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Abstract

Understanding the capability of Generative Adversarial Net-
works (GANs) in learning the full spectrum of spatial fre-
quencies, that is, beyond the low-frequency dominant spec-
trum of natural images, is critical for assessing the reliabil-
ity of GAN-generated data in any detail-sensitive applica-
tion. In this work, we show that the ability of convolutional
GANs to learn an image distribution depends on the spatial
frequency of the underlying carrier signal, that is, they have
a bias against learning high spatial frequencies. Our findings
are consistent with the recent observations of high-frequency
artifacts in GAN-generated images, but further suggest that
such artifacts are the consequence of an underlying bias. We
also provide a theoretical explanation for this bias as the man-
ifestation of linear dependencies present in the spectrum of
filters of a typical generative Convolutional Neural Network
(CNN). Finally, by proposing a proof-of-concept method that
can effectively manipulate this bias towards other spatial fre-
quencies, we show that the bias is not fixed and can be ex-
ploited to explicitly direct computational resources towards
any specific spatial frequency of interest in a dataset, with
minimal computational overhead.

1 Introduction
The information contained in an image is carried by a set
of spatial frequencies, that is, a set of planar sinusoids with
unique frequencies and directions. Intuitively, we associate
the high frequencies with the details of the image, and the
low frequencies with its general form; however, neither fre-
quencies should be treated as more important by a gener-
ative model seeking to learn a distribution. To make this
more clear, consider a two-dimensional planar cosine wave
defined over a 128× 128 image, and assume that we sample
the magnitude of this static wave from a Gaussian distribu-
tion. Whether this wave completes 64 periods across the im-
age (i.e. high frequency), or 3 periods (i.e. low frequency),
ideally should not affect a generative model’s learning of the
underlying Gaussian distribution (see Appendix 1 for an em-
pirical realization of this thought experiment).

Convolutional Generative Advarsarial Networks (GANs)
(Goodfellow et al. 2014; Radford, Metz, and Chintala 2015)
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are the foremost generative models for generating image dis-
tributions, and while many of their limitations have been
studied from the perspective of probability theory and mani-
fold learning (Arjovsky and Bottou 2017; Arora et al. 2017;
Khayatkhoei, Singh, and Elgammal 2018), their spectral
limitations remain understudied. Importantly, the theory of
GANs (Goodfellow et al. 2014), and its many variants, do
not suggest any spectral limitation. Nevertheless, the pro-
gression of GAN research over the recent years reflects a
constant effort for generating better details while generat-
ing general form and color seems to be quite easy (Kar-
ras et al. 2020; Karras, Laine, and Aila 2019; Karras et al.
2018; Wang et al. 2018; Huang et al. 2017). In this work,
we investigate whether this difficulty can be linked to a spa-
tial frequency bias. In particular, we find that high and low
spatial frequencies are not treated equally by convolutional
GANs, and that the information carried by high frequencies
are more prone to loss. Our findings imply that when con-
volutional GANs are used as part of any detail-sensitive ap-
plication, for example in augmenting or correcting medical
and satellite images, generated fine details are not as reliable
as the overall shape and form.

Very relevant to this work, two recent concurrent works
(Dzanic, Shah, and Witherden 2020; Durall, Keuper, and
Keuper 2020) have observed that high-frequency discrepan-
cies can be utilized to easily distinguish GAN generated im-
ages from natural images. Specifically, Dzanic et al. (2020)
have shown that these discrepancies can be removed by di-
rectly modifying the spectrum of generated images in post-
processing. Our findings in this work are consistent with
these observations, but further suggest that such discrepan-
cies are the consequence of an underlying spatial frequency
bias against learning high frequencies. As such, the issue
is not merely that GANs generate high-frequency artifacts
on datasets with little to no high-frequency content (e.g.
high resolution natural images), which can be removed by
modifying the generated spectrum after training, rather that
GANs tend to lose the information carried by high frequen-
cies, which is not recoverable in post-processing. The main
findings and contributions of this work are listed below:

• Convolutional GANs trained on natural images do not
learn high spatial frequencies as well as low spatial fre-
quencies, suggesting the existence of a spatial frequency
bias (Section 3.1).
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Figure 1: Average power spectrum of a large-scale GAN trained on a fractal-based dataset clearly reveals how the low frequen-
cies (closer to center) are matched much more accurately than the high frequencies (closer to corners). (Left) Average power
spectrum of randomly rotated Koch snowflakes of level 5 and size 1024×1024. (Right) Average power spectrum of StyleGAN2
trained on the latter. A representative patch from the perimeter of true and generated fractals are also displayed.

• The same distribution when primarily carried by high
spatial frequencies becomes harder to learn for convo-
lutional GANs, versus when carried by low spatial fre-
quencies, confirming the bias (Section 3.2).

• The bias is theoretically explained as a manifestation of
linear dependencies contained in the spectrum of filters
of a generative Convolutional Neural Network (CNN)
(Section 3.3).

• A proof-of-concept method is proposed to show that the
bias is not fixed and can be efficiently shifted towards
other spatial frequencies (Section 4).

Note that in this work, we are only considering GANs
that use CNNs as their generator, and for brevity, we refer to
these models simply as GANs. We use three popular convo-
lutional GAN models in our studies: WGAN-GP (Gulrajani
et al. 2017) serves as a simple but fundamental GAN model;
and Progressively Growing GAN (PG-GAN) (Karras et al.
2018) and StyleGAN2 (Karras et al. 2020) serve as state-
of-the-art models with large capacity and complex structure,
incorporating state-of-the-art normalization and regulariza-
tion techniques. Since our goal is to compare the perfor-
mance of GANs on high versus low spatial frequencies, and
not to compare the overall quality of the generated samples
with one another or the state-of-the-art, we chose to use PG-
GAN and StyleGAN2 with a slightly smaller capacity in our
training (corresponding to the capacity used in Section 6.1
of Karras et al. (2018) for ablation studies). See Appendix
for the details of each model.

2 Spatial Frequency Components

According to Inverse Discrete Fourier Transform, every pe-
riodic discrete 2D signal I(x, y) with x ∈ {0, 1, 2, . . . ,m−
1} and y ∈ {0, 1, 2, . . . n − 1}, can be written as a sum of

several complex sinusoids as follows:

I(x, y) =
1

mn

m−1∑
u=0

n−1∑
v=0

C(u, v)ej2π(
ux
m + vy

n )

=
1

mn

m−1∑
u=0

n−1∑
v=0

C(u, v)ej2π(û,v̂).(x,y)

(1)

We denote each complex sinusoid a spatial frequency com-
ponent which can be expressed by a vector (u, v) over the
pixel locations (x, y). In the above equation, C(u, v) is the
complex amplitude of each frequency component, (û, v̂) =
( u
m , v

n ) defines the direction of propagation on the 2D plane
and its magnitude defines the spatial frequency in that di-
rection, and m,n ∈ N are the periods of I in x and y direc-
tion respectively. Every channel of a digital 2D image can be
assumed periodic beyond the image boundaries, and there-
fore represented by Eq. (1), with periods m and n being the
length and width of the image respectively. In that case, the
vector (û, v̂) would define the spatial frequency of a sinu-
soid in terms of cycles per pixel, in x and y direction respec-
tively, with û, v̂ ∈ [0, 1). The maximum frequency in each
direction is 0.5 corresponding to the Nyquist frequency (the
shortest period needs at least two pixels to be represented,
hence the maximum frequency is half cycle per pixel). In fa-
vor of clarity, and without loss of generality, we will assume
û, v̂ ∈ [−0.5, 0.5) throughout this paper. Additionally, we
loosely refer to the spatial frequency components with |û| or
|v̂| close to 0.5 as high frequencies, and with û or v̂ close to
0 as low frequencies. Whenever displaying power spectrums
|C(û, v̂)|2, for better visualization, we drop the DC power,
apply Hann window, normalize by the maximum power, and
apply log, such that the most powerful frequency always has
value 0. Also, û and v̂ are placed on horizontal and vertical
axes respectively, such that low frequencies are placed close
to the center, while high frequencies close to the corners.
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Figure 2: Sensitivity of FID Levels to the presence of mismatch in different spatial frequency bands. FID Levels between two
disjoint subset of CelebA images are plotted after adding spectral noise to one of the sets, at a low-frequency band [0, 1

8 ] (left),
a high-frequency band [ 38 ,

1
2 ] (middle), and all frequencies (right). The blue curve depicts True FID Levels (no added noise).

3 The Spatial Frequency Bias
3.1 FID Levels
We first want to observe whether GANs trained on natural
images learn the information carried by high frequencies as
well as low frequencies. One approach is to directly compare
the average power spectrums of GAN generated images with
true images (Dzanic, Shah, and Witherden 2020; Durall, Ke-
uper, and Keuper 2020). However, the average power of a
spatial frequency component is not very informative of how
well the distribution carried by that component is learnt. A
more informative alternative is to compare how well the dis-
tribution of image features carried by high frequencies are
learnt compared to that carried by low frequencies. Frechet
Inception Distance (FID) (Heusel et al. 2017) provides a
reliable measure of mismatch between the distributions of
features extracted from two sets of images: the larger the
FID, the larger the mismatch. We propose an extension to
this metric, denoted FID Levels, in which we plot FID be-
tween two sets of images after gradually removing low fre-
quency bands from both sets. Each point on the FID Levels
plot shows FID computed after applying a high-pass Gaus-
sian filter, with the cut-off specified on the horizontal axis,
to both the GAN generated and the true images (one stan-
dard deviation in the Fourier domain is considered as filter
cut-off). As a baseline for comparison, we also compute FID
Levels between two disjoint subsets of the true images, de-
noted True FID Levels. For completeness, and as a direct
measure of spectral difference, we also report total varia-
tion (Gibbs and Su 2002) between the GAN generated and
the true average power spectrums normalized into density
functions, denoted Leakage Ratio (LR).

If a generative model is learning low and high frequen-
cies equally well, then gradually removing spatial frequency
bands from generated and true images should result in a
generally declining FID between the two sets, as the total
amount of information is gradually reduced. To illustrate this
behavior, we consider a noisy version of True FID Levels,
where we manually introduce mismatch at different spatial
frequencies by perturbing the frequencies of one of the two
disjoint sets of true images. Specifically, we perturb a fre-

quency component by adding normal noise with mean 0 and
variance equal to its power. The total noise added to each
image is normalized such that a fixed signal to noise power
ratio (SNR) is maintained. Figure 2 shows that when a fixed
amount of noise (in terms of SNR) is introduced at low fre-
quencies, or at all frequencies, the FID Levels declines; in
contrast, when the same amount of noise is introduced at
high frequencies, the FID Levels increases.

Given the observations in Figure 2, we return to the case
of GANs. Figure 3 shows FID Levels of GANs trained on
two 128× 128 image datasets: CelebA (Liu et al. 2015) and
LSUN-Bedrooms (Yu et al. 2015). The GANs exhibit an in-
crease in FID Levels on both datasets, similar to the behav-
ior observed in Figure 2 (middle), suggesting that the learnt
high frequencies contain more mismatch than the low fre-
quencies. In contrast, the True FID Levels remains approx-
imately constant in both datasets. As such, the GANs ap-
pear to have a bias against learning high frequencies. With-
out such a bias, we would expect a declining FID Levels
as previously observed in Figure 2 (right). There remains a
caveat, however; since much of the information in natural
images is concentrated at low frequencies (Field 1987), this
bias could be attributed to the scarcity of high frequencies
during training. We will see that this cannot be a sufficient
explanation in the next subsection.

3.2 High-Frequency Datasets
If GANs are not biased against high frequencies, their per-
formance should remain indifferent to shifting the frequency
contents of the datasets. In other words, whether the infor-
mation in a dataset is primarily carried by high frequen-
cies or low frequencies should not affect how well GANs
can learn the underlying image distribution. In order to test
this hypothesis, we can create high-frequency versions of
CelebA and LSUN-Bedrooms by applying a frequency shift
operator, that is, multiplying every image in each dataset
with cos(π(x + y)) channel-wise, to create Shifted CelebA
(SCelebA) and Shifted LSUN-Bedrooms (SBedrooms) re-
spectively. In effect, all we are doing is swapping the low
and high frequency contents of these datasets. Note that the

7154



Figure 3: FID Levels of GANs trained on CelebA and LSUN-Bedrooms. The farther to the right on the horizontal axis, the more
low frequencies are removed prior to FID computation. Notice the transient increase in FID (worsening performance) as low
frequencies are removed. In all figures, the blue curve depicts the True FID Levels of the corresponding dataset as a baseline.
All figures show average FID with one standard deviation error bars (dashed line), over three random training runs.

Model Score CelebA SCelebA Bedrooms SBedrooms

WGAN-GP FID 20.97± 0.70 328.72± 9.70 55.14± 1.29 283.02± 7.06
LR (%) 2.29± 0.31 59.04± 5.09 1.99± 0.48 42.42± 4.32

PG-GAN FID 8.66± 0.41 23.12± 2.08 36.65± 0.97 69.03± 10.28
LR (%) 1.06± 0.21 3.93± 0.70 1.51± 0.29 3.12± 0.16

StyleGAN2 FID 6.08± 0.11 343.57± 53.59 22.49± 2.00 260.84± 4.03
LR (%) 1.55± 0.42 43.03± 34.10 1.28± 0.19 7.32± 1.86

Table 1: Performance drop (increase in FID and LR) in GANs trained on the high-frequency versions of CelebA and LSUN-
Bedrooms (SCelebA and SBedrooms). Average with one standard deviation (±) is reported over three random training runs.

frequency shift operator is a homeomorphism and therefore
the distributions of SCelebA and SBedrooms have the same
topological properties as CelebA’s and LSUN-Bedroom’s,
and therefore the GANs’ performance should remain un-
changed from a purely probabilistic perspective.

Table 1 compares the GANs’ performance on SCelebA
and SBedrooms versus the original CelebA and LSUN-
Bedrooms.2 Their performance has worsened significantly
(larger FID and LR) on the high-frequency datasets, show-
ing that the GANs perform considerably better when the
same image distribution is carried primarily by low frequen-
cies. This observation rejects our earlier hypothesis in the
start of this subsection, and confirms that the GANs’ per-

2In SCelebA and SBedrooms, true and generated images are
re-shifted before computing FID so that the values are comparable
with the FID results on CelebA and LSUN-Bedrooms.

formance is sensitive to frequency shift. Additionally, this
shows that the bias against high frequencies we observed in
Section 3.1 cannot be explained by the scarcity of high fre-
quencies in natural images: even though the unbalancedness
in the distribution of power has remained unchanged in the
high-frequency versions of the datasets, the GANs’ perfor-
mance has worsened significantly. We conclude that this bias
is indeed a spatial frequency bias against high frequencies,
regardless of how abundant or scarce they are in the dataset.

3.3 On the Cause of the Bias
The three GAN models in which we observed the spatial
frequency bias each have a unique network structure, and
various aspects of their respective structures can cause or
affect the bias, as evident from the difference in their perfor-
mance on high-frequency datasets in Table 1; nonetheless, a
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common aspect of all these models is the use of generative
CNNs, and in this subsection we will theoretically expose a
limitation in the generative CNN that can play a fundamental
role in causing the bias.

Let us consider the structure of a typical generative CNN.
A 2D generative CNN G(x, y;W,H1), with parameters
W ∈ W , input features H1 ∈ Rd0×d0×c0 , and output space
Rd×d, can be modeled as a series of affine convolution lay-
ers Convli : Rdl−1×dl−1×cl−1 → Rdl×dl×cl as follows: 3

H l+1
i = Convli(H

l) = bi +
∑
c

F l
ic ∗ Up

(
σ(H l

c)
)

(2)

where l indices the layer (depth), i the output channels
(width), c the input channels, F l

ic ∈ Rkl×kl is a parametric
2D filter, bi ∈ R is the bias, Up(.) denotes the upsampling
operator, and σ(.) is a non-linearity. If we restrict σ to rec-
tified linear units (ReLU), then in a neighborhood of almost
any parameter W , we can consider the combined effect of
Up(σ(.)) as a fixed linear operation:
Proposition 1. At any latent input H1 of a finite size ReLU-
CNN, almost everywhere on the parameter space, there ex-
ists a neighborhood in which ReLUs are equivalent to fixed
binary masks. 4

Therefore, in this neighborhood, improving the output
spectrum is only achievable through adjusting the spectrum
of filters F l

ic. Intuitively, the filters try to carve out the de-
sired spectrum out of the input spectrum which is distorted
by ReLUs (as binary masks), and aliased by upsampling.
In the following theorem, we investigate how freely these
filters can adjust their spectrum. Specifically, we will show
how the filter size kl and the spatial dimension dl of a Conv
layer affect the correlation in the spectrum of its filters.
Note that more correlation in a filter’s spectrum means more
linear dependency, and thus reduces its effective capacity, in
other words, the filter can not freely adjust specific frequen-
cies without affecting the adjacent correlated frequencies.

Theorem 1. Let U = F
{
F l
ic

}
(u0, v0) and V =

F
{
F l
ic

}
(u1, v1) be any two spatial frequency components

on the spectrum of any 2D filter of the l-th Conv layer, with
spatial dimension dl ∈ N and filter size kl ∈ N, such that
1 < kl ≤ dl. Assuming i.i.d. weight initialization, the mag-
nitude of the complex correlation coefficient between U and
V , at any point during the training, is given by: 4

|corr(U, V )| =
∣∣∣∣Sinc(u0 − u1, v0 − v1)

k2l

∣∣∣∣
s.t. Sinc(u, v) =

sin(πukl

dl
) sin(πvkl

dl
)

sin(πudl
) sin(πvdl

)

(3)

Corollary 1.1. If U and V are two diagonally adjacent spa-
tial frequency components of F l

ic, then:

|corr(U, V )| =
sin2(πkl

dl
)

k2l sin
2( π

dl
)

(4)

3Transposed Conv layers are sufficiently represented by an ap-
propriate choice of the Up(.) operator.

4Proof in Appendix.

Now, in each Conv layer, note that the maximum spatial
frequency that can be generated is limited by the Nyquist fre-
quency, that is, Convl can only adjust image spatial frequen-
cies in [0, dl

2d ] without aliasing5. This means that high fre-
quencies are primarily generated by the CNN’s outer layers
where dl is larger. According to Eq. (4), given a fixed filter
size kl, the larger the dl, the larger the correlation in the fil-
ter’s spectrum (see Appendix for the graph of this function),
and consequently the smaller its effective capacity. There-
fore, the outer layers responsible for generating high fre-
quencies are more restricted in their spectrum compared to
the inner layers with smaller dl. We hypothesize that this is
the main cause of the spatial frequency bias. This in turn im-
plies that the issue of spatial frequency bias is not limited to
GANs. Indeed, high-frequency discrepancies between CNN
generated images and true images have been observed both
in L2 reconstructions (Deng et al. 2020; Li and Barbastathis
2018; Ulyanov, Vedaldi, and Lempitsky 2018) and Varia-
tional Autoencoders (VAEs) (Dzanic, Shah, and Witherden
2020), however, in these tasks, the spatial frequency bias
of generative CNNs is not easily distinguishable from the
known spectral biases inherent to the respective objective
functions.

On the effect of increasing depth. One way to counter
the correlation is to replace an individual Conv layer with a
stack of Conv layers, resulting in a deeper CNN. This can
increase the effective filter size kl operating on each spatial
dimension, thus reducing the correlation. However, note that
while only outer layers can generate high frequencies with-
out aliasing, low frequencies can be generated by all layers
without aliasing. As such, low frequencies will always enjoy
a larger end-to-end filter size compared to high frequencies,
and thus less correlation (see Appendix for visualization of
the spectra of effective filters in trained WGAN-GP).

On the effect of increasing width. Another way to
counter the correlation is to simply include more filters in
a Conv layer, resulting in a wider CNN. However, this be-
comes particularly costly at the outer layers with larger spa-
tial dimensions. Moreover, making the outer layers wider
will increase the capacity of generating both high and low
frequencies equally, and not exclusively that of high fre-
quencies, as discussed in the previous paragraph, thus, the
spatial frequency bias remains.

On the effect of increasing resolution. It is key to note
that whether a signal contains high spatial frequencies or not
is directly related to its sampling rate. For example, consider
the continuous-valued image of a bird formed on a camera’s
sensor, whose feathers change color from white to black 64
times over the length of the image. If this image is sampled
into a 128 × 128 picture, the feathers would form a high-
frequency component (12 cycles per pixel). If the same image
is instead sampled into a 1024 × 1024 picture, the feathers
now form a low-frequency component ( 1

16 cycles per pixel).
Therefore, one solution to the spatial frequency bias is to

5Aliasing here refers to the process of generating high fre-
quencies by replicating low frequencies in the expanded spectrum
introduced by upsampling. Since this creates duplicates in high-
frequency bands, it’s ability to control high frequencies is limited.
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simply use data at a very high resolution, such that no high-
frequency component remains, and train a larger scale CNN
on the high resolution data. However, note that the larger
scale CNN still contains the spatial frequency bias, which
can be revealed when trained on a dataset with prominent
high frequencies. For example, see Figure 1 where we train
a large-scale StyleGAN2 (config-e) on a fractal dataset.

What all the aforementioned solutions have in common, is
an appeal to the Universal Approximator Theorem: a neural
network, equipped with hidden units and non-linearities, can
model any continuous function given a large enough number
of hidden units (i.e. increase in depth and/or width). How-
ever, in case of generative CNNs, even though the capacity
of generating high frequencies can be increased to any desir-
able amount by the aforementioned solutions, low frequen-
cies will always receive more capacity than high frequen-
cies. This introduces a redundancy in generative CNNs, and
comes at the cost of computational resources and general-
ization (a larger model demands more data). Naturally, one
wonders if there is a way to more directly assign capacity to
high frequencies, or to any spatial frequency of interest. The
next section will explore this idea.

4 Frequency Shifted Generators (FSG)
In the previous section, we observed that GANs have a spa-
tial frequency bias, favoring the learning of low frequencies,
however, is it possible to manipulate this bias such that it fa-
vors other frequencies? If so, this would make it possible to
explicitly target specific frequencies of interest in a dataset.
In this section, we show how this can be achieved with mini-
mal increase in training resources. Instead of inherently gen-
erating high frequencies, a generative model G(x, y) can
first generate a signal with prominent low frequencies and
then transform the signal such that these prominent frequen-
cies are shifted towards a desired frequency (ût, v̂t). This
can be achieved by a frequency shift operator:

G(x, y)ej2π(ûtx+v̂ty) =

1

mn

m−1∑
u=0

n−1∑
v=0

C(u, v)ej2π(û+ût,v̂+v̂t).(x,y)
(5)

where ût, v̂t ∈ [−0.5, 0.5). After the frequency shift, the
frequency components previously close to (0, 0) are now
placed close to (ût, v̂t). However, since G is generating a
real signal and the spectrum of real signals are symmetric,
it can not sufficiently represent a high-frequency band, that
is, G can only represent symmetric frequency bands. Note
that while natural images are real signals and have symmet-
ric spectrum with respect to zero, a specific band of their
spectrum is not necessarily symmetric. In order to gener-
ate a non-symmetric frequency band, we can use two neural
networks to generate a real image (Gr) and an imaginary
image (Gi), which together compose the complex generated
image (Gc). The complex image is then shifted to (ût, v̂t)
according to Eq. (5) to construct the shifted generator Gs as
follows:

Gs(x, y) = Gc(x, y)e
j2π(ûtx+v̂ty) =

[Gr(x, y) + jGi(x, y)] e
j2π(ûtx+v̂ty)

(6)

The real part of Gs is now generating an image which can
sufficiently represent any frequency band, and has a spatial
frequency bias favoring the desired component (ût, v̂t):

ℜ [Gs(x, y)] = Gr(x, y) cos(2π(ûtx+ v̂ty))

−Gi(x, y) sin(2π(ûtx+ v̂ty))
(7)

Frequency Shifted Generators (FSGs) can be used to ef-
ficiently target specific spatial frequency components in a
dataset. Table 2 shows the results of training GANs using
FSG with (ût, v̂t) = ( 12 ,

1
2 ) on SCelebA and SBedrooms.

The use of FSG has considerably improved the GANs’ per-
formance on these high-frequency datasets, with minimal in-
crease in training resources. This also provides an interesting
insight: the discriminator is able to effectively guide a capa-
ble generator towards learning high frequencies, therefore,
the spatial frequency bias must be primarily rooted in the
GAN’s generator and not the discriminator. Moreover, mul-
tiple FSGs, with smaller network capacity, can be added to
the main generator of GANs to improve performance on spe-
cific frequencies. Figure 4 shows the improvement in GANs
trained on CelebA when their respective generators are en-
hanced by adding multiple FSGs with (ût, v̂t) at ( 1

16 , 0),
(0, 1

16 ), (−
1
16 ,

1
16 ), and ( 1

16 ,
1
16 ) (see Appendix for samples

and details of the networks). Interestingly, the added FSGs
specialize towards their respective target frequency (ût, v̂t),
without any explicit supervision during training. This pro-
vides further evidence of the spatial frequency bias: if unbi-
ased, the added FSGs would have no incentive to specialize
towards any specific frequency.

5 Related Works
Spectral Limitations of Neural Networks. Recent works
on fully-connected neural networks have discovered a spec-
tral bias against learning high-frequency functions (Ra-
haman et al. 2019; Basri et al. 2020), which can be addressed
by using a proper high dimensional embedding of the input
space (Tancik et al. 2020). However, while these works de-
fine a frequency component as a periodic change in a sin-
gle output of the network with respect to changes in the in-
put space, we define a frequency component as a periodic
change across the adjacent outputs of the network (hence a
spatial frequency component). Note that these two notions
of frequency are independent by definition, that is, one can
be mathematically defined while the other is not and vice
versa, therefore a bias in one does not readily imply a bias
in the other, and the arguments do not carry over.

Spectral Limitations of Generative CNNs. Spectral lim-
itations have been observed in different tasks when using
generative CNNs. In L2-reconstruction tasks, there is a bias
against high frequencies, primarily attributed to the vanish-
ing gradient of the L2 loss on low-power frequencies (Deng
et al. 2020; Li and Barbastathis 2018; Ulyanov, Vedaldi,
and Lempitsky 2018). In Auto Encoders (AEs) and Varia-
tional Auto Encoders (VAEs), there is a similar bias, primar-
ily attributed to the distribution assumptions in their objec-
tives (Huang et al. 2018; Larsen et al. 2016). In contrast,
GAN’s objective does not impose any such spectral limita-
tions. In theory, GANs must be able to learn any suitable dis-
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SCelebA SBedrooms

Model FID LR (%) FID LR (%)

WGAN-GP 328.72± 9.70 59.04± 5.09 283.02± 7.06 42.42± 4.32
WGAN-FSG 20.70± 0.44 1.93± 0.57 59.81± 1.64 1.80± 0.28

PG-GAN 23.12± 2.08 3.93± 0.70 69.03± 10.28 3.12± 0.16
PG-GAN-FSG 17.91± 0.74 2.96± 0.55 54.64± 0.26 2.67± 0.75

StyleGAN2 343.57± 53.59 43.03± 34.10 260.84± 4.03 7.32± 1.86
StyleGAN2-FSG 7.17± 0.07 1.41± 0.10 67.85± 2.38 1.82± 0.27

Table 2: Performance gain (decrease in FID and LR) on the high-frequency datasets achieved by using FSG in GANs. Average
with one standard deviation (±) is reported over three random training runs.

Figure 4: (Top) Two samples from WGAN-GP when enhanced by adding multiple FSGs, trained on CelebA. In each sample,
from left to right, the outputs correspond to the FSG with (ût, v̂t) at ( 1

16 , 0), (0,
1
16 ), (−

1
16 ,

1
16 ), and ( 1

16 ,
1
16 ), the WGAN-

GP’s main generator, and the final compound output (sum of all the preceding generators). Notice how each FSG has learned
to focus on specific spatial frequencies, without any explicit supervision during training (see Appendix for more samples).
(Bottom) Improvement in the FID Levels of multiple-FSG GANs trained on CelebA. Note that adding the same number of
FSGs without the shift (FSG-noshift) does not yield the same improvements, showing the significance of the frequency shift.

tribution regardless of the carrier spatial frequencies. There-
fore, while a spectral bias in generative CNNs could be ob-
scured by the inherent spectral biases of AEs, VAEs and L2
tasks, GANs provide a clear lens for observing such biases.

Quantitative Metrics. The prevalent metrics for evaluat-
ing GANs, most notably Inception Score (Salimans et al.
2016), FID (Heusel et al. 2017), and MS-SSIM (Odena,
Olah, and Shlens 2017), consider all spatial frequency com-
ponents at once, thus lacking spectral resolution. Most rel-
evant to our proposed metric, Karras et al. (2018) propose
computing sliced Wasserstein distance between patches ex-
tracted from true and generated images at different levels of
a Laplacian pyramid (SWD). Interestingly, evaluating GANs
with SWD shows approximately similar performance across
frequency bands (Karras et al. 2018). We conjecture that this
discrepancy comes from the fact that small differences be-
tween patches in the pixel space, can result in large differ-
ences in the more meaningful feature space used by FID.

6 Conclusion

In this work, we showed the existence of a bias against high
spatial frequencies in convolutional GANs, investigated its
cause, and finally proposed a simple method illustrating that
this bias is not fixed and can be effectively manipulated. Our
findings suggest that the information carried by high fre-
quencies is considerably more likely to be missed by GANs,
a critical consideration when using GANs for data augmen-
tation or reconstruction in applications concerned with in-
tricate patterns, such as in medical and astronomy domains.
We also observed that the spatial frequency bias primarily
affects GAN’s generator and not its discriminator. This gives
the discriminator an advantage which can be the root of cer-
tain instabilities in GAN training. Investigating this connec-
tion between the spatial frequency bias and unstable GAN
training, as well as extending Theorem 1 to incorporate the
effect of various normalization and stabilization techniques,
are interesting directions for future research.
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