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Abstract

Corrupted labels and class imbalance are commonly encoun-
tered in practically collected training data, which easily leads
to over-fitting of deep neural networks (DNNs). Existing
approaches alleviate these issues by adopting a sample re-
weighting strategy, which is to re-weight sample by designing
weighting function. However, it is only applicable for train-
ing data containing only either one type of data biases. In
practice, however, biased samples with corrupted labels and
of tailed classes commonly co-exist in training data. How
to handle them simultaneously is a key but under-explored
problem. In this paper, we find that these two types of bi-
ased samples, though have similar transient loss, have dis-
tinguishable trend and characteristics in loss curves, which
could provide valuable priors for sample weight assignment.
Motivated by this, we delve into the loss curves and propose
a novel probe-and-allocate training strategy: In the probing
stage, we train the network on the whole biased training data
without intervention, and record the loss curve of each sample
as an additional attribute; In the allocating stage, we feed the
resulting attribute to a newly designed curve-perception net-
work, named CurveNet, to learn to identify the bias type of
each sample and assign proper weights through meta-learning
adaptively. Extensive synthetic and real experiments well val-
idate the proposed method, which achieves state-of-the-art
performance on multiple challenging benchmarks.

Deep neural networks (DNNs) (Hu, Shen, and Sun 2018;
Simonyan and Zisserman 2015; He et al. 2016) have made
tremendous progress thanks to the rapid growth of labeled
training data (Deng et al. 2009; Lin et al. 2014). However,
practically collected training samples always suffer from
corrupted labels (Zhang et al. 2021) and class imbalance (He
and Garcia 2009), which easily causes over-fitting of DNNs
and leads to poor generalization capability. This robust deep
learning issue has attracted increasing attention recently.
(Zhang et al. 2017; Liu et al. 2019; Kang et al. 2019; Shu
et al. 2019; Tan et al. 2020).

Sample re-weighting approach is a commonly adopted
strategy to mitigate the above robust learning issue, which
aims to learn a weighting function mapping training loss to
sample weight. However, such re-weighting strategy fails to
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Figure 1: Average training loss along with variance of clean
and noisy samples. Though noisy and clean samples become
indistinguishable from transient loss over training, the trend
of their loss curves are dramatically different in the long
run. Such difference could provide valuable priors to distin-
guish the two types of biased data and assign proper sample
weights accordingly through meta-learning, making it fea-
sible to embrace biased training data with both corrupted
labels and class imbalance for model training.

handle training data with both corrupted labels and class im-
balance, since there exist two entirely contradictive require-
ments for constructing the loss-weight mapping for the two
types of biased data. Specifically, for training data contain-
ing corrupted labels, samples with corrupted labels tend to
have large training loss, so the weighting function is sup-
posed to map large loss to small sample weight to miti-
gate the effect of label noise. In contrast, for training data
with class imbalance, samples of tailed classes usually suf-
fer large loss due to insufficient training, so the weighting
function ought to assign large weights to these hard positive
samples, making the network emphasize more on the tailed
classes to improve overall performance. Given the fact that
most practically collected data suffer both corrupted labels
and class imbalance, solving the two types of data bias si-
multaneously is a challenging and under-explored task (Cao
et al. 2021).

A key challenge is to distinguish clean samples of tail
class from those with corrupted labels, i.e., noisy samples,
and to assign different weights accordingly. Figure 1 illus-
trates training loss of samples of head and tail class. The
blue and the yellow curve represent the average training loss
along with variance for clean and noisy samples, respec-
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tively. For head class, noisy samples have larger loss than
clean ones throughout the training, making them easy to be
distinguished. For tail class, however, it is non-trivial to dis-
tinguish them simply by transient loss since the loss values
of clean and noisy samples become very close over training.
By going deeper into the loss curve, we found that noisy and
clean samples demonstrate obviously different loss trend in
the long run. Concretely, the loss of noisy samples remains
stable at the beginning of the training, while the loss of clean
samples rises sharply in the beginning and then falls quickly.
Hence, the training loss curve in fact encodes valuable infor-
mation and could provide useful priors to distinguish clean
and noisy samples of tailed classes.

In light of this, we propose to take advantage of the in-
formative training loss curve to distinguish clean samples of
tail class from noisy samples, and generate proper sample
weights accordingly. To this end, we propose a novel probe-
and-allocate training strategy: In the probing stage, we train
a classifier with cyclical learning rate on the entire biased
training data, and record the loss curve of each sample. To
highlight the loss difference between clean and noisy sam-
ples, we normalize the loss of each sample by subtracting
the mean loss of samples of the same class and dividing by
the standard deviation; In the allocating stage, we take the
normalized loss curve as an attribute of each sample, and
further attach embedded class label to facilitate the identifi-
cation of noise. We feed the loss curve along with the class
embedded label to a newly designed curve-perception net-
work, named CurveNet, to capture the overall characteristics
of the loss curve and output a dynamic corresponded weight
further referred by loss function. Inspired by Meta-Weight-
Net (Shu et al. 2019), we adopt meta-learning to optimize
the allocating stage to produce large and small weights for
clean samples of tail class and noisy samples, respectively,
thus making the classifier emphasis more on the hard pos-
itive samples while being robust to noise. It is well known
that training speed has caused a real bottleneck in current
meta-learning methods. To solve it, we propose a method
called SLMO to skip the bottom layers in classifier when
we train the CurveNet, which can save a lot of calculations
in backward while maintaining the performance of the Cur-
veNet.

We comprehensively evaluate the proposed approach on
a series of biased training datasets by manually adjusting
noise and imbalance ratios. Thanks to the informative loss
curve prior collected in the probing stage, the newly de-
signed CurveNet can distinguish different types of biased
sample and assign proper sample weights accordingly in the
allocating stage. The resulting classifier can be well opti-
mized using biased training data with both corrupted labels
and class imbalance, achieving state-of-the-art performance
on CIFAR10, CIFAR100 and Clothing1M.

To sum up, the main contributions of this work are:

• We propose a novel probe-and-allocate training strategy,
paving a new way for embracing biased training data
with both corrupted labels and class imbalance.

• A new CurveNet is designed to exploit informative loss
curve to distinguish different types of biased data and

generate proper sample weight accordingly.
• SLMO is proposed to speed up the training speed of meta

learning approaches and maintain the training effect.
• The proposed method establishes new state-of-the-arts

on multiple datasets, and is also generic and extendable
for training models with noisy and imbalanced data on
various recognition tasks.

Related Works
Most previous efforts (Kumar, Packer, and Koller 2010; Pi
et al. 2016; Hendrycks et al. 2018; Ma et al. 2018) focus
on solving either corrupted labels or class imbalance. Some
methods like Meta-Weight-Net (Shu et al. 2019) can allevi-
ate these two problems separately, but still fail to solve both
problems together. Therefore, we introduce the methods re-
lated to these two issues.
Corrupted labels. Methods to address the corrupted labels
pay more attention to easy samples with smaller losses, such
as self-paced learning series (Kumar, Packer, and Koller
2010; Jiang et al. 2014a,b) and curriculum learning (Ben-
gio et al. 2009). The SPL series simultaneously selects easy
samples from all the samples and learns from the new easy
samples (Pi et al. 2016). Another popular approach attempts
to introduce noise-robust loss functions like the ramp loss
(Brooks 2011), the unhinged loss (van Rooyen, Menon, and
Williamson 2015) and the savage loss (Masnadi-shirazi and
Vasconcelos 2009), which is robust against corrupted la-
bels. Some popular approaches attempt at correcting cor-
rupted labels by a supplemental clean label inference step,
such as GLC (Hendrycks et al. 2018), Reed (Reed et al.
2014), Co-training (Han et al. 2018), D2L(Ma et al. 2018),
and S-Model (Goldberger and Ben-Reuven 2017). O2U-Net
(Huang et al. 2019) considers samples with higher average
loss have a higher probability of being noisy labels. Based
on it, O2U-Net filters noisy samples by the average loss.
Class imbalance. The methods to solve the imbalance of
classes are mainly divided into two categories. One is to
weight for each class according to its frequency, and the
other is to weight for each sample according to its loss value.
The pioneer of the former methods weights by the inverse
of the class frequency (Huang et al. 2016; Wang, Ramanan,
and Hebert 2017) or the inverse square root (Mahajan et al.
2018; Mikolov et al. 2013). The latter methods aim to study
the training difficulty of samples in terms of their loss and
assign higher weights to hard training samples, such as (Fre-
und and Schapire 1997; Lin et al. 2017; Malisiewicz, Gupta,
and Efros 2011; Dong, Gong, and Zhu 2017). There are also
methods based on transfer learning (Wang, Ramanan, and
Hebert 2017; Cui et al. 2018) that transfer the knowledge of
classes with a large amount of samples to the classes with
less samples.
Meta Learning. Meta-learning (Finn, Abbeel, and Levine
2017; Antoniou, Edwards, and Storkey 2019; Li et al. 2017;
Shu, Xu, and Meng 2018; Ravi and Larochelle 2017) is a
method of optimizing the network with the second-order
derivative. Typical methods based on meta-learning include
L2T-DLF (Wu et al. 2018), MentorNet (Jiang et al. 2018),
L2RW (Ren et al. 2018), and Meta-Weight-Net (Shu et al.
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2019). L2T-DLF is composed of the teacher model and the
student model. The teacher model plays the role of out-
putting loss functions to train the student model. Mentor-
Net aims to supervise the training of the base deep networks
and to generate a suitable weight for the current sample by a
bidirectional LSTM network. Inspired by L2RW and Meta-
Weight-Net, our method uses the same meta-learning train-
ing strategy. The difference is that a fixed attribute for each
sample is used to generate a suitable weight, but the input of
L2RW and Meta-Weight-Net varies with training and cannot
represent the overall training state of the sample. This at-
tribute can indicate the training difficulty of the sample and
whether it is noise. Therefore, our method can solve class
imbalance and corrupted labels in the meantime.

Our Method
Revisiting Meta-Weight-Net
Meta-Weight-Net is proposed to learn a classification net-
work F effectively with biased training data. Building on
the idea of meta-learning, a small additional unbiased meta
data set (with clean labels and balanced data distribution)
is employed to refine the parameters ω of the classifier F .
For notation convenience, we denote the biased training-data
as Dtra = {xtra

i , ytrai }Ni=1 while the unbiased meta-data
as Dmeta = {xmeta

i , ymeta
i }Mi=1, where N and M respec-

tively cope to sample’s amount and N ≫ M . We denote
Xtra,Y tra as the set of all training data and label of Dtra

respectively. Xmeta and Y meta are defined by the same way.
For traditional training methods, the parameters of the

classifier can be obtained by minimizing the loss function
in the following form:

ω∗ = argmin
ω

L(Y tra,F(Xtra|ω)), (1)

where F always acts as a convolutional neural network.
In the following we denote Ltra as L(Y tra,F(Xtra|ω)).
However, given the existence of the biased data, the training
process tends to be sub-optimal easily if it follows the previ-
ous way. Aiming to enhance the robustness of training, a re-
weighting method is adopted to impose weight G(Ltra|Θ)
on the sample loss, where G represents the weight net and
Θ represents the parameters of G. The final loss is expressed
as the weighted sum of the weight net G and the original
loss. Once Θ is set, the optimal value ω∗ can be therefore
determined. Thus, the Equation 1 can be further formed as:

ω∗ = argmin
ω

G(Ltra|Θ)Ltra. (2)

Specifically, G is composed of an MLP network with
only one hidden layer, containing 100 nodes, and using Sig-
moid as the activation function. To guarantee the output
within the interval of [0, 1], the sigmoid activation function
is adopted after the output layer. The parameters Θ are opti-
mized through meta-learning methods, which minimizes the
loss function applied on the meta-data set mentioned above
as:

Θ∗ = argmin
Θ

L(Y meta,F(Xmeta|ω∗(G(Θ)))). (3)

In the following we denote this loss function by Lmeta.
Since the two parameters ω and Θ need to be optimized at
the same time, a separate optimization method is used by
first treating Θ as a known quantity and finding the opti-
mal solution of ω on a mini-batch presented by Equation 4,
which is used to continue optimizing Θ through Equation 5.
Here t represents the current training epoch.

ω̂t = ωt − α▽ω G(Lt
tra|Θt) ◦ Lt

tra|ωt , (4)
where ◦ denotes element-wise product. Subsequently, Θ and
ω can be calculated through:

Θt+1 = Θt − β ▽Θ Lt
meta(ω̂

t(Θt))|Θt . (5)
ωt+1 = ωt − α▽ω G(Lt

tra|Θt+1) ◦ Lt
tra|ωt . (6)

Despite the superior results achieved by Meta-Weight-
Net, it has inherent disadvantages to be solved. First, the
meta sub-network adopts the current loss value as input
which changes dramatically throughout the training proce-
dure and fails to represent the sample’s state. Second, the
loss value varies at each epoch and gets smaller and smaller
within the training process, which is not conducive to net-
work convergence. Moreover, when noise and hard samples
present at the same time, the weights could be either large
or small, resulting in unsatisfactory performance of the clas-
sifier. For the purpose of issue-solving, we propose a novel
probe-and-allocate strategy and adopt a newly designed Cur-
veNet for loss refinement. More details will be explained in
the next section.

Overall Structure
Our network is structured on the basis of Meta-Weight-
Net(Shu et al. 2019) with modified loss value and weight
network G. As shown in Figure 2, the whole structure is
composed of two stages of probing-stage as main-network
for classification and allocating-stage for parameters refine-
ment.

In the probing-stage, the biased training data is fed into
the classifier and the loss values are obtained by implement-
ing a loss function between the predict label and the ground-
truth. As a loss value is difficult to present the full picture
of the sample, we delve into the loss curves throughout the
whole training process and find distinguishable trends and
characteristics between the noisy sample and clean tail sam-
ple. From Figure 1, it can be seen that the loss of the noisy
samples stabilizes at a value when the learning rate is at a
high value, while that of the clean samples rises sharply at
the beginning and then decreases quickly. Inspired by this,
we innovatively propose CurveNet(as shown in Figure 3)
to replace the MLP structure used in Meta-Weight-Net(Shu
et al. 2019), fully leveraging the loss curve information to
adjust and integrate the loss values.

Similar to the re-weighting network mentioned in Meta-
weight-net, the allocating-stage adopts the meta-learning
idea and allows the weighted loss values to guide the training
of the classification network, giving the classifier more em-
phasis on hard positive samples while being robust to noise.
This training approach well feeds the loss information to the
training process of the classification network’s parameters,
which is very effective for parameters refinement. A detailed
description of the CurveNet is given in the next section.
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Figure 2: Overall workflow of the proposed probe-and-allocate training strategy: the probing stage trains a classifier on the entire
biased dataset to collect training loss curve for each sample; the allocating stage first re-weights the loss curves by integrating
the loss curve and class embedding through a newly designed CurveNet, and then generates parameters of the classifier for
different types of biased data through meta-learning.

CurveNet
Based on the analysis above, we argue that the whole loss
curve is far more informative than a single value, which
ought to be utilized as a whole. Gathering all of the loss
value li,t of the ith sample together as a one-dimensional
vector Li = [li,0, li,1, · · · , li,T ], where T represents the
number of training epoch. As the parameters of the classi-
fier are randomly initialized, the loss values of the previ-
ous epoch vary irregularly and thus have no reference value.
Consequently, the first S loss values are removed from the
one-dimensional vector, so that the loss vector of the ith
sample can be expressed as: Li = [li,S , li,S+1, · · · , li,T ].

We then normalize the loss of each sample through sub-
tracting the average loss of samples in the same category to
highlight the loss distinction between clean and noisy sam-
ples:

µk,t =

∑N
j 1(k, yj)lj,t∑N
j 1(k, yj)

, (7)

li,t = li,t − µyi,t. (8)

Here we denotes K as the number of class (1 ≤ k ≤ K) and
1 as a Dirac delta function. 1(k, yj) equals 1 when k equals
yj , otherwise 0.

The normalized loss vectors can be denoted as I , which
are then fed sequentially into fully connected layers, each
coupled to a ReLU activation layer. P is the number of out-
put neurons of the last fully connected layer, which is set as
64 here through experiments.

As a way to further facilitate noise identification, we adopt
the class label embedding method to enrich the class infor-
mation into the loss curve features. Such embedding method
is commonly used in the field of natural language process-
ing (Cao et al. 2021), and the embedded matrix here could
be expressed as Y K×P = [Y1, · · · , YK ]. Then, the summa-
tion result of loss curve feature and label embedded feature

Figure 3: The network architecture of Curvenet, which takes
normalized loss curve and class label as input and outputs a
proper weight for each sample adaptively.

is performed as the input of two sequential fully connected
layers, each of which is appended with the active functions
of ReLU and Sigmiod, respectively. As mentioned above,
the sigmoid function ensures all weights fall within an inter-
val.

CurveNet performs as a change-sensitive network that is
responsible for capturing trends in loss values, successfully
distinguishing different types of biased samples, and assign-
ing appropriate sample weights accordingly in the assign-
ment phase.

Skip Layer Meta Optimization
Currently, slow training blocks the advancement of meta-
learning methods, and most of the time is consumed in Equa-
tion 3 for optimizing Θ. According to FaMUS (Xu et al.
2021), the Equation ▽ΘLt

meta|Θt can be rewritten by the
chain rule as follows,

▽ΘLt
meta|Θt =

∂Lt
meta

∂ω̂t
• ∂ω̂t

∂G(Θt)
• ∂G(Θt)

∂Θt

∝
Z∑
i

∂Lt
meta

∂ω̂t
i

• ∂ω̂t
i

∂G(Θt)
• ∂G(Θt)

∂Θt
,

(9)

where, Z represents the number of layers in classifer. From
the Equation 9, we know that the amount of computation to
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optimize Θ is positively related to Z. Based on it, we pro-
pose skip layer meta optimization (SLMO), which freezes
the bottom layers when we optimize the Θ. SLMO can be
formulated as follows,

▽ΘLt
meta|Θt ∝

Z∑
i=SL

∂Lt
meta

∂ω̂t
i

• ∂ω̂t
i

∂G(Θt)
• ∂G(Θt)

∂Θt
, (10)

where, SL is the number of frozen layers.

Training Method
Considering the input of CurveNet is the loss curve of the
samples, the Equation 4 and 6 should be modified as follows:

ω̂t = ωt − α▽ω G([I, Y tra]|Θt) ◦ Lt
tra|ωt , (11)

ωt+1 = ωt −▽ωαG([I, Y tra]|Θt+1) ◦ Lt
tra|ωt . (12)

It is worth noting that when the learning rate is changed,
there are significant differences in the loss value curves for
different classes of samples. Therefore, cyclical learning rate
(Smith 2017) is adopted to train the classifier F(ω) in the
probing stage, which is also employed by O2U-Net (Huang
et al. 2019). Besides, when the learning rate of the classi-
fier decreases, we consider that the CurveNet has been op-
timized well and do not update the parameters of the Cur-
veNet anymore to speed up the training.

Experiments
We use CIFAR dataset (Krizhevsky, Hinton et al. 2009) with
varying noise rates and imbalance ratios to verify the effec-
tiveness of the propose method. We also test our method on
real noisy and imbalanced data to validate its generality.

Datasets
CIFAR-10. This dataset consists of 60,000 RGB images
(50,000 for training and 10,000 for testing). Images are
equally distributed to 10 categories. We randomly select 100
images from each category to form unbiased meta data set.
CIFAR-100. This dataset comprises 100 categories, each of
which contains 600 images. We randomly select 10 images
from each category to form our unbiased meta-data set. Fig-
ure 4 shows the varied sample number for each class when
adjusting the imbalance factor and noise rate.
Clothing1M. This dataset (Xiao et al. 2015) comprises 1M
clothing images of 14 categories crawled from online shop-
ping websites. The image labels are mainly generated from
surrounding text provided by sellers, leading to many cor-
rupted labels and a certain imbalance. The dataset also pro-
vides additional verified clean data for training.
Food-101N. This dataset (Lee et al. 2018) is a large-scale
dataset (310k/25k training/test images) accompanied by 55k
images with clean verification labels.
Class imbalance. We gradually reduce the number of sam-
ples in each class using the exponential function ni = n0µ

i,
where ni is the sample number of class i and µ ∈ (0, 1]. We
use class imbalance factor to measure how imbalanced the
data is, which is defined as the sample number of the most
frequent (head) class divided by that of the least frequent
(tail) class. The first column in Figure 4 shows the sample

Figure 4: The number of all samples (solid line) and noisy
samples (shadow below) of each class in CIFAR-100 with
varying imbalance factors and noise rates.

number of each class in imbalanced CIFAR-100 with imbal-
ance factor ranging from 10 to 200.
Corrupted labels. Commonly adopted label noise types in-
clude uniform noise and flipping noise, which randomly cor-
rupt the label of a sample from its true class to any other
class and a specified class, respectively, with a fixed prob-
ability of p (noise rate). In this work, we follow the Meta-
Weight-Net and adopt flip2 noise with noise rate p on CI-
FAR10, which randomly corrupts true labels with probabil-
ity p to two other random classes.

Implementation Details
CIFAR. We construct biased training dataset with varying
noisy and imbalance ratios by manually adjusting the sam-
ple number of each class and adding corrupted labels to
the clean and balanced dataset such as CIFAR10 and CI-
FAR100. To explore the effect of our method on more sce-
narios, we conduct experiments on cifar10 with various im-
balance ratios and rates of flip2 noise , which emphasizes on
imbalance ratios. Meanwhile, studies on cifar100 with vari-
ous imbalance ratios and rates of uniform noise are carried
out, which emphasizes on noise rates. We train the model for
200 epochs on a single NVIDIA GTX 1080Ti. During allo-
cating stage, we use stochastic gradient descent (SGD) with
initial learning rate 0.1 and decrease the learning rate to 0.01
and 0.001 at epoch 80 and 100, respectively. We use a batch-
size of 128 images. CurveNet is optimized using Adam with
learning rate 0.001. We choose 10 and 100 samples from
each category to form the meta data set of cifar100 and ci-
far10 respectively.
Clothing1M and Food101-N. We use ResNet50 as the clas-
sifier, and adopt SGD as the optimizer and step learning
schedule to optimize it.

Comparison Methods
We select three types of methods for comparison: 1) meth-
ods to solve class imbalance, such as Focal Loss (Lin
et al. 2017), Class-Balanced (Cui et al. 2019), and LDAM-
DRW (Cao et al. 2019); 2) methods to solve corrupted label,
such as Co-teaching (Han et al. 2018), O2UNet (Huang et al.
2019), LCCN (Li et al. 2019), CleanNet (Lee et al. 2018),
and Distill (Zhang et al. 2020); and 3) methods to solve class
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Dataset CIFAR10 CIFAR100
IR [1,10,20,50,100,200] [1,10,20]
NR [0.0,0.2,0.4] [0.0,0.2,0.4,0.6]
CE 74.49 46.76

Class-Balanced 63.49 42.81
Focal 71.59 43.85

LDAM-DRW 73.46 45.47
Co-teaching 60.63 36.55

O2U 65.01 40.21
MW-Net1 71.54 49.20
MW-Net2 74.13 49.28

HAR 73.50 42.88
Our 75.70 50.49

Table 1: Performance comparisons on CIFAR10 and CI-
FAR100 with varying noise rates and imbalance factors.
The best results are highlighted in bold.NR and IR repre-
sent noise rate and imbalance ratio respectively.

NR IR CE MW-Net1 MW-Net2 Ours

0

50 78.13 77.55 72.12 78.71
100 71.81 72.38 64.57 73.52
200 65.00 63.08 58.34 65.91

0

1

93.06 91.78 92.99 93.23
0.2 90.30 90.29 90.80 92.01
0.4 88.45 87.51 88.25 90.69

Table 2: Performance comparisons on CIFAR10 with vary-
ing noise rates or imbalance factors.

imbalance and corrupted label simultaneously such as Meta-
Weight-Net (Shu et al. 2019) and HAR (Cao et al. 2021).
Since Meta-Weight-Net releases two codes, we denote the
code for class imbalance and the code for corrupted labels
as MW-Net1 and MW-Net2.

Image Classification on CIFAR10
We conduct extensive studies on 18(6×3) setting biased CI-
FAR10 with varying imbalance factors [1, 10, 20, 50, 100,
200] and noise rates [0, 0.2, 0.4]. Table 1 presents the aver-
age accuracy of different methods using ResNet-32 as back-
bone. We propose a new metric, that is, the mean accuracy
(MA) under all imbalance factors and noise rates to give a
comprehensive comparison of models in handling different
biased data. In this metric, our method achieves the best per-
formance. Interestingly, the CE Loss model achieves higher
MA than many carefully designed methods due to the fact
that such methods are specialized for specific biased data
while MA cares more about overall performance.

Table 2 reports the result of our method and MW-Net on
biased CIFAR10 with either corrupted label or class imbal-
ance. When the noise rate equals 0, it becomes a pure class
imbalance task. Our method outperforms MW-Net(imb) by

IR NR CE MW-Net1 MW-Net2 Ours

10

0.2 48.03 49.71 51.12 51.93
0.4 39.42 44.08 42.17 43.97

0.6 26.86 30.68 30.34 31.94

20

0.2 43.04 42.82 44.32 44.29

0.4 32.86 34.90 36.33 37.88
0.6 23.63 22.35 25.53 25.07

Table 3: Performance comparisons on CIFAR100 with vary-
ing noise rates or imbalance factors.

Method CE LCCN MW-Net Ours

Acc.(%) 68.94 73.07 73.72 74.41

Table 4: Performance comparisons on Clothing1M.

a large margin, i.e., 1.16%, 1.14%, and 2.83% when the im-
balance factor equals 50, 100 and 200 respectively. When the
imbalance factor equals 1, it becomes a pure corrupted label
task. Compared with MW-Net(noise), our method boosts the
accuracy by 1.21% and 2.44% at the noise rate of 20% and
40%, respectively. One can see that our method gets the best
performance in accuracy, even when the noise rate equals 0
and the imbalance factor equals 1.
Qualitative Analyses. We demonstrate the weights for clean
and noisy samples of all the classes in Figure 5. It is clearly
observable that in all the classes with different amount of
samples our method distinguishes noisy and clean samples
well and gives a larger weight to the class with less samples.

Image Classification on CIFAR100
We also test the proposed method on 12(3 × 4) setting bi-
ased CIFAR100 with various imbalance factors [1, 10, 20]
and noise rates [0.0, 0.2, 0.4, 0.6]. As depicted in Table 1,
our method outperforms MW-Net(noise) by 1.21% in MA,
achieving the best performance among most priors with
carefully designed loss functions. Table 3 reports the re-
sult of our method and MW-Net on biased CIFAR100 with
both corrupted label and class imbalance. With imbalance
factor 20 and noise rate 0.4, our method gets a remarkable
boost in accuracy (2.98%) over MW-Net(imb). Our method
achieves the best performance under almost all settings of
imbalance factors and noise rates. The confusion matrices
of CIFAR-100 with imbalance factor 20 and noise rate 0.6
are displayed in Figure 6. One can see that our method can
effectively improve the accuracy for tail classes by greatly
reducing incorrect classification.

Results on Large-scale Dataset
Clothing1M. For a fair comparison with previous work (Shu
et al. 2019), we use ResNet-50 as backbone in this experi-
ment. The setting of CurveNet is the same as that on Cifar.
Table 4 shows the proposed method outperforms MW-Net
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Figure 5: The weight of clean and noisy samples of all classes on CIFAR-10 with imbalance factor 20 and noise rate 0.4.

Figure 6: Confusion matrices for the CE Loss and our model
on CIFAR-100 with imbalance factor 20 and noise rate 0.6.

Method CE CleanNet Distill Ours

Acc.(%) 81.44 83.96 87.57 87.19

Table 5: Performance comparisons on Food-101N.

by 0.69% in accuracy and achieves the best performance
compared to other priors, evidencing the superiority of the
proposed method in handling real biased data.
Food-101N. We further evaluate our method on Food-101N.
For fairness, we compare with preeminent methods that also
use clean data. Table 5 shows our method performs on par
with SOTAs on Food-101N, evidencing its superior general-
ization capability on large-scale datasets.

Ablation Study
We conduct ablation study on CIFAR10 with various imbal-
ance factors [1, 10, 20] and noise rates [0.0, 0.2, 0.4, 0.6],
and set the noise type as uniform to further validate our ap-
proach can handle different noise.
Universality and Scalability. To verify the universality of
our method on different backbones, besides ResNet-34, we
further test with other popular backbones, i.e., WRN-16-8,
on CIFAR10. Table 6 shows our method with WRN-16-8
also performs well under varying noise rates and imbalance

IR NR CE MW-Net1 Ours Ours+DRW

10

0.2 78.81 75.66 85.94 86.52
0.4 66.11 70.57 80.51 81.24
0.6 57.11 58.71 73.55 74.92

20

0.2 73.46 78.26 83.84 83.74

0.4 64.68 60.95 76.95 77.28
0.6 45.17 46.09 65.77 66.78

Table 6: Test accuracy of our model with WRN-16-8 and
DRW on CIFAR-10.

Method CE Ours MWNet
Num. 100 0 10 100 100

Acc.(%) 77.89 79.02 79.13 81.61 78.81

Table 7: Test accuracy of our model with different sacles of
meta data on CIFAR-10.

ratios. Furthermore, consistent accuracy improvement can
be achieved by further integrating DRW strategy. This well
evidences the scalability of our approach.
Meta Data. Considering the difficulty in collecting unbi-
ased data, we further test the robustness of our approach
by reducing the meta data used for training. Table 7 shows
our method can still brings 1.24% boost in accuracy on CI-
FAR10 (noise rate 20% and imbalance ratio 20) even when
only a minimal number of 10 unbiased images are used. The
improvement becomes larger as the used unbiased images
increase. Besides, we also try a new strategy to construct
meta dataset without using extra unbiased data. Theoreti-
cally, training samples with lower loss in the probing stage
are more likely to be clean data. By selecting 10 low-loss
samples (per category) as unbiased meta dataset in the allo-
cating stage, our approach still brings 1.13% improvement,
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SL=0 SL=1 SL=2 SL=3
MA (%) 82.46 81.99 81.81 81.53
time(ms) 239.94 222.45 65.44 41.98

Table 8: Test accuracy and training time of our method with
different skip layers on CIFAR-10.

CE P=32 P=64 P=96
MA (%) 79.43 82.42 82.46 82.49

Table 9: Test accuracy of our model with different embed-
ding dimension P on CIFAR-10.

CE S=5 S=30 S=60
MA (%) 79.43 82.46 82.43 82.42

Table 10: Test accuracy of our model with different S re-
moved loss values on CIFAR-10.

suggesting its strong robustness to varying amount and qual-
ity of unbiased data.
Effects of Skip-Layer. Table 8 analyzes the impact of the
number of skip-layer on the CIFAR10 data set with various
noise rates and imbalance factors. As shown in the table,
the training time decreases significantly with the increase of
skip-layer yet the accuracy is slightly reduced. For example,
compared with SL=0, the speed boosts by 5.71 times and the
MA only decreases by 0.93% when SL=3.
Effects of Embedding Dimension. We test our model with
different embedding dimension P on the synthetic Cifar10,
and the results are putted in Table 9. It can be seen that the
MA has a slight increase as P increases. Considering the
training time and the performance, we set P equal to 64.
Effects of Removed Loss Values. Ablations of S removed
loss values are reported in Table 10. One can find the MA
has a slight decrease as S increases. Considering the differ-
ent requirements for the complete loss value information in
different situations, we choose to provide as more loss value
information as possible. We thus set the S equal to 5.

Conclusion

This paper introduces a novel probe-and-allocate training
strategy to alleviate class imbalance and corrupted labels in
piratically collected data. Different from prior methods de-
signed to solve either class imbalance or corrupted labels,
our method is capable of handling both data biases simul-
taneously by exploiting informative training loss curve to
generate proper sample weights. Extensive experiments con-
ducted on synthetic and real-world datasets with various im-
balance factors and noise rates well demonstrate the superi-
ority of our method. In this paper, however, we only verify
our method on classification task, while the proposed ap-
proach is generic and could be flexibly applied to training
models with biased data on other tasks, which will be put in
future work.
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