prob-

abilistic latent metric space, p(z|Pj) and p(z|N j) denote
positive and negative probabilistic prototypes of label lj re-
spectively. Distance metric d(·, ·) is implemented by KL di-
vergence to measure the discrepancy between two distribu-
tions. Due to strong discriminative power of the generated
label-specific features, softmax-based parameter-free classi-
fiers are employed, formalized as:
gj(φj(x)) = [[softmax(−φj(x))1 > 0.5]] (5)

= [[
exp(−d(qϕ(z|x), p(z|Pj)))∑

c∈{Pj,Nj} exp(−d(qϕ(z|x), p(z|c)))
>0.5]]

The learning process of PACA will be described in de-
tail, where prototypes and metric-based label-specific fea-
tures are optimized jointly to construct a probabilistic latent
metric space for multi-label classification.

2Code package is publicly available at: http://palm.seu.edu.cn/
zhangml/files/PACA.rar
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Probabilistic Prototypes via Normalizing Flows
Probabilistic modelling of prototypes is found to be a more
informative representation of object classes compared to
deterministic vectors, where prototypes of each class are
treated as a class distribution. However, existing works sim-
ply assume that the class distribution is a multivariate Gaus-
sian (Zhang et al. 2019; Zhen et al. 2020), which is far from
enough to approximate the class distribution of positive/neg-
ative instances of each class label in multi-label learning sce-
nario. Recent work (Allen et al. 2019) resorts to the mixture
of Gaussians to capture complex class distributions, but the
number of mixture components has to be preassigned and
the multimodal distribution is fitted via clustering which is
inherently incompatible with stochastic optimization meth-
ods such as SGD. To overcome these problems, we propose
employing the normalizing flows to adaptively model the
potentially multimodal distribution of multi-label data.

Normalizing flows provide an elegant framework for
modelling complex distribution via learning a diffeomor-
phism f : Rdz → Rdz , which can transform a random vari-
able u following a known base distribution pU into a new
random variable z. With the change of variables formula,
the marginal likelihood of z is fully determined by:

pZ(z) = pU (u) · | det
∂f

∂z
| = pU (f(z)) · | det

∂f

∂z
| (6)

where det ∂f∂z denotes the determinant of f ’s Jacobian ma-
trix. Typically, the base distribution pU is chosen to be a
standard normal or a uniform distribution for fast density
evaluation. As a universal approximator for continuous dis-
tributions, neural autoregressive flows (NAF) (Huang et al.
2018a) are utilized in this paper. In NAF, the diffeomor-
phism f is expressed as monotonic neural networks. Specif-
ically, the transformation is conducted in an autoregressive
manner, i.e.

ut = τ(zt; c(z1:t−1)) (7)

where c(·) denotes an autoregressive conditioner to pa-
rameterize the element-wise transformation τ(·). And τ(·)
is a monotonic neural network formalized as:

ut = σ−1(wT · σ(a · zt + b)) (8)

where w,a,b ∈ Rdτ , 0 < wi < 1,
∑dτ
i=1 wi = 1, a > 0.

All these parameters are produced by the conditioner and
constraints on them are enforced via activation functions,
i.e. w,a are outputs of softmax and softplus respectively. σ
is the sigmoid function and σ−1 is the logit function. We set
the number of hidden units dτ = 16 in this paper.

To model probabilistic prototypes of positive/negative in-
stances for each class label respectively, 2·q such autoregres-
sive transformations are required to learn. As this is imprac-
tical for large q, we propose learning 2 conditional transfor-
mations fP(·; lj), fN (·; lj) by making the conditioner c(·)
conditioned on the class labels. To implement this, a two-
layer fully-connected neural network is utilized to instanti-
ate the conditional conditioner c(·; lj) and its input is aug-
mented with the one-hot coding of each class label. Mask-
ing trick (Germain et al. 2015) is employed to parallelize the

autoregressive computations of the conditioner, thus elimi-
nating the need for sequential recursion. Formally, the prob-
abilistic prototypes of positive/negative instances for label lj
are modelled as:

p(z|Pj) = pU (fP(z; lj)) · | det
∂fP(z; lj)

∂z
|

p(z|N j) = pU (fN (z; lj)) · | det
∂fN (z; lj)

∂z
|

(9)

where the base distribution pU is a standard normal dis-
tribution. As shown in Figure 2, each peak in these captured
multimodal distributions is regarded as a prototype, and one
more benefit of the probabilistic prototypes is that the dis-
tance between an instance and the set of positive/negative
prototypes for each class label can be efficiently measured
by the KL divergence, which reflects the instance’s distance
to its nearest prototype in the set to some extent.

Probabilistic Latent Metric Space Construction
We construct the probabilistic latent metric space based on
the probabilistic framework of the Variational Autoencoder
(VAE) (Kingma and Welling 2014). VAE assumes a genera-
tive process for the observed data point x, which involves an
unobserved latent variable z. The process consists of two
steps: (1) sample a latent z from some prior distribution
pθ(z); (2) generate a data point x from some conditional dis-
tribution pθ(x|z). Accordingly, the joint probability pθ(x, z)
can be factorized as:

pθ(x, z) = pθ(z) · pθ(x|z) (10)

Typically, this generative process is learned via maximiz-
ing the marginal likelihood on the observed data set. To
make the optimization tractable, a variational lower bound
on the marginal likelihood of data point x is induced via in-
troducing a variational posterior qϕ(z|x) to approximate the
true posterior qθ(z|x):

log pθ(x) = log

∫
pθ(z) · pθ(x|z)dz

= log

∫
qϕ(z|x) ·

pθ(z)

qϕ(z|x)
· pθ(x|z)dz (11)

≥ Eqϕ(z|x)[log
pθ(z)

qϕ(z|x)
· pθ(x|z)] = L(x;θ,ϕ)

where the L(x;θ,ϕ) is the derived variational lower
bound, which can be rewritten as:
L(x;θ,ϕ) = Eqϕ(z|x)[log pθ(x|z)]−KL[qϕ(z|x)||pθ(z)] (12)

From the perspective of autoencoder, the first term en-
courages the reconstruction of data point x, and the second
term acts as a constraint on the structure of the latent space
to ensure a reasonable new data point can be generated when
sampling from the prior distribution pθ(z). Correspondingly,
the qϕ(z|x) can be regarded as a probabilistic encoder which
transforms a data point x into a distribution over the latent
variable z from which the data point x could have been gen-
erated. And the pθ(x|z) can be regarded as probabilistic de-
coder which recovers possible values of x given a latent z.
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We follow the structure of VAE. Specifically, qϕ(z|x) is
assumed to be a multivariate Gaussian with a diagonal co-
variance, i.e. qϕ(z|x) = N (z;µ(x), σ2(x)I), while pθ(x|z)
is a multivariate Gaussian (in case of real-valued data) or
Bernoulli (in case of binary data). Both qϕ(z|x) and pθ(x|z)
are parameterized by neural networks. Based on the varia-
tional lower bound, we replace the trivial prior distribution
pθ(z) with a more informative prior distribution conditioned
on the category (i.e. positive or negative) for each class label.
Thus, the new objective function is formalized as:

Eqϕ(z|x)[log pθ(x|z)]−
q∑
j=1

KL[qϕ(z|x)||pθ(z|yj)] (13)

where pθ(z|yj) is the introduced conditional prior distri-
bution, which equals to the probabilistic prototypes p(z|Pj)
when yj = 1, and p(z|N j) otherwise.

In the above equation, the label-wise KL divergence terms
encourage the probabilistic representation of an instance to
match the probabilistic prototypes of the same category for
each class label. However, it is not enough to construct a dis-
criminative latent metric space by merely optimizing the dis-
tance between an instance and prototypes with the same cat-
egory. Therefore, we propose to extend the objective func-
tion as follows:

Llatent = Lrec + Lcls
= Eqϕ(z|x)[log pθ(x|z)] (14)

+

q∑
j=1

log
exp(−KL[qϕ(z|x)||pθ(z|yj)])∑

c∈{0,1} exp(−KL[qϕ(z|x)||pθ(z|c)])

where an instance is encouraged to stay close to proto-
types with the same category and keep away from prototypes
with different category. We formalize this contrastive pro-
cess as the parameter-free classification on the label-specific
features φj(x), which can keep the training and prediction
behaviors of our model consistent.

Latent Space Regularization
Intuitively, instances with the same label vectors should
be close to each other in the latent space. To incorporate
this intuition into the learning process, we propose a label
embedding-based regularizer defined as:

Lreg = Eq(z|y)[log p(y|z)]−KL[qϕ(z|x)||q(z|y)] (15)

As shown in the above equation, another probabilistic au-
toencoder is utilized to embed the label vectors into the prob-
abilistic latent space, where q(z|y) and p(y|z) are assumed
to be a multivariate Gaussian with a diagonal covariance and
a Bernoulli respectively. Then, KL divergence between the
probabilistic representations of an instance’s features and la-
bel vector encourages instances to cluster close to their la-
bels.

From the perspective of prototype learning, this regular-
izer provides guidance for generating more semantic peaks
in the captured multimodal distributions and also incorpo-
rates the label correlations into the learning process since
labels sharing more instances will share more peaks in their
captured distributions.

Dataset |S| dim(S) L(S) LCard(S) Domain

CAL500 502 68 174 26.044 Music1

Image 2000 294 5 1.236 Images2

scene 2407 294 6 1.074 Images1

yeast 2417 103 14 4.237 Biology1

corel5k 5000 499 374 3.522 Images1

rcv1-s1 6000 944 101 2.880 Text1

Corel16k-s1 13766 500 153 2.859 Images1

delicious 16105 500 983 19.020 Text1

iaprtc12 19627 1000 291 5.719 Images3

espgame 20770 1000 268 4.686 Images3

mirflickr 25000 1000 38 4.716 Images3

tmc2007 28596 981 22 2.158 Text1

mediamill 43907 120 101 4.376 Video1

bookmarks 87856 2150 208 2.028 Text1

Table 1: Characteristics of the experimental data sets.

The overall objective function to maximize is given as fol-
lows:

L = Lrec + α · Lcls + γ · Lreg (16)

where α and γ are two trade-off parameters.

Experiments
Experimental Setup
Data Sets In this paper, fourteen benchmark multi-label
data sets with diversified multi-label properties are em-
ployed for comprehensive performance evaluation. Table 1
summarizes characteristics of each experimental data set S,
including the number of examples (|S|), number of features
(dim(S)), number of class labels (L(S)), label cardinal-
ity (LCard(S), i.e. average number of labels per instance).
Following (Zhang and Wu 2015), we perform dimension-
ality reduction for rcv-s1 and tmc2007 by retaining the top
2% features with highest document frequency. For iaprtc12,
espgame and mirflickr, the local descriptor DenseSift is used.
Evaluation Metrics For performance evaluation, we use
six widely-used evaluation metrics for multi-label classifi-
cation, including Average precision, Macro-averaging AUC,
Hamming loss, One-error, Coverage and Ranking loss. De-
tailed definitions on these metrics can be found in (Zhang
and Zhou 2014).
Implementation Details We employ a fully-connected
neural network with hidden dimensionality [256] to instan-
tiate the conditional conditioner c(·; lj) in the normalizing
flows. The probabilistic autoencoders of PACA are parame-
terized by fully-connected neural networks with ReLU ac-
tivations, where the hidden dimensionalities of the encoder
and the decoder are both set to [256, 512, 256]. To compute
the overall objective function in Eq. (16), we conduct Monte
Carlo sampling to estimate the expectations in the first two
terms with sampling number L = 1 and analytically cal-
culate the third term as it is the KL divergence between
two Gaussian distributions. For network optimization, Adam

1http://mulan.sourceforge.net/datasets.html
2http://palm.seu.edu.cn/zhangml/
3http://lear.inrialpes.fr/people/guillaumin/data.php

6851



Data sets Average precision ↑
ML-KNN LIFT LLSF WRAP C2AE MPVAE PACA

CAL500 0.4928±0.0127 0.5004±0.0150 0.5110±0.0161 0.5204±0.0144 0.4782±0.0124 0.5094±0.0133 0.5246±0.0170
Image 0.7882±0.0239 0.8238±0.0185 0.7536±0.0229 0.7812±0.0209 0.8249±0.0217 0.8212±0.0193 0.8561±0.0173
scene 0.8612±0.0172 0.8857±0.0162 0.8470±0.0159 0.8350±0.0208 0.8834±0.0212 0.8749±0.0225 0.9048±0.0161
yeast 0.7685±0.0182 0.7695±0.0171 0.7634±0.0140 0.7615±0.0138 0.7524±0.0167 0.7626±0.0193 0.7717±0.0176
corel5k 0.2466±0.0101 0.2879±0.0111 0.3006±0.0117 0.3285±0.0110 0.2940±0.0110 0.3299±0.0129 0.3339±0.0126
rcv1-s1 0.4676±0.0137 0.5957±0.0103 0.6195±0.0101 0.6337±0.0135 0.6083±0.0187 0.6415±0.0112 0.6444±0.0113
Corel16k-s1 0.2860±0.0058 0.3196±0.0050 0.3459±0.0066 0.3571±0.0062 0.3290±0.0088 0.3679±0.0050 0.3717±0.0068
delicious 0.3352±0.0045 0.3782±0.0049 0.3621±0.0047 0.3741±0.0049 0.3682±0.0026 0.4062±0.0057 0.4129±0.0046
iaprtc12 0.3837±0.0050 0.3459±0.0045 0.3680±0.0053 0.3853±0.0058 0.3950±0.0069 0.4375±0.0078 0.4430±0.0053
espgame 0.2459±0.0041 0.2835±0.0045 0.2772±0.0042 0.2906±0.0051 0.2815±0.0051 0.3103±0.0043 0.3146±0.0039
mirflickr 0.6083±0.0055 0.6354±0.0030 0.6510±0.0058 0.6549±0.0055 0.6690±0.0062 0.6944±0.0054 0.7022±0.0058
tmc2007 0.7263±0.0065 0.8148±0.0028 0.8148±0.0031 0.8057±0.0031 0.8000±0.0070 0.8310±0.0029 0.8322±0.0036
mediamill 0.7562±0.0032 0.7301±0.0032 0.7281±0.0026 0.7325±0.0030 0.7368±0.0033 0.7697±0.0043 0.7864±0.0033
bookmarks 0.3896±0.0039 0.4916±0.0035 0.5007±0.0020 0.4825±0.0029 0.4772±0.0043 0.5153±0.0021 0.5126±0.0027

Data sets Macro-averaging AUC ↑
ML-KNN LIFT LLSF WRAP C2AE MPVAE PACA

CAL500 0.5098±0.0123 0.5176±0.0108 0.5786±0.0159 0.5803±0.0324 0.4850±0.0198 0.5488±0.0159 0.5832±0.0272
Image 0.8288±0.0208 0.8583±0.0152 0.7926±0.0212 0.8220±0.0237 0.8506±0.0226 0.8644±0.0164 0.8778±0.0128
scene 0.9317±0.0116 0.9480±0.0087 0.9210±0.0108 0.9110±0.0112 0.9390±0.0146 0.9415±0.0105 0.9546±0.0104
yeast 0.6888±0.0170 0.6752±0.0186 0.6937±0.0164 0.6890±0.0222 0.6658±0.0152 0.7000±0.0169 0.7048±0.0250
corel5k 0.5526±0.0155 0.7173±0.0128 0.6618±0.0169 0.7209±0.0117 0.7071±0.0142 0.7589±0.0113 0.7655±0.0119
rcv1-s1 0.6364±0.0201 0.9262±0.0069 0.9117±0.0094 0.9315±0.0090 0.9036±0.0108 0.9408±0.0056 0.9427±0.0053
Corel16k-s1 0.5244±0.0093 0.6875±0.0084 0.7100±0.0055 0.7539±0.0066 0.7200±0.0083 0.7865±0.0067 0.7900±0.0052
delicious 0.6461±0.0060 0.7819±0.0041 0.7659±0.0054 0.7780±0.0049 0.7822±0.0027 0.8284±0.0038 0.8297±0.0043
iaprtc12 0.7073±0.0076 0.7978±0.0049 0.8159±0.0045 0.8279±0.0045 0.8354±0.0049 0.8768±0.0026 0.8773±0.0035
espgame 0.5964±0.0036 0.7608±0.0074 0.7384±0.0058 0.7623±0.0076 0.7383±0.0142 0.7949±0.0053 0.7997±0.0051
mirflickr 0.7310±0.0068 0.7970±0.0051 0.8210±0.0046 0.8234±0.0067 0.8241±0.0061 0.8533±0.0043 0.8567±0.0046
tmc2007 0.8125±0.0052 0.9230±0.0030 0.9232±0.0036 0.9193±0.0036 0.9053±0.0023 0.9332±0.0029 0.9325±0.0027
mediamill 0.7802±0.0096 0.7743±0.0109 0.7780±0.0041 0.8510±0.0084 0.8202±0.0081 0.8698±0.0071 0.8737±0.0087
bookmarks 0.6756±0.0036 0.8939±0.0018 0.8818±0.0033 0.8742±0.0031 0.8507±0.0030 0.9128±0.0019 0.9164±0.0019

Table 2: Predictive performance of each comparing approach (mean±std. deviation). ↑ (↓) indicates the larger (smaller) the
value, the better the performance. Best and second best results are shown in boldface and underlined respectively.

with a batch size of 128, weight decay of 10−5, momentums
of 0.999 and 0.9 is employed.

Comparative Studies
PACA is compared against six well-established multi-label
classification approaches with parameter configurations sug-
gested in respective literatures:

• ML-KNN (Zhang and Zhou 2007): A kNN-based ap-
proach with Bayesian inference. [k = 10]

• LIFT (Zhang and Wu 2015): A prototype-based label-
specific feature transformation approach under indepen-
dent three-stage framework. [r = 0.1]

• LLSF (Huang et al. 2016): LLSF performs label-specific
feature selection in a lasso-regression-like framework
with feature-sharing between closely-related labels. [grid
search for α, β ∈ {2−10, 2−9, . . . , 210} and γ = 0.01]

• WRAP (Yu and Zhang 2021): WRAP performs label-
specific feature selection within an embedded feature
space and considers pairwise label correlation regulariza-
tion. [grid search for λ1, λ2 ∈ {0, 1, . . . , 10}]

• C2AE (Yeh et al. 2017): A deep label embedding ap-
proach, which jointly embeds features and labels via in-
tegrating deep canonical correlation analysis and autoen-
coder. [search for α ∈ {0.1, 1, 2, 5, 10}]

• MPVAE (Bai, Kong, and Gomes 2020): MPVAE employs
a variational autoencoder to align features and labels in
a probabilistic latent space and explicitly learns a shared
covariance matrix to model the label correlations. [λ1 =
λ2 = 0.5, λ3 = 10, β = 1.1]

For the proposed PACA approach, we search the
trade-off parameters α, λ in {1, 2, 5, 10, 20, 50} and
{10−4, 10−3, . . . , 10} respectively. For fair comparison, all
deep approaches share the same neural network structure.
Grid search is conducted to find the best learning rate and
learning rate decay ratio. We employ ten-fold cross valida-
tion to evaluate above approaches on the 14 data sets.

Due to page limit, Table 2 reports detailed experimen-
tal results in terms of two evaluation metrics. Results on
other metrics can be found in the supplementary material.
To analyze whether PACA performs statistically better than
other comparing algorithms, the Wilcoxon signed-ranks test
(Wilcoxon 1992) at 0.05 significance level is further con-
ducted. Table 3 summarizes the p-value statistics on each
evaluation metric. Based on these results, it is impressive to
observe that:
• Across all evaluation metrics, PACA achieves the best

performance in 81% cases over all the 14 data sets.
• As shown in Table 3, PACA significantly outperforms

other deep approaches. Note that PACA and MPVAE both
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PACA against ML-KNN LIFT LLSF WRAP C2AE MPVAE
Average precision win [0.0001] win [0.0001] win [0.0001] win [0.0001] win [0.0001] win [0.0004]
Macro-averaging AUC win [0.0001] win [0.0001] win [0.0001] win [0.0001] win [0.0001] win [0.0004]
Hamming loss win [0.0247] tie [0.0588] win [0.0063] win [0.0287] win [0.0001] win [0.0127]
One-error win [0.0002] win [0.0001] win [0.0001] win [0.0002] win [0.0002] win [0.0009]
Coverage win [0.0002] win [0.0002] win [0.0002] win [0.0002] win [0.0001] win [0.0040]
Ranking loss win [0.0002] win [0.0002] win [0.0001] win [0.0001] win [0.0001] win [0.0067]

Table 3: Summary of the Wilcoxon signed-ranks test for PACA against other comparing approaches at 0.05 significance level.
p-values are shown in the brackets.

PACA against PACA-sp PACA-nr

Average precision win [0.0001] win [0.0009]
Macro-averaging AUC win [0.0023] win [0.0067]
Hamming loss win [0.0112] win [0.0195]
One error win [0.0004] win [0.0010]
Coverage win [0.0017] win [0.0171]
Ranking loss win [0.0004] win [0.0103]

Table 4: Summary of the Wilcoxon signed-ranks test for
PACA against its variants at 0.05 significance level. p-values
are shown in the brackets.

tackle the problem of multi-lable classification under a
deep probabilistic framework. The superior performance
of PACA against MPVAE provides another strong evi-
dence for the effectiveness of label-specific features to
facilitate multi-label classification.

• Meantime, PACA achieves much better performance
against other approaches based on label-specific features.
Specifically, PACA is statistically superior to LIFT in
terms of all evaluation metrics except Hamming loss.
These impressive results demonstrate the effectiveness of
our unified framework for prototype-based label-specific
feature transformation.

Further Analyses
Multi-Prototype Learning vs. Single-Prototype Learning
We have provided an intuitive explanation for the neces-
sity of the multi-prototype learning in Figure 1. Here, abla-
tion study is further conducted to validate the superiority of
the multi-prototype learning against single-prototype learn-
ing on all the 14 data sets with ten-fold cross validation. We
implement a variant named PACA-sp, which models the pos-
itive/negative prototype of each class label by a multivariate
Gaussian distribution. Wilcoxon signed-ranks test in Table
4 shows PACA is statistically superior to PACA-sp in terms
of all evaluation metrics. Detail results can be found in the
supplementary material3.
Effectiveness of the Latent Space Regularization We
implement a variant named PACA-nr by removing all the
network structures related to the latent space regularization
and setting the trade-off parameter γ in Eq. (16) to 0. Table

3http://palm.seu.edu.cn/zhangml/files/PACASupplement.pdf

Figure 3: Performance of PACA with varying parameter con-
figurations in terms of Average precision.

4 shows the proposed latent space regularization, which in-
corporates the label correlations into the prototype learning
process, is statistically effective.
Parameter Sensitivity Figure 3 gives an illustrative ex-
ample on how the performance of PACA changes when the
values of the trade-off parameters α and λ change. The per-
formance of PACA is quite sensitive to the value of λ, which
demonstrates again the effectiveness of the latent space regu-
larization. Similar results can be observed on other data sets.
More Analyses More analyses of PACA, including algo-
rithmic complexity and running time comparisons, can be
found in the supplementary material.

Conclusion
In this paper, a first attempt towards a unified framework
for prototype-based label-specific feature transformation is
presented. Different from the existing three-stage pipeline,
we propose a novel approach PACA which learns the pro-
totypes and the metric-based label-specific features jointly
for multi-label classification. To allow for scalable stochas-
tic optimization, PACA employs the normalizing flows to
model prototypes probabilistically, which enables the pro-
totype learning process adaptive to the underlying proper-
ties of each class label. A probabilistic latent metric space
is constructed to generate more discriminative label-specific
features for classification, with further regularization from
label correlations. Comprehensive experiments show that
PACA outperforms other well-established multi-label classi-
fication approaches. Despite the demonstrated effectiveness
of PACA, it only considers fixed prototypes for each class
label, which may be further improved via more elaborate
strategies for prototype modelling, such as instance-specific
prototypes to account for the distinct characteristics of each
instance and each label simultaneously.
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