
Instance-Sensitive Algorithms for Pure Exploration in Multinomial Logit Bandit

Nikolai Karpov, Qin Zhang
Indiana University Bloomington

Luddy Hall, RM 3044
700 North Woodlawn Avenue

Bloomington, IN 47408-3901, USA
nkarpov@iu.edu, qzhangcs@indiana.edu

Abstract

Motivated by real-world applications such as fast fashion re-
tailing and online advertising, the Multinomial Logit Bandit
(MNL-bandit) is a popular model in online learning and oper-
ations research, and has attracted much attention in the past
decade. In this paper, we give efficient algorithms for pure
exploration in MNL-bandit. Our algorithms achieve instance-
sensitive pull complexities. We also complement the upper
bounds by an almost matching lower bound.

Introduction
We study a model in online learning called multinomial logit
bandit (MNL-bandit for short), where we have N substi-
tutable items {1, 2, . . . , N}, each of which is associated with
a known reward ri ∈ (0, 1] and an unknown preference pa-
rameter vi ∈ (0, 1]. We further introduce a null item 0 with
reward r0 = 0, which stands for the case of “no-purchase”.
We set v0 = 1, that is, we assume that the no-purchase de-
cision is the most frequent case, which is a convention in
the MNL-bandit literature and can be justified by many real-
world applications to be mentioned shortly.

Denote [n] , {1, 2, . . . , n}. Given a subset (called an
assortment) S ⊆ [N], the probability that one chooses i ∈
S ∪ {0} is given by

pi(S) =
vi

v0 +
∑
j∈S vj

=
vi

1 +
∑
j∈S vj

.

Intuitively, the probability of choosing the item i in S is
proportional to its preference vi. This choice model is called
the MNL choice model, introduced independently by Luce
(1959) and Plackett (1975). We are interested in finding an
assortment S ⊆ [N] such that the following expected reward
is maximized.

Definition 1 (expected reward). Given an assortment S ⊆
[N] and a vector of item preferences v = (v1, . . . , vN), the
expected reward of S with respect to v is defined to be

R(S,v) =
∑
i∈S

ripi(S) =
∑
i∈S

rivi
1 +

∑
j∈S vj

.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The MNL-bandit problem was initially motivated by fast
fashion retailing and online advertising, and finds many
applications in online learning, recommendation systems,
and operations research (see Avadhanula (2019) for an
overview). For instance, in fast fashion retailing, each item
corresponds to a product and its reward is simply the rev-
enue generated by selling the product. The assumption that
v0 ≥ max{v1, . . . , vN} can be justified by the fact that most
customers do not buy anything in a shop visit. A similar
phenomenon is also observed in online advertising where it
is most likely that a user does not click any of the ads on a
webpage when browsing. We naturally want to select a set
of products/ads S ⊆ [N] to display in the shop/webpage
so that R(S,v), which corresponds to revenue generated by
customer/user per visit, is maximized.

We further pose a capacity constraint K on the cardinality
of S, since in most applications the size of the assortment
cannot exceed a certain size. For example, the number of
products presented at a retail shop is capped due to shelf
space constraints, and the number of ads placed on a webpage
cannot exceed a certain threshold.

In the MNL-bandit model, we need to simultaneously learn
the item preference vector v and find the assortment with
the maximum expected reward under v. We approach this
by repeatedly selecting an assortment to present to the user,
observing the user’s choice, and then trying to update the
assortment selection policy. We call each observation of the
user choice given an assortment a pull. We are interested in
minimizing the number of pulls, which is the most expensive
part of the learning process.

In bandit theory we are interested in two objectives. The
first is called regret minimization: given a pull budget T ,
try to minimize the accumulated difference (called regret)
between the sum of expected rewards of the optimal strategy
in the T pulls and that of the proposed learning algorithm; in
the optimal strategy we always present the best assortment
(i.e., the assortment with the maximum expected reward) to
the user at each pull. The second is called pure exploration,
where the goal is simply to identify the best assortment.

Regret minimization in MNL-bandit has been studied ex-
tensively in the literature (Rusmevichientong, Shen, and
Shmoys 2010; Sauré and Zeevi 2013; Davis, Gallego, and
Topaloglu 2013; Agrawal et al. 2016, 2017; Chen and Wang
2018). The algorithms proposed by Rusmevichientong, Shen,

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7096

and Shmoys (2010); Sauré and Zeevi (2013) for the regret
minimization problem make use of an “exploration then ex-
ploitation” strategy, that is, they first try to find the best
assortment and then stick to it. However, they need the prior
knowledge of the gap between the expected reward of the
optimal assortment and that of the second-best assortment,
which, in our opinion, is unrealistic in practice since the
preference vector v is unknown at the beginning.

In this paper we focus on pure exploration. Pure explo-
ration is useful in many applications. For example, the re-
tailer may want to perform a set of customer preference tests
(e.g., crowdsourcing) to select a good assortment before the
actual store deployment. We propose algorithms for pure
exploration in MNL-bandit without any prior knowledge of
preference vector. Our algorithms achieve instance-sensitive
pull complexities which we elaborate next.

Instance Complexity. Before presenting our results, we
give a few definitions and introduce instance complexities for
pure exploration in MNL-bandit.

Definition 2 (best assortment Sv and optimal expected re-
ward θv). Given a capacity parameter K and a vector of
item preferences v, let

Sv , arg max
S⊆[N]:|S|≤K

R(S,v)

denote the best assortment with respect to v. If the solution
is not unique then we choose the one with the smallest car-
dinality which is unique (see the discussion after Lemma 2).
Let θv , R(Sv,v) be the optimal expected reward.

Denote ηi , (ri − θv)vi; we call ηi the advantage of item
i. Suppose we have sorted the N items according to ηi, let
η(j) be the j-th largest value in the sorted list.

Definition 3 (reward gap ∆i). For any item i ∈ [N]\Sv, we
define its reward gap to be

∆i ,

{
η(K) − ηi, if |Sv| = K,
−ηi, if |Sv| < K.

and for any item i ∈ Sv, we define

∆i , ∆̄ = min

{(
η(K) − η(K+1)

)
, min
j∈Sv

{rj − θv}
}
.

(1)

Definition 3 may look a bit cumbersome. The extra term
minj∈Sv{rj−θv} in (1) is added for a technical reason when
handling the case that |Sv| < K; we will discuss this in more
detail in Remark 10. If |Sv| = K, then the task of finding
the best assortment is equivalent to the task of identifying the
K items with the largest advantage values ηi, and the reward
gap in Definition 3 can be simplified as

∆i =

{
η(K) − ηi, ∀i ∈ [N]\Sv,
η(K) − η(K+1), ∀i ∈ Sv.

We now give two instance complexities for pure explo-
ration in MNL-bandit. The second can be viewed as a refine-
ment of the first.

Definition 4 (instance complexity H1). We define the first
instance complexity for pure exploration in MNL-bandit to
be

H1 ,
∑

i∈[N]

1

∆2
i

.

In this paper we assume that ∀i ∈ [N],∆i 6= 0, since
otherwise the complexityH1 will be infinity. This assumption
implies that the best assortment is unique, which is also
an essential assumption for works of literature whose pull
complexities are based on “assortment-level” gaps.

Definition 4 bears some similarity to the instance complex-
ity defined for pure exploration in the multi-armed bandits
(MAB) model, where we have N items each of which is asso-
ciated with an unknown distribution, and the goal is to iden-
tify the item whose distribution has the largest mean. In MAB
the instance complexity is defined to be HMAB =

∑N
i=2 1/∆2

i ,
where ∆i = µ(1) − µ(i) where µ(1) is the largest mean of
the N items and µ(i) is the i-th largest mean of the N items
from work of Audibert, Bubeck, and Munos (2010). Our def-
inition of ∆i is more involved due to the more complicated
combinatorial structure of the MNL-bandit model.
Definition 5 (instance complexity H2).

H2 ,
∑

i∈[N]

vi + 1/K

∆2
i

+ max
i∈[N]

1

∆2
i

.

It is easy to see that H2 = O(H1) (more precisely, H1

K ≤
H2 ≤ 3H1). We comment that the maxi∈[N]

1
∆2
i

term is
needed only when |Sv| < K.

Our Results. We propose two fixed-confidence algorithms
for pure exploration in MNL-bandit. Algorithm 3 gives a
pull complexity of O

(
K2H1 ln

(
N
δ ln(KH1)

))
where δ is

the confidence parameter. We then modify the algorithm
using a more efficient preference exploration procedure at
each pull, and improve the asymptotic pull complexity to
O
(
K2H2 ln

(
N
δ ln(KH2)

))
. The second algorithm is pre-

sented in Algorithm 5.
Both algorithms can be implemented efficiently: the time

complexity of Algorithm 3 is bounded by Õ(T +N2) where
T is the pull complexity and ‘Õ()’ hides some logarithmic
factors. That of Algorithm 5 is bounded by Õ(TN +N2).1

As we shall discuss in Remark 12, though having a larger
pull complexity, Algorithm 3 still has the advantage that it
better fits the batched model where we try to minimize the
number of changes of the learning policy.

To complement our upper bounds, we prove that
Ω(H2/K

2) pulls is needed in order to identify the best as-
sortment with probability at least 0.6. Note that when K
is a constant, our upper and lower bounds match up to a
logarithmic factor.

Related Work
Regret minimization in MNL-bandit was first studied by Rus-
mevichientong, Shen, and Shmoys (2010) in the setting of

1When we talk about time complexity, we only count the running
time of the algorithm itself, and do not include the time for obtaining
the pull results which depends on users’ response time.

7097

dynamic assortment selection under the MNL choice model.
Since then there have been a number of follow-ups that fur-
ther improve the regret bound and/or remove some artificial
assumptions (Sauré and Zeevi 2013; Davis, Gallego, and
Topaloglu 2013; Agrawal et al. 2016, 2017; Chen and Wang
2018). Agarwal, Johnson, and Agarwal (2020) studied choice
bandits which can be seen as a generalization of MNL-bandit.

As mentioned previously, the algorithms by Rusmevichien-
tong, Shen, and Shmoys (2010); Sauré and Zeevi (2013) also
have a component of identifying the best assortment. Rus-
mevichientong, Shen, and Shmoys (2010); Sauré and Zeevi
(2013) introduced the following “assortment-level” gap:

∆asso = θv − max
S⊆[N],|S|≤K,S 6=Sv

R(S,v),

that is, the difference between the reward of the best as-
sortment and that of the second-best assortment. The pull
complexity of the component in Sauré and Zeevi (2013) for
finding the best assortment can be written as Õ(KN/∆2

asso),
where‘Õ()’ hides some logarithmic factors. This result is bet-
ter than that in Rusmevichientong, Shen, and Shmoys (2010).
There are two critical differences between these results and
our results: (1) More critically, in Rusmevichientong, Shen,
and Shmoys (2010); Sauré and Zeevi (2013) it is assumed
that the “assortment-level” gap ∆asso is known at the begin-
ning, which is not practical since the fact that the preference
vector is unknown at the beginning is a key feature of the
MNL-bandit problem. (2) Our reward gaps ∆i are defined at
the “item-level”; the instance complexity H1 (or H2) is de-
fined as the sum of the inverse square of these item-level gaps
and the total pull complexity is Õ(K2H1) (or Õ(K2H2)).
Though the two complexities are not directly comparable, the
following example shows that for certain input instances, our
pull complexity is significantly better.

Example 1. K = 1, r1 = . . . = rN = 1, v1 = 1, v2 = 1−
1/
√
N, v3 = . . . = vN = 1/

√
N . We have KN/∆asso =

Ω(N2), while K2H1 = O(N). Thus, the pull complexity of
the algorithm in Rusmevichientong, Shen, and Shmoys (2010)
is quadratic of ours (up to logarithmic factors).

The best assortment identification problem has also been
studied in the static setting (Talluri and van Ryzin 2004;
Désir, Goyal, and Zhang 2014), where the user preference
vector v is known as a priori and our task is to conduct an
offline computation to find the assortment that maximizes the
expected reward. We refer readers to Kök and Fisher (2007)
for an overview of this setting.

Chen, Li, and Mao (2018) studied the problem of top-k
ranking under the MNL choice model (but without the “no
purchase” option). Their problem is different from ours: They
aimed to find the k items in [N] with the largest preference
vi (instead of the advantage ηi = (ri − θv)vi). In some
sense, their problem can be thought of as a special case of
ours, where r1 = r2 = . . . = rN (that is, the rewards of
all items are the same); but in their model, there is no null
item. It seems difficult to extend their approach to our setting.
We would also like to mention the work on battling-bandits
by Saha and Gopalan (2018), who considered the problem of
using the MNL choice model as one of the natural models to

draw a winner from a set of items. But their problem settings
and the notion of the optimal solution are again different
from the problem we consider here.

Pure exploration has been studied extensively in the model
of MAB (Even-Dar, Mannor, and Mansour 2002; Mannor
and Tsitsiklis 2004; Audibert, Bubeck, and Munos 2010;
Gabillon et al. 2011; Gabillon, Ghavamzadeh, and Lazaric
2012; Karnin, Koren, and Somekh 2013; Jamieson et al.
2014; Kaufmann, Cappé, and Garivier 2016; Garivier and
Kaufmann 2016; Russo 2016; Chen, Li, and Qiao 2017).
MNL-bandit can be viewed as an MAB-type model with∑
j∈[K]

(
N
j

)
items, each corresponding to an assortment

S ⊆ [N] with |S| ≤ K. However, these items may “in-
tersect” with each other since assortments may contain the
same items. Due to such dependencies, the algorithms de-
signed for pure exploration in the MAB model cannot be
adopted to the MNL-bandit model. Audibert, Bubeck, and
Munos (2010) designed an instance-sensitive algorithm for
the pure exploration problem in the MAB model. The result
of Audibert, Bubeck, and Munos (2010) was later improved
by Karnin, Koren, and Somekh (2013) and Chen, Li, and
Qiao (2017), and extended into the problem of identifying
multiple items (Bubeck, Wang, and Viswanathan 2013; Zhou,
Chen, and Li 2014; Chen et al. 2017).

Finally, we note that recently, concurrent and independent
of our work, Yang (2021) has also studied pure exploration
in MNL-bandit. But the definition of instance complexity
in Yang (2021) is again at the “assortment-level” (and thus
the results are not directly comparable), and the algorithmic
approaches in Yang (2021) are also different from ours. The
pull complexity of Yang (2021) can be written as Õ(Hyang)
where Hyang =

∑
i∈[N]

1
(∆′

i)
2 , where ∆′i is defined to be

the difference between the best reward among assortments
that include item i and that among assortments that exclude
item i. The following example shows that for certain input
instances, our pull complexity based on item-level gaps is
better.
Example 2. r1 = . . . = rN = 1, v1 = . . . = vK =
1, vK+1 = . . . = vN = ε. For ε ∈ (0, 1/K) and
ω(1) ≤ K ≤ o(N), we have Hyang = Θ(NK4), while
our K2H2 = Θ(K5 +NK3) = o(Hyang).

Preliminaries
Before presenting our algorithms, we would like to introduce
some tools in probability theory and give some basic proper-
ties of the MNL-bandit model. Due to space constraints, we
leave the tools in probability theory (including Hoeffding’s
inequality, concentration results for the sum of geometric
random variables, etc.) to the full version of this paper.

The following (folklore) observation gives an effective
way to check whether the expected reward of S with respect
to v is at least θ for a given value θ. The proof can be found
in the full version of this paper.
Observation 1. For any θ ∈ [0, 1], R(S,v) ≥ θ if and only
if
∑
i∈S(ri − θ)vi ≥ θ.

With Observation 1, to check whether the maximum ex-
pected reward is at least θ for a given value θ, we only need

7098

Algorithm 1: EXPLORE(i)

Input: Item i.
Output: 0/1 (choose or not choose i).

1 Offer a singleton set Si ← {i} and observe a feedback
a;

2 if a = 0 then return 1;
3 return 0

to check whether the expected reward of the particular set
S ⊆ [N] containing the up to K items with the largest posi-
tive values (ri − θ)vi is at least θ.

To facilitate the future discussion we introduce the follow-
ing definition.
Definition 6 (Top(I,v, θ)). Given a set of items I where the
i-th item has reward ri and preference vi, and a value θ, let
T be the set of min{K, |I|} items with the largest values
(ri− θ)vi. Define Top(I,v, θ) , T \{i ∈ I | (ri− θ) ≤ 0},
where v stands for (v1, . . . , v|I|).

The following lemma shows that Top(I,v, θv) is exactly
the best assortment. Its proof can be found in the full version
of this paper.
Lemma 2. Top(I,v, θv) = Sv.

Note that the set Top(I,v, θv) is unique by its definition.
Therefore by Lemma 2 the set Sv is also uniquely defined.

We next show a monotonicity property of the expected
reward function R(·, ·). Given two vectors v,w of the same
dimension, we write v � w if ∀i, vi ≤ wi. We comment that
similar properties appeared in Agrawal et al. (2016, 2017),
but were formulated a bit differently from ours. The proof of
Lemma 3 can be found in the full version of this paper.
Lemma 3. If v � w, then (θv =)R(Sv,v) ≤ (θw =
)R(Sw,w), and for any S ⊆ I it holds that

R(S,w)−R(S,v) ≤
∑
i∈S

(wi − vi).

The following is an immediate corollary of Lemma 3.
Corollary 4. If ∀i : vi ≤ wi ≤ vi + ε

K , then θv ≤ θw ≤
θv + ε.

The Basic Algorithm
In this section, we present our first algorithm for pure explo-
ration in MNL-bandit. The main algorithm is described in Al-
gorithm 3, which calls PRUNE (Algorithm 2) and EXPLORE
(Algorithm 1) as subroutines. EXPLORE describes a pull of
the assortment consisting of a single item.

Let us describe the Algorithm 2 and 3 in more detail. Algo-
rithm 3 proceeds in rounds. In round τ , each “surviving” item
in the set Iτ has been pulled by Tτ times in total. We try to
construct two vectors a and b based on the empirical means
of the items in Iτ such that the (unknown) true preference
vector v of Iτ is tightly sandwiched by a and b (Line 7-8).
We then feed Iτ , a, and b to the PRUNE subroutine which
reduces the size of Iτ by removing items that have no chance
to be included in the best assortment (Line 9). Finally, we test

Algorithm 2: PRUNE(I,K, a,b)

Input: a set of items I = {1, . . . , N}, capacity
parameter K, two vectors
a = (a1, . . . , aN),b = (b1, . . . , bN) such that
for any i ∈ [N] it holds that ai ≤ vi ≤ bi,
where v = (v1, . . . , vN) is the (unknown)
preference vector of the N items.

Output: a set of candidate items for constructing the
best assortment.

1 θa ← max
S⊆I:|S|≤K

R(S, a), θb ← max
S⊆I:|S|≤K

R(S,b);

2 C ← ∅;
3 foreach i ∈ I do
4 form a vector g = (g1, . . . , gN) s.t. gj = aj for

j 6= i, and gi = bi;
5 if ∃θ ∈ [θa, θb] s.t. i ∈ Top(I,g, θ) then add i to

C;
6 return C

whether the output of PRUNE is indeed the best assortment
(Line 10). If not we proceed to the next round, otherwise we
return the solution.

Now we turn to the PRUNE subroutine (Algorithm 2),
which is the most interesting part of the algorithm. Recall that
the two vectors a and b are constructed such that a � v � b.
We try to prune items in I by the following test: For each
i ∈ I , we form another vector g such that g = a in all coor-
dinates except the i-th coordinate where gi = bi (Line 4). We
then check whether there exists a value θ ∈ [θa, θb] such that
i ∈ Top(I,g, θ), where θa, θb are the maximum expected
rewards with a and b as the item preference vectors respec-
tively; if the answer is Yes then item i survives, otherwise it
is pruned (Line 5). Note that our test is fairly conservative:
we try to put item i in a more favorable position by using the
upper bound bi as its preference, while for other items we use
the lower bounds aj as their preferences. Such a conserva-
tive pruning step makes sure that the output C of the PRUNE
subroutine is always a superset of the best assortment Sv.
Theorem 5. For any confidence parameter δ > 0, Al-
gorithm 3 returns the best assortment with probability
(1 − δ) using at most Γ = O

(
K2H1 ln

(
N
δ ln(KH1)

))
pulls. The running time of Algorithm 3 is bounded by
O
(
NΓ +N2 lnN ln

(
K

mini∈I ∆i

))
.

In the rest of this section we prove Theorem 5.

Correctness. We start by introducing the following event
which we will condition on in the rest of the proof. The event
states that in any round τ , the estimated preference v(τ)

i for
each item i (computed at Line 7 of Algorithm 3) is at most
ετ = 2−τ−3 away from the true preference vi.

E1 , {∀τ ≥ 0, ∀i ∈ Iτ :
∣∣∣v(τ)
i − vi

∣∣∣ < ετ}.

The proof of the following lemma can be found in full
version of this paper. This lemma states that event E1 holds
with high probability.

7099

Algorithm 3: The Fixed Confidence Algorithm for
MNL-Bandit

Input: a set of items I = {1, . . . , N}, a capacity
parameter K, a confidence parameter δ.

Output: the best assortment.
1 I0 ← I , set ετ = 2−τ−3 for τ ≥ 0;

2 set T−1 ← 0 and Tτ ←
⌈

32
ε2τ

ln 16N(τ+1)2

δ

⌉
for τ ≥ 0;

3 for τ = 0, 1, . . . do
4 foreach i ∈ Iτ do call EXPLORE(i) for

(Tτ − Tτ−1) times;
5 let x(τ)

i be the mean of the outputs of the Tτ calls
of EXPLORE(i);

6 foreach i ∈ Iτ do
7 set v(τ)

i ← min{ 1

x
(τ)
i

− 1, 1},

a
(τ)
i ← max{v(τ)

i − ετ , 0}, and
b
(τ)
i ← min{v(τ)

i + ετ , 1};
8 let a(τ) be the vector containing the |Iτ | estimated

preferences a(τ)
i , and b(τ) be the vector

containing the |Iτ | estimated preferences b(τ)
i ;

9 C ← PRUNE(Iτ ,a
(τ),b(τ));

10 if (|C| ≤ K) ∧
(∧
i∈C

(
ri > R

(
C,b(τ)

)))
then

11 return C ;
12 Iτ+1 ← C;

Lemma 6. Pr[E1] ≥ 1− δ.

It is easy to see from Line 7 of Algorithm 3 that condi-
tioned on E1, we have

∀τ ≥ 0 : a(τ) � v(τ) � b(τ), (2)

where v(τ) is the preference vector of items in Iτ .
The following lemma shows that if (2) holds, then the

PRUNE subroutine (Algorithm 2) always produces a set of
candidate items C which is a superset of the best assortment.

Lemma 7. If the preference vector v of I satisfies a � v �
b, then PRUNE(I,K, a,b) (Algorithm 2) returns a set C
such that Sv ⊆ C.

Proof. First, if a � v � b, then by Lemma 3 we have
θv ∈ [θa, θb].

Consider any item i ∈ Sv, by the construction of g (Line 4
of Algorithm 2) we have for every j ∈ I:

• if j 6= i, then (rj − θv)gj ≤ max{(rj − θv)vj , 0};
• if j = i, then (rj − θv)gj ≥ (rj − θv)vj .

By these two facts and the definition of Top(I,v, θv), we
know that if i ∈ Top(I,v, θv), then i ∈ Top(I,g, θv). There-
fore for the particular value θ = θv ∈ [θa, θb] we have
i ∈ Top(I,g, θ), and consequently i will be added to the
candidate set C at Line 5, implying that Sv ⊆ C.

Now suppose Algorithm 3 stops after round τ and outputs
a set C ⊇ Sv of size at most K (Line 10-11), then for any
i ∈ C, we have ri > θb. By Lemma 3 we also have θb ≥ θv
(since v � b). We thus have ri > θv. Consequently, it holds
that for every i ∈ C, (ri − θv) > 0. We thus have C = Sv.

Up to this point we have shown that conditioned on E1, if
Algorithm 3 stops, then it outputs the best assortment Sv. We
next bound the number of pulls the algorithm uses.

Pull Complexity. We again conditioned on event E1. The
next lemma essentially states that an item i ∈ I\Sv will be
pruned if its reward gap ∆i is much larger than K times its
preference estimation error max{bi − vi, vi − ai}.
Lemma 8. In PRUNE(I,K, a,b) (Algorithm 2), if a � v �
b, and ∀i ∈ I : max{bi − vi, vi − ai} ≤ ε/K for any
ε ∈ (0, 1), then any item i ∈ I\Sv satisfying ∆i > 8ε will
not be added to set C.

Proof. By Corollary 4, if a � v � b, and ∀i ∈ I : max{bi−
vi, vi − ai} ≤ ε/K, then we have

θv − ε ≤ θa ≤ θv ≤ θb ≤ θv + ε. (3)

Consider any item i ∈ I\Sv with ∆i > 8ε. We analyze in
two cases.

Case 1: θv − ri > 8ε. By (3) we have θa − ri > 7ε.
Therefore, for any θ ∈ [θa, θb] we have ri < θa ≤ θ, and
consequently i 6∈ Top(I,g, θ) for any θ ∈ [θa, θb] by the
definition of Top().

Case 2: θv − ri ≤ 8ε. First, note that if |Sv| < K, then
we have

∆i = −(ri − θv)vi = (θv − ri)vi ≤ θv − ri ≤ 8ε,

contradicting our assumption that ∆i > 8ε. We thus focus
on the case that |Sv| = K. We analyze two subcases.

1. θ ∈ (ri, 1]. In this case, by the definition of Top() and the
fact that ri − θ < 0, we have i 6∈ Top(I,g, θ).

2. θ ∈ [θa, θb] ∩ [0, ri]. For any j ∈ Sv, we have

(ri − θ)gi − (rj − θ)gj
= (ri − θ)bi − (rj − θ)aj
≤ (ri − θ)(vi + ε)− (rj − θ)aj
≤ (ri − θ)vi − (rj − θ)aj + ε

≤ (ri − θv)vi − (rj − θv)aj + (1 + aj + vi)ε

≤ (ri − θv)vi − (rj − θv)(vj − ε) + 3ε

≤ (ri − θv)vi − (rj − θv)vj + 4ε

≤ −∆i + 4ε

< −4ε. (by the assumption ∆i > 8ε)

We thus have that for any θ ∈ [θa, θb]∩[0, ri], (ri−θ)gi <
(rj − θ)gj for any j ∈ Sv, therefore i 6∈ Top(I,g, θ) for
any θ ∈ [θa, θb], and consequently i 6∈ C.

For any i ∈ I , we define

τ(i) , min

{
τ ≥ 0 : ετ ≤

∆i

32K

}
. (4)

7100

The next lemma shows that item i will not appear in any
set Iτ with τ > τ(i), and thus will not be pulled further after
round τ(i).
Lemma 9. In Algorithm 3, for any item i ∈ I , we have
i 6∈ Iτ for any τ > τ(i).

Proof. For any i ∈ I\Sv, setting ε = ∆i/16. By (4) we have
that for any j ∈ Iτ(i) it holds that

max
{
vj − a(τ(i))

j , b
(τ(i))
j − vj

}
≤ ∆i

16K
=

ε

K
. (5)

Moreover, we have,

∆i = 16ε > 8ε. (6)

By (5), (6) and Lemma 8, we have i 6∈ Iτ(i)+1.
We next consider items in Sv. Note that by Definition 3,

all i ∈ Sv have the same reward gap:

∆i = min{ min
j∈I\Sv

{∆j}, min
j∈Sv

{rj − θv}} ≤ min
j∈I\Sv

{∆j}.

Let

τ̄ , min

{
τ ≥ 0 : ετ ≤

∆̄

32K

}
. (7)

We thus have τ̄ = τ(i) for all i ∈ Sv, and τ̄ ≥ τ(j) for any
j ∈ I\Sv. Therefore, at the end of round τ̄ , all items in I\Sv

have already been pruned, and consequently,

|C| ≤ K. (8)

By (4) and Corollary 4 we have θb(τ̄) ≤ θv + ∆̄/16. Con-
sequently we have

ri −R(C,b(τ̄)) = (ri − θv)− (θb(τ̄) − θv)

≥ ∆̄− ∆̄

16
> 0 . (9)

By (8) and (9), we know that Algorithm 3 will stop after
round τ̄ and return C = Sv.

With Lemma 9 we can easily bound the total number
of pulls made by Algorithm 3. By (4) we have τ(i) =

O
(

ln
(
K
∆i

))
. By the definition of Tτ (Line 2 of Algo-

rithm 3), the total number of pulls is at most∑
i∈I

Tτ(i) ≤ O

(∑
i∈I

K2

∆2
i

ln
Nτ2(i)

δ

)

= O

(
K2H1 ln

(
N

δ
ln(KH1)

))
.

Remark 10. The reason that we introduce an extra term
minj∈Sv{rj − θv} in the definition of reward gap ∆i for all
i ∈ Sv (Definition 3) is for handling the case when |Sv| < K.
More precisely, in the case |Sv| < K we have to make sure
that for all items i ∈ I that we are going to add into the
best assortment Sv, it holds that ri > θv. In our proof this
is guaranteed by (9). On the other hand, if we are given
the promise that |Sv| = K (or |Sv| = K ′ for a fixed value
K ′ ≤ K), then we do not need this extra term: we know
when to stop simply by monitoring the size of Iτ , since at the
end all items i ∈ I/Sv will be pruned.

Running Time. Finally, we analyze the time complexity of
Algorithm 3. Although the time complexity of the algorithm
is not the first consideration in the MNL-bandit model, we
believe it is important for the algorithm to finish in a reason-
able amount of time for real-time decision making. Observe
that the running time of Algorithm 3 is dominated by the
sum of the total number of pulls and the running time of the
PRUNE subroutine, which is the main object that we shall
bound next.

Let us analyze the running time of PRUNE. Let n , |I|.
First, θa and θb can be computed in O(n2) time by an al-
gorithm proposed by Rusmevichientong, Shen, and Shmoys
(2010). We next show that Line 5 of Algorithm 2 can be
implemented in O(n lnn) time, with which the total running
time of PRUNE is bounded by O(n2 lnn).

Consider any item i ∈ I . We can restrict our search of
possible θ in the range of Θi = [θa, θb] ∩ [0, ri), since if
i ∈ Top(I,g, θ), then by the definition of Top() we have
θ < ri. For each j 6= i, j ∈ I , define

Θj = {θ ∈ Θi | (rj − θ)gj > (ri − θ)gi}.

Intuitively speaking, Θj contains all θ values for which item
j is “preferred to” item i for Top(I,g, θ). Consequently, for
any θ ∈ Θi, if the number of Θj that contain θ is at least K,
then we have i 6∈ Top(I,g, θ); otherwise if the number of
such Θj is less than K, then we have i ∈ Top(I,g, θ). Note
that each set Θj can be computed in O(1) time.

Now think each set Θj as an interval. The problem of
testing whether there exists a θ ∈ [θa, θb] ∩ [0, ri) such that
i ∈ Top(I,g, θ) can be reduced to the problem of checking
whether there is a θ ∈ [θa, θb]∩[0, ri) such that θ is contained
in fewer than K intervals Θj (j 6= i). The later problem can
be solved by the standard sweep line algorithm in O(n lnn)
time.

Recall that the total number of rounds can be bounded by
τmax = maxi∈I τ(i) = O

(
ln
(

K
mini∈I ∆i

))
. Therefore the

total running time of Algorithm 3 can be bounded by

O

(
Γ + N2 lnN ln

(
K

mini∈I ∆i

))
,

where Γ = O
(
K2H1 ln

(
N
δ ln(KH1)

))
is the total number

of pulls made by the algorithm.

The Improved Algorithm
In this section we try to improve our basic algorithm pre-
sented in Section 3. We design an algorithm whose pull
complexity depends on H2 which is asymptotically at most
H1. The improved algorithm is described in Algorithm 5.

The structure of Algorithm 5 is very similar to that of
Algorithm 3. The main difference is that instead of using
EXPLORE to pull a singleton assortment at each time, we
use a new procedure EXPLORESET (Algorithm 4) which
pulls an assortment of size up to K (Line 6 of Algorithm 5).
We construct the assortments by partitioning the whole set
of items Iτ into subsets of size up to K (Line 4-5). In the
EXPLORESET procedure, we keep pulling the assortment S
until the output is 0 (i.e., a no-purchase decision is made).
We then estimate the preference of item i using the average

7101

Algorithm 4: EXPLORESET(S)

Input: a set of items S of size at most K.
Output: a set of empirical preferences {fi}i∈S .

1 Initialize fi ← 0 for i ∈ S;
2 repeat
3 offer assortment S and observe a feedback a;
4 if a ∈ S then fa ← fa + 1 ;
5 until a = 0;
6 return {fi}i∈S

number of times that item i is chosen in those EXPLORESET
calls that involve item i (Line 8).

Intuitively, EXPLORESET has the advantage over
EXPLORE in that at each pull, the probability for
EXPLORESET to return an item instead of a no-purchase
decision is higher, and consequently EXPLORESET extracts
more information about the item preferences. We note that
the EXPLORESET procedure was first introduced in Agrawal
et al. (2019) in the setting of regret minimization.

Theorem 11. For any confidence parameter δ > 0, Al-
gorithm 5 returns the best assortment with probability
(1 − δ) using at most Γ = O

(
K2H2 ln

(
N
δ ln(KH2)

))
pulls. The running time of Algorithm 5 is bounded by
O
(
NΓ +N2 lnN ln

(
K

mini∈I ∆i

))
.

Compared with Theorem 5, the only difference in the pull
complexity of Theorem 11 is that we have used H2 instead
of H1. Since H2 = O(H1), the asymptotic pull complexity
of Algorithm 5 is at least as good as that of Algorithm 3.

Remark 12. Though having a higher pull complexity, Al-
gorithm 3 still has an advantage against Algorithm 5 in
that Algorithm 3 can be implemented in the batched set-
ting with maxi∈I τ(i) = O

(
ln K

mini∈I ∆i

)
policy changes,

which cannot be achieved by Algorithm 5 since the subroutine
EXPLORESET is inherently sequential.

Compared with the proof for Theorem 5, the challenge
for proving Theorem 11 is that the number of pulls in each
EXPLORESET is a random variable. We thus need slightly
more sophisticated mathematical tools to bound the sum of
these random variables. Due to the space constraints, we
leave the technical proof of Theorem 11 to the full version of
this paper.

Lower Bound
We manage to show the following lower bound to comple-
ment our algorithmic results.

Theorem 13. For any algorithm A for pure exploration in
multinomial logit bandit, there exists an input instance such
thatA needs Ω(H2/K

2) pulls to identify the best assortment
with probability at least 0.6.

Note that Algorithm 5 identifies the best assortment with
probability 0.99 using at most Õ(K2H2) pulls (setting δ =
0.01). Therefore our upper and lower bounds match up to a
logarithmic factor if K = O(1).

Algorithm 5: Improved Fixed Confidence Algorithm
for MNL-bandit

Input: a set of items I = {1, . . . , N}, a capacity
parameter K, and a confidence parameter δ.

Output: the best assortment.
1 set I0 ← I , and ετ = 2−τ−3 for τ ≥ 0;

2 set T−1 ← 0, and Tτ ←
⌈

8
ε2τ

ln 16N(τ+1)2

δ

⌉
for

τ ≥ 0;
3 for τ = 0, 1, . . . do
4 mτ ← d|Iτ | /Ke;
5 let Sτ1] . . .] Sτmτ be an arbitrary partition of Iτ

into subsets of size at most K;
6 foreach j ∈ [mτ] do call EXPLORESET(Sτj) for

(Tτ − Tτ−1) times ;
7 foreach i ∈ Iτ do
8 let v(τ)

i be the average of fi’s returned by the
multiset of calls {EXPLORESET(Sρj) | ρ ≤
τ, j ∈ [mρ], i ∈ Sρj };

9 foreach i ∈ Iτ do set a(τ)
i ← max{0, v(τ)

i − ετ}
and b(τ)

i ← min{v(τ)
i + ετ , 1} ;

10 let a(τ) be the vector containing the |Iτ | estimated
preferences a(τ)

i , and b(τ) be the vector
containing the |Iτ | estimated preferences b(τ)

i ;
11 C ← PRUNE(Iτ ,a

(τ),b(τ));

12 if (|C| ≤ K) ∧
(∧
i∈C

(
ri > R

(
C,b(τ)

)))
then

13 return C ;
14 Iτ+1 ← C ;

The proof of Theorem 13 bears some similarity with the
lower bound proof of Chen, Li, and Mao (2018), but there are
some notable differences. As mentioned in the introduction,
Chen, Li, and Mao (2018) considered the problem of top-k
ranking under the MNL choice model, which differs from the
best assortment searching problem in the following aspects:

1. The top-k ranking problem can be thought as a special
case of the best assortment searching problem where the
rewards of all items are equal to 1. While to prove Theo-
rem 13 we need to choose hard instances in which items
have different rewards.

2. There is no null item (i.e., the option of “no purchase”) in
the top-k ranking problem. Note that we cannot treat the
null item as the (N + 1)-th item with reward 0 since the
null item will appear implicitly in every selected assort-
ment.

These two aspects prevent us to use the lower bound result
in Chen, Li, and Mao (2018) as a blackbox. Due to the space
constraints, we leave the technical proof to the full version of
this paper.

7102

Acknowledgments
Nikolai Karpov and Qin Zhang are supported in part by NSF
CCF-1844234 and CCF-2006591.

References
Agarwal, A.; Johnson, N.; and Agarwal, S. 2020. Choice
Bandits. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan,
M.; and Lin, H., eds., NeurIPS.
Agrawal, S.; Avadhanula, V.; Goyal, V.; and Zeevi, A. 2016.
A Near-Optimal Exploration-Exploitation Approach for As-
sortment Selection. In EC, 599–600.
Agrawal, S.; Avadhanula, V.; Goyal, V.; and Zeevi, A. 2017.
Thompson Sampling for the MNL-Bandit. In COLT, 76–78.
Agrawal, S.; Avadhanula, V.; Goyal, V.; and Zeevi, A. 2019.
MNL-bandit: A dynamic learning approach to assortment
selection. Operations Research, 67(5): 1453–1485.
Audibert, J.; Bubeck, S.; and Munos, R. 2010. Best Arm
Identification in Multi-Armed Bandits. In COLT, 41–53.
Avadhanula, V. 2019. The MNL-Bandit Problem: Theory and
Applications. Ph.D. thesis, Columbia University.
Bubeck, S.; Wang, T.; and Viswanathan, N. 2013. Multiple
Identifications in Multi-Armed Bandits. In ICML, 258–265.
Chen, J.; Chen, X.; Zhang, Q.; and Zhou, Y. 2017. Adaptive
multiple-arm identification. In ICML, 722–730.
Chen, L.; Li, J.; and Qiao, M. 2017. Towards Instance Opti-
mal Bounds for Best Arm Identification. In COLT, volume 65,
535–592.
Chen, X.; Li, Y.; and Mao, J. 2018. A Nearly Instance Op-
timal Algorithm for Top-k Ranking under the Multinomial
Logit Model. In Czumaj, A., ed., SODA, 2504–2522.
Chen, X.; and Wang, Y. 2018. A note on a tight lower bound
for capacitated MNL-bandit assortment selection models.
Oper. Res. Lett., 46(5): 534–537.
Davis, J.; Gallego, G.; and Topaloglu, H. 2013. Assortment
planning under the multinomial logit model with totally uni-
modular constraint structures. Technical Report.
Désir, A.; Goyal, V.; and Zhang, J. 2014. Near-optimal al-
gorithms for capacity constrained assortment optimization.
Available at SSRN 2543309.
Even-Dar, E.; Mannor, S.; and Mansour, Y. 2002. PAC
Bounds for Multi-armed Bandit and Markov Decision Pro-
cesses. In COLT, 255–270.
Gabillon, V.; Ghavamzadeh, M.; and Lazaric, A. 2012. Best
Arm Identification: A Unified Approach to Fixed Budget and
Fixed Confidence. In NIPS, 3221–3229.
Gabillon, V.; Ghavamzadeh, M.; Lazaric, A.; and Bubeck,
S. 2011. Multi-Bandit Best Arm Identification. In NIPS,
2222–2230.
Garivier, A.; and Kaufmann, E. 2016. Optimal Best Arm
Identification with Fixed Confidence. In COLT, 998–1027.
Jamieson, K.; Malloy, M.; Nowak, R.; and Bubeck, S. 2014.
lil’ucb: An optimal exploration algorithm for multi-armed
bandits. In COLT, 423–439.

Janson, S. 2018. Tail bounds for sums of geometric and
exponential variables. Statistics & Probability Letters, 135:
1–6.
Jin, Y.; Li, Y.; Wang, Y.; and Zhou, Y. 2019. On Asymptot-
ically Tight Tail Bounds for Sums of Geometric and Expo-
nential Random Variables. CoRR, abs/1902.02852.
Karnin, Z.; Koren, T.; and Somekh, O. 2013. Almost optimal
exploration in multi-armed bandits. In ICML, 1238–1246.
Kaufmann, E.; Cappé, O.; and Garivier, A. 2016. On the
Complexity of Best-Arm Identification in Multi-Armed Ban-
dit Models. J. Mach. Learn. Res., 17: 1:1–1:42.
Kök, A. G.; and Fisher, M. L. 2007. Demand Estimation and
Assortment Optimization Under Substitution: Methodology
and Application. Operations Research, 55(6): 1001–1021.
Luce, R. D. 1959. Individual choice behavior: a theoretical
analysis. Wiley.
Mannor, S.; and Tsitsiklis, J. N. 2004. The Sample Complex-
ity of Exploration in the Multi-Armed Bandit Problem. J.
Mach. Learn. Res., 5: 623–648.
Plackett, R. 1975. The analysis of permutations. Applied
Statistics, 24: 193–302.
Rusmevichientong, P.; Shen, Z. M.; and Shmoys, D. B. 2010.
Dynamic Assortment Optimization with a Multinomial Logit
Choice Model and Capacity Constraint. Operations Research,
58(6): 1666–1680.
Russo, D. 2016. Simple Bayesian Algorithms for Best Arm
Identification. In COLT, volume 49, 1417–1418. JMLR.org.
Saha, A.; and Gopalan, A. 2018. Battle of Bandits. In
Globerson, A.; and Silva, R., eds., UAI, 805–814.
Sauré, D.; and Zeevi, A. 2013. Optimal Dynamic Assortment
Planning with Demand Learning. Manufacturing & Service
Operations Management, 15(3): 387–404.
Talluri, K. T.; and van Ryzin, G. J. 2004. Revenue Manage-
ment Under a General Discrete Choice Model of Consumer
Behavior. Management Science, 50(1): 15–33.
Yang, J. 2021. Fully Gap-Dependent Bounds for Multinomial
Logit Bandit. In AISTATS, volume 130 of Proceedings of
Machine Learning Research, 199–207.
Zhou, Y.; Chen, X.; and Li, J. 2014. Optimal PAC multiple
arm identification with applications to crowdsourcing. In
ICML, 217–225.

7103

