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Abstract

Despite of achieving great success in real life, Deep Rein-
forcement Learning (DRL) is still suffering from three critical
issues, which are data efficiency, lack of the interpretability
and transferability. Recent research shows that embedding
symbolic knowledge into DRL is promising in addressing
those challenges. Inspired by this, we introduce a novel deep
reinforcement learning framework with symbolic options. This
framework features a loop training procedure, which enables
guiding the improvement of policy by planning with action
models and symbolic options learned from interactive trajecto-
ries automatically. The learned symbolic options alleviate the
dense requirement of expert domain knowledge and provide in-
herent interpretability of policies. Moreover, the transferability
and data efficiency can be further improved by planning with
the action models. To validate the effectiveness of this frame-
work, we conduct experiments on two domains, Montezuma’s
Revenge and Office World, respectively. The results demon-
strate the comparable performance, improved data efficiency,
interpretability and transferability.

Introduction
Deep Reinforcement Learning (DRL) has achieved tremen-
dous success in complex and high dimensional environments
such as Go (Silver et al. 2016, 2017) and Atari Games (Mnih
et al. 2015). It interacts with environments and improves its
policy with the collected experience, by maximizing the long
term reward. Recent criticism on DRL mostly focuses on
the lack of transferability, interpretability, and data efficiency.
The policy learnt from an environment often fails in another
unseen environment. Due to the use of black-box neural net-
works for function approximation, the intrinsic lack of inter-
pretability issue naturally raises in DRL, which disables the
agent to explain its actions in a human-understandable way
and earn people’s trust in critical areas such as autonomous
driving (Aradi 2020) and chemical engineering (Zhou, Li,
and Zare 2017). Besides, DRL often requires a large amount
of data to learn a satisfying policy in complex environments.
The process of collecting experiences for learning is time-
consuming and the sample efficiency is low.
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Figure 1: State Mapping Function in Montezuma’s Revenge

To alleviate those issues, researchers have investigated the
combination of HRL and symbolic planning to improve trans-
ferability, interpretability, and data efficiency (Ryan 2002;
Leonetti, Iocchi, and Stone 2016; Yang et al. 2018; Lyu et al.
2019; Illanes et al. 2020; Sarathy et al. 2020; Lee et al. 2021).
In those works, the original MDP is divided into two levels.
The higher level utilizes a symbolic planner with a given
action model to generate plans for selecting options, while
the lower level interacts with the environment to accomplish
the selected options (Illanes et al. 2020; Lee et al. 2021). The
two-level structure helps alleviating the sparse reward issue,
and improves sampling efficiency with the help of generated
plans. In those works, they all assume the action models have
been provided by domain experts. In many real-world appli-
cations, however, it is often difficult to create action models
by hand, especially when the environment is complicated. A
more realistic idea is to automatically learn action models
from training data (Zhuo and Kambhampati 2017; Yang, Wu,
and Jiang 2007; Ng and Petrick 2019; Martínez et al. 2016;
James, Rosman, and Konidaris 2020) and exploit the learnt
action models to generate plans for guiding the exploration of
options. Although there is indeed an approach (Sarathy et al.
2020) proposed to learn action models automatically, they
still need to manually define major parts of action models in
advance. Besides, the planning goal in this approach is kept
unchanged while in our framework it is dynamically adapted
to maximize the external reward.

In this work, we propose a novel framework, namely SORL,
which stands for Symbolic Options for Reinforcement
Learning, to learn action models to help the exploration of
actions in reinforcement learning. We assume that there exists
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Figure 2: An action model in Montezuma’s Revenge

a function F , mapping high dimensional states to symbolic
states and enabling us to learn symbolic action models and
options. As shown in Figure 1, we extract the position of
the man in red and the key from the high-dimensional state
to obtain the corresponding symbolic state. When the agent
walks from the middle ladder to the right ladder, the key still
exists and the environment does not give any feedback (e.g.
zero reward). This can be seen as a symbolic transition and
we will generate the corresponding action model as shown
in Figure 2. Then, we use a planner with the learned action
models and planning goals as input to generate plans and use
them to instruct the learning of the agent.

Based on the assumption, SORL features a two-level struc-
ture, of which the higher level is a symbolic planner and a
meta-controller, and the lower level is an RL agent interacting
with the environment. The higher level utilizes the collected
trajectories from the lower level to learn action models and
symbolic options with minimum human knowledge. After
that, the meta-controller chooses an option according to the
plan generated from the planner with the learned action mod-
els and assigns it to the lower level. By interacting with the
environments, the lower level learns a policy to reach the
assigned option and sends the collected experience to the
higher level. This cross-fertilization structure not only helps
alleviating the sparse and delayed reward problem but also
improves the data efficiency.

Different from previous action model learning approaches
(Zhuo and Kambhampati 2017; Yang, Wu, and Jiang 2007),
which assume the number of action models to be learnt is
known beforehand, our SORL does not know exactly “how
many” and “what” action models to be learnt from the en-
vironment. We expect the agent continuously creates new
action models via the interactions with the environment, and
exploits both new and old action models to guide the explo-
ration of actions to build policies creatively—we consider
this as a creativity property of an AI agent. It was previously
mentioned that AI techniques can be used to create new ideas
in three ways: producing novel combinations of familiar ideas
(e.g., poetic imagery and analogy), exploring the potential of
conceptual spaces (to generate new ideas), and making trans-
formations (of structured conceptual spaces) for enabling
the generation of previously impossible ideas (Boden 1998).
Current AI techniques have exhibited great progress in ex-
ploring the potential of conceptual spaces (the second way)
by considering it as combinational heuristic search, provided
the domain model or knowledge has been built by domain
experts (Boden 2009). There are, however, very few works
that investigate the creativity that is capable of automatically
accumulating (or learning) “pieces” of knowledge (e.g., ac-

tion models) from environments and improving the ability
of solving real-world application problems with the accu-
mulated knowledge. In this work, we claim that an agent
with such creativity can build better policies with respect to
transferability, interpretability, and data-efficiency.

We summarize our contribution as below:

• Our work is the first one to learn action and option models
automatically without being told any knowledge of these
models and simultaneously learn RL policies.

• We propose a symbolic reinforcement learning framework
capable of providing transferability, interpretability, and
improved data-efficiency.

• The symbolic option learned by SORL is more general,
which can correspond to more than one action model.

Preliminaries
In this chapter, we establish relevant notation and briefly in-
troduce key aspects of symbolic planning and reinforcement
learning.

Symbolic Planning with PDDL
In PDDL language, states are represented as set of propo-
sitions and we call it symbolic states throughout the pa-
per to distinguish them from states in RL. Propositions
represent the properties of the world and in the sym-
bolic state s, proposition p ∈ s if p is true otherwise
(not p) ∈ s. An action description called action model is
a tuple (name, pre+, pre−, eff+, eff−), where name is
the name of the action, (pre+, pre−) are the preconditions
and (eff+, eff−) are the effects. As shown in Fig.2, the
action model describes that when the agent walks from the
middle ladder to the right ladder , the key keeps still and the
reward remains unchanged. If pre+ ⊂ s and s ∩ pre− = ∅,
then we can execute action a and obtain the next state

s′ = ((s− eff−) ∪ eff+).

The planning domainD = (P,A) includes the proposition
set P and the action set A, which describe the state space
and the action space, respectively. A tuple (s, a, s′) describes
a symbolic transition from state s to state s′ after executing
action a. We define a planning problem denoted as a triple
(I, P,A,G), of which I is an initial state andG is a goal state.
The solution to this problem is called a plan π, which is a
sequence of actions. After executing the plan, we can obtain
a symbolic transition trace from I to G. To obtain such a plan
with the maximum reward, we use a planner called Metric-FF
(Hoffmann 2002), which can handle planning problems with
continuous metrics.

Reinforcement Learning
A Markov Decision Process (MDP) is defined as the tuple
(S̃, Ã, P ã

s̃s̃′
, rãs̃ , γ) where S̃ and Ã denote the state space and

action space, respectively, P ã
s̃s̃′

provides the transition proba-

bility of moving from state s̃ ∈ S̃ to state s̃′ ∈ S̃ after taking
action ã ∈ Ã, rãs̃ is the immediate reward obtained after per-
forming action ã at state s̃ and γ ∈ [0, 1) is a discount factor.
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The task of RL is to obtain a policy

π : S̃ → Ã

that maximizes the expected return

Vπ(s̃) = Eπ[
∞∑
t=0

γtrt | s̃0 = s̃]

where rt is the reward at time step t received by following π
from state s̃0 = s̃. The state-action value function is defined
as follows:

Qπ(s̃, ã) = Eπ[
∞∑
t=0

γtrt | s̃0 = s̃, ã0 = ã].

Option Framework
Hierarchical Reinforcement Learning (HRL) extends RL with
temporally macro actions that represent high-level behav-
iors. The option framework (Sutton, Precup, and Singh 1999)
models macro actions as options. In particular, an option
o is defined as (Io(s), πo(s), βo(s)), where initiation condi-
tion Io(s) determines whether the option o can be executed
at state s, termination condition βo(s) determines whether
option execution terminates at state s and πo(s) is a policy
mapping state s to a low-level action. In this framework, an
agent learns to choose an optimal option to be executed in
the higher level, i.e. meta controller level and the lower level,
i.e. controller level learns optimal policies to reach the option.
An explicit assumption is that the set of options is predefined
by human experts.

The SORL Framework
We define the reinforcement learning environment by a tuple
(I,G, P,A, F, S̃, Ã, R̃, P̃ , γ) and divide it into three parts:

• First, we define a high-level symbolic planning problem
by (I,G, P,A), where I is an initial state, and G is a goal
state. P is a set of propositions represented by planning
language PDDL with prior knowledge and it is used to
describe symbolic states S, where S ⊆ 2P . A is a set of
action models that S×A→ S transfer a symbolic state to
another. Each action model is learned by meta-controller
through symbolic state pairs.

• Second, we define a state mapping function F : S̃ → 2P

mapping a high dimension state s̃ to a symbolic state s.
• At last, we define an underlying decision-making problem

by an MDP tuple (S̃, Ã, R̃, P̃ , γ). We denote a symbolic
action and state as a and s respectively, while the primitive
action and state as ã and s̃. Noted that ã and s̃ are gained
from interacting with the environment.

Taking the Figure 1 as an example, in the game of the
Montezuma’s Revenge, the high level dimension state is the
picture of the game scene and the symbolic state is composed
of the propositions describing the location of the agent and
the existence of the key.

This framework aims to learn action models, which can be
utilized by logic-based planner to generate a sequence of op-
tions and achieve the maximal cumulative reward. As shown

in the Figure 3, the SORL framework includes three compo-
nents: (1) a planner for generating plans, (2) a meta-controller
for generating action models, goals and choosing the goal
option, and (3) an option set for interacting with the envi-
ronment. The meta-controller first takes the symbolic state
pairs and their external rewards as inputs and outputs action
models and a goal. Noted that the state pairs set are empty in
the beginning. Then the planner takes the action models as
input and computes a plan. Next, the meta-controller receives
the plan from the planner and chooses an option. Each option
in option set can be regarded as an agent. The chosen agent
keeps interacting with the environment until accomplishing
the option or reaching the maximal steps, and the low-level
state traces will be transformed into symbolic state pairs by
the label function F and sent back to meta controller. The
meta-controller continues learning action models and sym-
bolic options from gained symbolic state pairs and external
rewards. We repeat these procedures num_episodes times.
With the proceeding of learning, our approach keeps updating
action models and planning goals and the planner is able to
generate plans achieving better rewards.

Option Set
Symbolic Option In this paper, we propose a novel op-
tion framework which is called symbolic option. A symbolic
option is computed by symbolic state pairs gained from tra-
jectories instead of manual setting in advance, requiring less
prior knowledge in our approach. We define a symbolic op-
tion by so = (pre, π, eff), where π is a low-level policy and
pre is an union of preconditions, including pre+ and pre−.
It is created and updated when the meta-controller gener-
ates action models. Similarly, eff is composed of eff+ and
eff−, describing the effects of the symbolic option. As for a
symbolic option so and a high-dimension state s̃, we compute
initiation condition Iso(s̃) by Equation (1) and termination
condition βso(s̃) by Equation (2). A symbolic option can
be executed based on s̃ only if Iso(s̃) = True. Similarly, it
terminates only if βso(s̃) = True.

Iso(s̃) =

{
True pre+ ⊂ F (s̃), F (s̃) ∩ pre− = ∅
False otherwise

(1)

βso(s̃) =

{
True eff+ ⊂ F (s̃), eff− ∩ F (s̃) = ∅
False otherwise

(2)

It is noted that the inherent symbolic propositions of our
symbolic option provide better interpretability compared to
those approaches based on black-box neural networks. In
terms of the low-level policy π, it can be learned by interact-
ing with the environments with the intrinsic rewards given by
the meta-controller.

Global Option At the beginning of our algorithm, the op-
tion set contains no symbolic options but a global option

oG = (IG(s), π, βG(s)),

where IG(s̃) ≡ True, βG(s̃) = True if symbolic state
changes and π = random(Ã). We use random(Ã) to in-
dicate that the global option each time chooses a random
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Figure 3: The SORL framework

action ã ∈ Ã. Intuitively, the global option is available for
any state and it keeps randomly exploring until the symbolic
state changes. Hence, in order to discover new action models,
the meta-controller outputs the global option when the plan

is empty or all action models in the plan has been executed.

Symbolic State Pair and External Reward Given an op-
tion oj under state s̃, the lower level policy interacts with the
environment and output a pair of symbolic states (s1, s2) and
external reward re, denoted by

(s1, s2), re = ExecuteOption(s̃, oj).

If the chosen option oj isn’t available for s̃, i.e., Ij(s̃) =
False, both of the output pair and the reward are None.
Otherwise, if the chosen option oj is able to be executed, we
let s1 = F (s̃) and the policy πj first chooses an action ã and
we can obtain the next state s̃′ and its reward r̃ by interacting
with the environments. Then the controller adds experience
(s̃, ã, s̃′, r̃) to the oj’s replay buffer. We keep executing action
by following the low-level policy and update the states and
rewards until until βj(s̃′) = True or reaching the maximum
steps, which means the option has been successfully executed
or not. Finally, if the option oj is successfully executed, we
set the output symbolic state pair as (s1, s2) of which s2 =

F (s̃′) and the external reward re be the accumulated sum of
the environment rewards during interacting.

Meta-controller
In this section, we introduce our Meta-controller in detail.
Meta-controller takes symbolic state pairs and their external
rewards as input, and first generates action models and a
planning goal and then chooses a an option according to the
plan from planner.

Action Model Given symbolic state pairs and their rewards,
meta-controller generates action models by

A,FA,O, O = GenerateActionModels(R,O, sr).

The function indicates it takes a dictionary R,an option set O
and the success ratio set sr as inputs, and outputs a generated
action setA, a mapping function FA,O and the updated option
set O. Dictionary R includes mappings from a symbolic state
pair to its external rewards. FA,O transfers action models to
options. The success ratio set sr records the percentage of
action models successful executed each 100 times.

As for a symbolic state pair (s1, s2)i ∈ R, we can get a
corresponding action model

ai = (name, pre+, pre−, eff+, eff−).

Note that the action model and a symbolic state pair are a one-
to-one match. Given a state pair (s1, s2)i, the name of ai
is the index of action models, denoted by acti, and pre+ =
{p|p ∈ s1}, pre− = {p|p /∈ s1}. Let eff+ = s2 − s1 and
eff− = s1 − s2, where a− b is a set subtraction indicating
set a subtracts the intersection of set a and set b. In order to
generate a plan gaining a maximum reward, we use the met-
ric constant quality to denote the cumulative reward of the
plan and add the proposition “(increase (quality) ρi)”
into eff+. Finally, we get an action which is called acti,
and we define the gained reward of acti by ρi. To encour-
age the planner to generate a plan including the exploring
action model, the reward ρi is composed of mean external
reward and exploration reward, computed by Equation (3),
where R[(s1, s2)i] is the external rewards list and rE is the
exploration rewards. The exploration rewards is computed by
Equation (4), where c is a constant and sr[i] is the success
rate of acti, which means the exploration reward decreases
as the success rate increases.

ρi = mean(R[(s1, s2)i]) + rE (3)

rE =

{
c(1− sr[i]) acti is being explored
0 otherwise

(4)

If there exists a symbolic option oj = (prej , πj , effj)
where effj = eff after we attain an action model, we update
pre+j to a union of pre+ and pre+j , and pre−j to a union of
pre− and pre−j . Otherwise, we create a new symbolic option
oj = (pre, πj , eff) and add it to the option set O. Finally,
we set the mapping function FA,O(acti) = oj . During the
exploration, we explore each action model sequentially, in
other words, we repeat exploring acti until the success rate
of act0 to acti−1 is higher than the threshold.

Planning Goal Next Meta-controller outputs a goal to
guide planner, aiming at generating a plan with a maximal
reward. The goal is a label function quality > q, where q
is the cumulative external rewards of the plan gained in the
last episode. Intuitively, the function constrains the planner
to compute a plan with a largest reward compared with the
past plans.

Chosen Option and Intrinsic Reward After the planner
generates a plan Π = (a1, a2, . . . , an), as for each action
model ai, the meta-controller selects a symbolic option from
option set by oj = FA,O(acti), and we can get an series of
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Algorithm 1: Planning and Learning algorithm for SORL
Input: proposition set P , state mapping function F , success
ratio threshold λ

1: Initialization: option set O ← {oG}, action models set
A← ∅, symbolic state pairs’ external rewards dictionary
R ← ∅, action models’ success ratio set sr ← ∅, plan
Π0 ← ∅, q ← 0

2: for t=1,2, . . . , num_episodes do
3: Initialize game, get start state s̃0, I ← F (s̃0), Π∗ ←

Πt−1
4: A,FA,O, O ← GenerateActionModels(R,O, sr)
5: G← (quality > q)
6: Πt ← metricFF.solve(I, P,A,G)
7: if Πt = ∅ then Πt ← Π∗

8: q ← 0
9: for ai ∈ Πt do

10: oj ← FA,O[i], obtain current state s̃
11: (s1, s2), re ← ExecuteOption(s̃, oj)
12: append re into R[(s1, s2)], q ← q + re
13: end for
14: while env isn’t terminal do
15: obtain current state s̃
16: (s1, s2), re ← ExecuteOption(s̃, oG)
17: if (s1, s2) not in R then
18: R[(s1, s2)]← list(re)
19: else
20: append re into R[(s1, s2)]
21: end if
22: end while
23: train options in O and calculate sr
24: end for

options (o0, o1, . . . , on). If all action models in Π success-
fully finish, which indicates the chosen symbolic options are
executed sequentially and termination conditions are satisfied
, then the meta-controller would choose the global option
oG to explore the environment thoroughly. For each option
oi = (prei, πi, βi), we refer to (Lyu et al. 2019) to design
intrinsic rewards:

ri(s̃) =

{
φ βi(s̃) = True
r otherwise

(5)

where φ is a constant and r is the reward gained from the
environments when reach state s̃.

Planning and Learning
As shown in Algorithm 1, we firstly initialize an option set
O only including oG, an empty action model set A, an empty
dictionary mapping symbolic state pairs to their external
rewards R, an empty action models success ratio set sr and
an empty plan Π0. When an episode t begins, we first get
a start state s̃0 from environment. Then we compute the
symbolic initial state I by F and record the best plan Π∗,
which is the plan generate in the last episode. Then meta-
controller updates action models A, symbolic options set O,
their mapping function FA,O and the planning goal G. Given
current action models A and planning goal G, Metric-FF

planner (Hoffmann 2002) generates a new plan Πt whose
quality is higher than the last plan Πt−1. If Πt is empty,
which indicates Metric-FF couldn’t find a solution to solve
the problem, we let Πt = Π∗.

As for each action model ai in plan Πt, meta-controller
chooses a corresponding symbolic option oj by FA,O. Then
the controller interacts with environment by performing Deep
Q-Learning, executes the action chosen by oj’s inner policy
and stores experience into oj’s replay buffer until oj termi-
nates. After that, we get oj’s initial symbolic state s1 and a
terminate symbolic state s2 and an extrinsic reward re. In this
way, we compute symbolic state pairs and their extrinsic re-
wards one by one and record these mappings by a dictionary
R. Finally, quality q of plan Πt is defined as the accumulated
sum of extrinsic rewards.

If the environment isn’t finished after executing Πt, the
meta-controller chooses the global option oG to explore new
symbolic states pairs in the environment. oG stops exploring
when the computed symbolic state changes and we calculate
a symbolic state pair (s1, s2) and its external reward re. If
(s1, s2) is a new symbolic state pair, we add it into R. This
process repeats until the environment is terminated. Finally,
when an episode ends, we train options in O and calculate
success ratio for each action model.

Experiment
In this section, we evaluate our approach on two domains,
Office World and Montezuma’s Revenge in terms of data-
efficiency, interpretability and transferability.

Office World
We first evaluate our approach on the Office World (Icarte
et al. 2018) which is a simple multitask environment. In this
environment, being initialized at a random location, the agent
can move towards one of the four cardinal directions. Actions
are valid only if the movement does not go through a wall.
The agent can pick up cups of coffee or mails when it reaches
the cell marked with blue cups or green envelops, respectively.
He can deliver coffee or mail to the office by reaching the cell
marked with a purple hand. The symbol ∗ means the place
where the agent can not stay or reach.

Setup In this environment, the start location of the agent is
randomly initialized at every episode. The agent is required
to finish three tasks. The first and the second are to deliver a
cup of coffee or a piece of mail to the office while the third
is to hand both objects to the office. We compared SORL to
h-DQN, a goal based HRL approach (Kulkarni et al. 2016).
Since the state and action space are finite, we choose to
implement these two approaches with q-table in both high
and low levels.

Results We evaluate our approaches in terms of data-
efficiency, interpretability and transferability.

• Data-efficiency In order to validate the data-efficiency,
we train these two approaches in the three tasks and com-
pare the corresponding performance at the same interac-
tion steps. To demonstrate the transferability, we train the
agent in task 3 along with the options learned in tasks 1
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(a) Office World (b) Learning Curve (c) Propositions

(d) Learned Action Models and Options (e) Learning Curve

Figure 4: Experimental Results in the Office World

and 2. To implement our approach, we design the propo-
sitions as shown in Fig. 4(c). As shown in Fig.4(b) , from
Task1 to Task3, SORL can get rewards faster than HRL.

• Interpretability Fig.4(d) shows action models and sym-
bolic options learned in each task. Those action models
describe the reason of making decisions at each step in
a human understandable way. For example, we can ex-
plicitly know act1 in task1 can be executed when the
agent gets coffee and does not deliver it to the office, and
the agent would deliver the coffee to the office and get a
reward of 100 when act1 is executed.

• Transferability By utilizing the options learned in tasks
1 and 2, we test the tranferability of SORL and H-DQN
in Task 3 and denote them as SORLt and HRLt. As
shown in Fig4(c), the performance of SORL and HRL
is improved when transferring the learned knowledge. It
verifies that compared to SORL, the converging speed of
SORLt improves dramatically with only half of samples.
We conjecture that the SORL is able to transfer the learned
knowledge into other unseen environments .

Montezuma’s Revenge
Montezuma’s Revenge is an Atari game with sparse and
delayed rewards. It requires the player to navigate through
several rooms while collecting treasures. We conduct our
experiments based on the first room shown in Fig.5(a). In
this room, the player only obtains positive rewards when it
fetches the key (+100) or opens a door (+300). Otherwise,
the player would not receive any reward signal. The optimal
solution is to climb down the ladders to obtain the key, then

return back to the platform and open a door, resulting in a
maximum reward (+400).

Setup We compare our approach with HRL (Kulkarni et al.
2016) and SDRL (Lyu et al. 2019) as baselines, where SDRL
is an approach that combines symbolic planning and RL
with excellent results in complex environments with sparse
rewards. SORL can automatically learn the action models
while they are pre-defined by experts in SDRL. Besides, the
option model can correspond to multiple action models in
SORL while one in SDRL. We implement these approaches
under an option-based HRL framework. In terms of the low
level, we follow the network architecture used in (Kulkarni
et al. 2016) and train this network with double-Q learning
(van Hasselt, Guez, and Silver 2016) and prioritized experi-
ence replay (Schaul et al. 2016). Besides, both SORL and
SDRL use a planner to generate high level policy while HRL
utilizes a neural network. The intrinsic reward follows 5 with
φ = 100. The maximum steps in an episode and the threshold
of success rate are set to be 500 and 0.95, respectively. To
describe the environment, we abstract four local propositions
(e.g., MiddleLadder, RightDoor, LeftLadder and RightLad-
der) and an object (Key).

Results We present the experimental results in Fig.5. It is
evident that SORL can achieve the maximum reward (+400)
in 0.7M samples while both SDRL and HRL need more
than 1.5M samples, indicating the superior data-efficiency of
SORL. However, to pick up the key (reward +100), SORL
needs to interact with the environment with more than 0.3M
steps, at which SDRL and HRL fall into the local optimum.
This is because SORL randomly explores symbolic options
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(a) Learning Curve (b) Examples of Learned Action Models

(c) learned Symbolic Options (d) Learned Action Models

Figure 5: Experimental Results in Montezuma’s Revenge

and it is easier to find options closer to the starting point. After
finding these options, SORL would train them sequentially
instead of directly learning options on the path of getting
the key. One option model corresponds to one action model
in SDRL while several action models in SORL. The ability
of reusing the learned symbolic options enables SORL to
converge faster than SDRL. Take Fig.5(c) as an example, the
opt1 representing the move from middle ladder to right door,
is firstly trained at the beginning when the player does not get
the key. After the player picks up the key, SORL only needs a
small amount of data to fine-tune opt1 when the player moves
from the middle ladder to right door with a key. However,
both SDRL and HRL start training the options after the player
moves to the middle ladder with a key, consuming more
interaction resources. Different from option-based HRL and
SDRL, SORL can learn the initial and termination condition
of symbolic options automatically. The action models used
in SDRL need to be constructed by human in advance while
they are learned from the trajectories in SORL, saving labour
resources. We present some of the learned action models in
Fig.5(b) and the effects of symbolic options in Fig.5(c). Fig.
5(b) describes the preconditions and effects of each action
model and we can see that if the player is at LeftLadder
and the key exists, then the player can obtain a key and
reward (+100) by executing action5. Fig. 5(c) shows the
learned options in SORL and the order of options actually

does not match the optimal order because SORL randomly
explore the environment and options 0-3 are easier to learn.
We describe the meaning of all learned action models and
their corresponding options in Fig. 5(d). It is easy to see that
act7 to act10 correspond to the options explored before, so
these options can be reused to improve the data-efficiency.

Conclusions

In this paper, we propose a novel framework SORL to study
a creativity property of an AI agent, which can automati-
cally “accumulate” new action models and symbolic options
from trajectories, and leverage the accumulated action mod-
els and symbolic options to instruct RL to explore efficiently
in environments with sparse and delayed rewards. Compared
with previous approaches, our experimental results exhibit
that SORL has better sampling efficiency. Besides, SORL
requires less prior knowledge and is able to give better inter-
pretability and transferability with the learnt action models
and symbolic options.

In the future, it would be interesting to investigate the pos-
sibility of learning more expressive planning models, such as
learning Hierarchical Task Networks (Zhuo and Yang 2014)
and PDDL models (Zhuo et al. 2010), as well as integrat-
ing different learning mechanisms, such as transfer learning
(Zhuo and Yang 2014; Shen et al. 2020).
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