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Abstract

Active learning can be defined as iterations of data labeling,
model training, and data acquisition, until sufficient labels
are acquired. A traditional view of data acquisition is that,
through iterations, knowledge from human labels and mod-
els is implicitly distilled to monotonically increase the accu-
racy and label consistency. Under this assumption, the most
recently trained model is a good surrogate for the current la-
beled data, from which data acquisition is requested based
on uncertainty/diversity. Our contribution is debunking this
myth and proposing a new objective for distillation. First, we
found example forgetting, which indicates the loss of knowl-
edge learned across iterations. Second, for this reason, the
last model is no longer the best teacher– For mitigating such
forgotten knowledge, we select one of its predecessor mod-
els as a teacher, by our proposed notion of “consistency”. We
show that this novel distillation is distinctive in the following
three aspects; First, consistency ensures to avoid forgetting la-
bels. Second, consistency improves both uncertainty/diversity
of labeled data. Lastly, consistency redeems defective labels
produced by human annotators.

Introduction
Labeling data is a fundamental bottleneck in machine learn-
ing due to annotation cost and time. One practical solution
is Active Learning (AL): given a limited labeling budget
k, which example should I ask human annotators to label?
Generally, this can be done through an iterative process of
labeling data, model training, and data acquisition steps, un-
til sufficient labels are obtained. At each iteration, based on
the last trained model, unlabeled yet the k most desirable
examples are recognized and added to the labeled dataset to
train a new model. This process continues to the next iter-
ation for selecting next k unlabeled examples based on the
newly trained model. That is, a naive belief in AL is that the
last trained model can be a good reference or surrogate for
the distribution of the currently labeled data, which indicates
what examples are desired for the next model update.

In this work, our empirical observation dispels this myth.
Although the model knowledge learned from the labels is
expected to be “consistently” kept or improved across AL
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iterations, we find that knowledge learned at some time is
suddenly forgotten, which indicates that the recent model is
ineligible to be treated as a good reference of the labeled
dataset. More specifically, we can observe such inconsistent
behaviors of the trained model during inference time, where
sample i predicted correctly at iteration t is predicted incor-
rectly at iteration t + ∆t, which is called example forget-
ting (Toneva et al. 2019).

Motivated by this, in this work, we argue that correct-
consistency (which we call consistency for brevity) should
be an essential criterion, which is the model ability to make
consistent correct predictions across successive AL genera-
tions for the same input (Wang et al. 2020). In the view of
consistency, prior AL methods only focusing on data acqui-
sition steps (Dasgupta 2011; Xu et al. 2003; Bodó, Minier,
and Csató 2011; Ash et al. 2019) are still sub-optimal since
the three transitions among AL steps may suffer from fol-
lowing problems due to inconsistency (reverse phenomenon
of consistency), which we empirically analyze later:

• From labeling to model training: Despite successful
data acquisition, the subsequent labeling efforts can be
negated by forgetting the learned knowledge later, which
wastes annotation cost. We argue that consistency is key
to make a label-efficient AL (Figure 3).

• From model training to data acquisition: Inconsis-
tent data acquisition models cannot serve as a good ref-
erence for the current data distribution, which leads to
contaminating the next data acquisition step. Improving
consistency may be synergetic to either uncertainty- or
diversity-based acquisition strategies (Figure 5).

• From data acquisition to labeling: Human annotators
who act as oracles are usually subject to accidental mis-
labeling (Bouguelia et al. 2018) which degrades tradi-
tional AL methods. Learning to keep consistency enables
to mitigate the confusion from the noisy labels (Figure 6).

To overcome these drawbacks and thus make all the three
transitions in AL more trustworthy, we propose a label-
efficient AL framework, called Trustworthy AL (TrustAL),
for bridging the knowledge discrepancy between labeled
data and model. In TrustAL, our key idea is to add a new step
in the iterative process of AL to learn the forgotten knowl-
edge, which is orthogonally applicable to state-of-the-art
data acquisition strategies in a synergistic manner. Specifi-
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cally, at each iteration, TrustAL first searches for an expert
model for the forgotten knowledge among the predecessor
models. Then, TrustAL transfers the model knowledge (e.g.,
logits) to the current model training step by leveraging the
knowledge distillation technique (Hinton, Vinyals, and Dean
2015). By optimizing the dual goals of following both hu-
man labels and machine labels of the expert predecessor, the
newly trained model can relieve forgotten knowledge and
thus be more consistent, keeping its correct predictions.

For the purpose of identifying which predecessor is the
most desired teacher to relieve the forgotten knowledge,
we further explore the teacher selection problem. To re-
solve this, we present two teacher selection strategies, (1)
TrustAL-MC: monotonic choice of the most recent model
(i.e., a proxy of the most accurate model), and (2) TrustAL-
NC: non-monotonic choice of the well-balanced model with
accuracy and consistency, which we thoroughly design as
analysis/evaluation measures in this paper.

Our experiments show that the TrustAL framework signif-
icantly improves performance with various data acquisition
strategies while preserving the valuable knowledge from the
labeled dataset. We validate the pseudo labels from the pre-
decessor models are not just approximate/weak predictions
- It can be viewed as knowledge from the previous genera-
tion, and can be used as consistency regularization for con-
ventional AL methods solely aiming at higher accuracy.

Preliminaries & Related Work
Active Learning for Classification
Given an arbitrary classification task, assume that there is a
large unlabeled dataset U = {xi}ni=1 of n data samples. The
goal of AL is to sample a subset Q ⊂ U to efficiently label so
that newly training a deep neural network parameters θ for
the classifier f(x; θ) improves test accuracy. Algorithm 1 de-
scribes the conventional procedure in AL. On each iteration
t, the learner uses strategy A (e.g., uncertainty or diversity)
to acquire k samples Qt from dataset U . Generally, data ac-
quisition model Mt is used for evaluating unlabeled samples
according to A. Then, for sample xi, the learner queries for
its oracle label yi ∈ 1, ..., c, where c is the number of classes.
We denote the predicted label of trained model θt for xi by
ŷti = argmaxcf(yic|xi; θt).

In most AL approaches, a data acquisition model at time
t corresponds to the trained classification model at time t-1,
i.e., Mt = θt−1. We call this monotonic acquisition, since
a naive belief would be assuming the last trained model θt−1

is effective enough to not only provide a good representation
for the entire labeled data L but also estimate acquisition
factors (e.g., confidence) for remaining unlabeled data U .

Data Acquisition Strategies in AL
The ultimate goal of AL is to improve the classification ac-
curacy with a fixed annotation budget (Settles 1995; Lowell,
Lipton, and Wallace 2018). Existing research efforts on pool
based active learning (Lewis and Gale 1994) achieve this
goal by focusing on data acquisition based on query strategy
and data strategy (Ren et al. 2020). As a query strategy, there

Algorithm 1: Conventional AL procedure
Input: Initial labeled data pool L, unlabeled data pool
U , number of queries per iteration (budget) k, number of
iterations T , sampling algorithm A
Output: Model parameters θT
θ0 ← Train a seed model on L
for iteration t = 1, ..., T do

Mt(x) = f(x; θt−1)

Qt ← Apply A(x,Mt, k) for ∀x ∈ U
Q̄t ← Label queries Qt by oracles
L ← L ∪ Q̄t

U ← U \ Q̄t

θt ← Train a new model on L
end
return θT

are two general approaches to recognize the most appropri-
ate samples (Dasgupta 2011) with monotonic acquisition:
uncertainty sampling and diversity sampling. While uncer-
tainty sampling efficiently searches the hypothesis space by
finding difficult examples to label (Asghar et al. 2017; He
et al. 2019; Ranganathan et al. 2017), diversity sampling ex-
ploits heterogeneity in the feature space (Hu, Mac Namee,
and Delany 2010; Bodó, Minier, and Csató 2011). Recently,
hybrid approaches are proposed (Zhdanov 2019; Ash et al.
2019). Particularly, BADGE (Ash et al. 2019) successfully
integrates both aspect by clustering hallucinated gradient
vectors based on monotonic acquisition scheme.

Data Acquisition Models in AL
Despite the remarkable success in query strategies, recent
research has concerned several limitation of AL. Yun, Kim,
and Kim (2020); Wang et al. (2016) point out the diffi-
culty of learning good representation across AL iterations
since insufficient annotations may lead to the instability of
training models. This indicates that the monotonic acquisi-
tion does not ensure the last trained model as a good sur-
rogate of the currently labeled data to identify the informa-
tive samples for data acquisition. As a result, Karamcheti
et al. (2021); Farquhar, Gal, and Rainforth (2020); Prabhu,
Dognin, and Singh (2019) reveal that the acquired samples
are vulnerable to sampling bias, and especially, Karamcheti
et al. (2021) have presented Dataset Maps (Swayamdipta
et al. 2020) of AL, which visualizes harmful outliers pre-
ferred by AL methods. Despite these facts, Lowell, Lipton,
and Wallace (2018) suggest that the monotonic acquisition
is still promising as another remedy using external models
(e.g., SVM out of the AL iterations) for data acquisition ex-
tremely hampers accuracy of AL.

Motivated by this line of research, in this work, we ex-
plore how the limitation of monotonic acquisition can be ad-
dressed, in particular, considering consistency as a solution
to mitigate the instability of AL iterations. Similar to (Low-
ell, Lipton, and Wallace 2018) reporting unreliable perfor-
mance of AL in the NLP field, we choose text classification
tasks as our testbed.
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Figure 1: The accuracy (solid line) and MCI (dotted line) of Bi-LSTM model under three acquisition strategies on two text
classification test datasets (TREC (a-d) and SST-2 (e-h)); x-axis represents the ratio of labeled samples and y-axis represents
the corresponding metrics; We report the average values with five random seeds.

Accuracy-Consistency Dynamics
In this section, we analyze the training dynamics of AL in
terms of consistency along with accuracy, observing (catas-
trophic) example forgetting event (Toneva et al. 2019) on the
AL iterations: these occur when examples that have been
“learnt” (i.e., correctly classified) at some time t in the opti-
mization process are subsequently misclassified – or in other
terms “forgotten” – at a time t+∆t > t. Formally,

Definition 1 (Forgetting and Learning Events) Given a pre-
dicted label ŷti , let accti = 1ŷt

i=yi
be a binary variable in-

dicating whether the example is correctly classified by θt.
Sample i undergoes a forgetting event when accti decreases
between two different iterations, i.e., accti > acct+∆t

i , where
∆t > 0 (misclassified). Conversely, a learning event has oc-
curred if accti < acct+∆t

i .

While learning new knowledge is also one of the impor-
tant factors for generalization ability, our focus is on measur-
ing how well models in AL preserve the learned knowledge.
For further analysis, we introduce Correct Inconsistency of
a model as a measure of how inconsistent the target model is
with its predecessor models for a sample. That is, correct in-
consistency counts the forgetting events between the model
and each of the predecessor models.

Definition 2 (Correct Inconsistency) The degree of correct
inconsistency of θt for sample xi is measured as the number
of occurrences of forgetting events for sample xi from any
predecessor model θt−∆t, where 0 < ∆t ≤ t:

C(t)
i =

t∑
∆t=1

1(acct−∆t
i >accti)

As the number of predecessor models are different per AL
iteration, to fairly show the degree of inconsistency, we use

mean of correct inconsistency for every sample in develop-
ment split e.g., MCI =

∑
i C

(t)
i /t.

In Figure 1, we present both accuracy and MCI of
trained models through the full progress of AL. We analyze
three data acquisition strategies that are carefully chosen
by considering the uncertainty-diversity dichotomy (Yuan,
Lin, and Boyd-Graber 2020) along with random strategy.
CONF (Wang and Shang 2014), CORESET (Sener and
Savarese 2018), and BADGE (Ash et al. 2019) represent
three lines of acquisition strategies in AL: uncertainty, di-
versity, and their hybrid. Across all dataset and acquisition
strategies, accuracy and MCI follow the anti-correlated rela-
tionship. For convenience of analysis, we divide the training
progress into two phases based on the transition of tendency
in terms of accuracy: stable and saturated phases.

In the stable phase, more data leads to more accurate
model. Validation accuracy increases on 0-50% of TREC
and 0-40% of SST-2, while MCI decreases, where newly la-
beled samples improve generalization of the trained mod-
els. In this phase, AL strategies seek to achieve label ef-
ficiency, reaching higher accuracy with a given amount of
labeled samples or reversely achieving the same accuracy
with less amount of labeled samples. What is notable here
is that dramatic improvement of accuracy mostly involves
the rapid drop in MCI. These analytical results provide a
guide towards the idealistic property of AL methods, which
is preserving existing knowledge and simultaneously learn-
ing new knowledge. Thus, we hypothesize that relieving for-
getting events may contribute to faster and better (i.e., higher
accuracy) convergence of AL.

In the saturated phase, the monotonic trends observed
in stable phase do not hold. Validation accuracy converges
or decreases with the rapid increase of MCI, suggesting
that the generalization performance of model deteriorates as
even more labeled samples are fed into the trained models.
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That is, more data does not always lead to more accurate
model, which indicates labeling efforts may be negated in
this phase. Although such an extremely undesirable situation
in AL is barely addressed by stopping AL iterations in prior
work (Ishibashi and Hino 2020), an idealistic AL framework
would avoid this phase so that the models can be learned in
a more label-efficient manner.

TrustAL: Trustworthy Active Learning
Based on the prior findings on training dynamics of AL pro-
cedure, we aim to relieve forgotten knowledge to train better
acquisition model that serves as a good surrogate for labeled
dataset. A naive way to obtain more generalized models is
simply using enough labeled data. However, this approach
is not always applicable since budget is limited in AL. An-
other line of work is using multiple equivalent models (e.g.,
ensemble) based on complementary nature across different
generations. However, this approach is also not always af-
fordable since querying on the huge pool of unlabeled data
using multiple models is computationally too expensive.

We now present TrustAL (Trustworthy AL) that enables
the training of consistent acquisition model that serves as
a good reference for labeled dataset in smart and resource-
efficient way. TrustAL utilizes additional machine gener-
ated labels for the purpose of mitigating the forgotten knowl-
edge. Especially, among predecessor models, TrustAL
identifies a proper expert model that can efficiently con-
tribute to mitigating forgotten samples, which is a novel way
of tackling the possible knowledge loss during AL proce-
dure.

Distillation-based Consistency Regularization
Knowledge distillation (Hinton, Vinyals, and Dean 2015) is
originally proposed to transfer knowledge from one model
(i.e., teacher model) to another (i.e., student model) to com-
press the size of model. Inspired by recent approaches to
transfer knowledge between equivalent models (Furlanello
et al. 2018), we propose using the inferior (e.g., less accu-
rate) predecessor model as a teacher model to mitigate ex-
ample forgetting of the student model (i.e., last trained, supe-
rior model) by learning from pseudo labels (i.e.logits). This
distillation method can be interpreted as a type of consis-
tency regularizer to alleviate forgotten knowledge.

Formally, Algorithm 2 describes the overall procedure of
the TrustAL framework on the AL iterations. When given
a labeled data pool L = {xi, yi}∀i at the t-th iteration,
let LCE be a typical cross-entropy loss with oracle labeled
examples, i.e.,

∑
(xi,yi)∈L CrossEntropy(yi, f(xi; θt)),

and let LKL be a knowledge distillation loss with
the pseudo labels of a predecessor model from t-∆t,
i.e.,

∑
(xi,yi)∈L KL-Divergence(f(xi; θt−∆t), f(xi; θt)).

On the top of an arbitrary data acquisition method (e.g.,
CORESET and BADGE), model parameter θt produced by
TrustAL is obtained by the following optimization:

θt = argminθtLCE(θt) + α · LKL(θt−∆t, θt) (1)

where α is a preference weight. We empirically analyze the
effect of varying α in Appendix D.

Algorithm 2: TrustAL
Input: Initial labeled data pool L0, unlabeled data pool
U , number of queries per iteration (budget) k, number of
iterations T , sampling algorithm A, fixed development
dataset Ddev with size m

Output: Model parameters θT
θ0 ← Train a seed model on L
for iteration t = 1, ..., T do

Mt(x) = f(x; θt−1)

Qt ← Apply A(x,Mt, k) for ∀x ∈ U
θt−∆t ← TeacherSelection(θ0, ..., θt−1,Ddev)

Q̄t ← Label queries Qt by oracles and f(x; θt−∆t)

L ← L ∪ Q̄t

U ← U \ Q̄t

θt ← argminθt LCE(θt) + α · LKL(θt−∆t, θt)

end
return θT

M0 M1 M2

M2

Mt-1Mt-2

Model Consistency Estimation
Train
Acqusition

Pseudo
labeling

Teacher  
selection

Evaluate

Mt

Pseudo-labeled Data

Data

Figure 2: Illustration of TrustAL-NC

This framework motivates us to leverage more sophisti-
cated techniques for knowledge distillation, such as (Yuan
et al. 2020; Park et al. 2019). We leave such exploration for
future work, as using Eq. (1) works quite well for multiple
AL methods in our experiments. Instead, as any predecessor
model can be a teacher, we extend this framework to further
exploration of teacher selection.

Teacher Selection Strategies
The key factor of TrustAL framework is considering a prede-
cessor model as a specialist model for the forgettable knowl-
edge. As reported in Figure 1, specific to data increments
across multiple generations, predecessor models have differ-
ent status of learned and forgotten knowledge. Therefore, the
distillation effects are different in how to select teacher mod-
els. Here, we introduce two strategies with TrustAL: mono-
tonic and non-monotonic consistency.

Monotonic Consistency (TrustAL-MC) Basically, we
can inherit the monotonic approach not only for data acqui-
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Figure 3: Accuracy (a-c) and MCI (d-f) versus the ratio of labeled samples

sition but also for teacher selection, synchronizing both, i.e.,
always θt−∆t = θt−1 = Mt. This allows to iteratively trans-
fer the learned knowledge generation by generation.

Non-monotonic Consistency (TrustAL-NC) Correct In-
consistency (Definition 2) can be a strong signal to indi-
cate which sample is forgettable for the current acquisition
model. Using such sample level inconsistency, we aim at
choosing the predecessor model with the learned knowledge
especially of those forgettable samples. This allows to trans-
fer the easily forgettable knowledge from one of the pre-
decessor model, not always from θt−∆t = θt−1 = Mt as
described in Figure 2.

Specifically, given a development dataset Ddev with m
samples, let Ct be a vector of correct inconsistency val-
ues of Mt (= θt−1) at the t-th iteration for all m samples,
i.e., ⟨C(t−1)

1 , ...,C(t−1)
m ⟩ ∈ Rm. For the purpose of using

this vector as importance weights for samples, we normal-
ize Ct into C̃t where

∑
∀i C̃t

i = 1 by a softmax function.
We note that the sample xi with high importance weight
C̃t

i means easily forgettable sample for Mt. Based on such
consistency-aware sample importance, we define a func-
tion g(θt−∆t,Mt) of measuring how reliably a predecessor
model θt−∆t can be a synergetic teacher with the data ac-
quisition of Mt, by an weighted accuracy as:

g(θt−∆t,Mt) = C̃t⊤⟨acct−∆t
1 , ..., acct−∆t

m ⟩/m (2)

High g(θt−∆t,Mt) implies that the teacher model θt−∆t

tends to have the knowledge of forgettable examples for the
current data acquisition model Mt, and vice versa. Based on
this, we can select a predecessor having the maximum value,
as a teacher model to teach a new model θt:

argmax
1<∆t≤t

g(θt−∆t,Mt) (3)

Development Set Strategies
One of the plausible tools to estimate the learning status of
AL generations is development set as it is often used for
validation process. In fact, TrustAL-NC catches forgetting
signals as a by-product of the validation process. The ex-
periment on the robustness of TrustAL-NC on the size of
development set shows marginal performance decrease even
when halving development set size, which resolve concerns
about keeping development set in label-scarce situation. Full
empirical results are presented in Appendix D.

Experiments
Experimental Setup
Dataset We use three text classification datasets,
TREC (Roth et al. 2002), Movie review (Pang and Lee
2005) and SST-2 (Socher et al. 2013), which are widely
used in AL (Lowell, Lipton, and Wallace 2018; Siddhant
and Lipton 2018; Yuan, Lin, and Boyd-Graber 2020) and
statistically diverse. The data statistics are presented in
Appendix A for more details.

Baselines As TrustAL is orthogonally applicable to any
data acquisition strategy, for the purpose of better analysis,
we use the following three acquisition methods as baselines.

• CONF (Wang and Shang 2014): An uncertainty-based
method that selects samples with least confidence.

• CORESET (Sener and Savarese 2018): A diversity-
based method that selects coreset of remaining samples.

• BADGE (Ash et al. 2019): A hybrid method that selects
samples considering both uncertainty and diversity.

More details on the baselines are discussed in Appendix B.
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Figure 4: Heatmap showing frequency of the model selec-
tion in TrustAL-NC with BADGE on three datasets. The x-
and y-axis indicate the bins of the selected teacher model
and the training model, respectively. In each round the size
of labeled sample increases by 2%. Each bin consists of 5
rounds. Brighter cell indicates more frequently selected bin.

Implementation For all three datasets, we follow the
commonly used default settings in AL for text classifi-
cation (Liu et al. 2021; Zhou et al. 2021; Lowell, Lip-
ton, and Wallace 2018; Siddhant and Lipton 2018): Bi-
LSTM (Hochreiter and Schmidhuber 1997) is adopted as a
base model architecture; In each iteration of AL, training a
classification model from scratch (not by incremental man-
ner) with the entire labeled samples gathered, to avoid the
training issues with warm-starting (Ash and Adams 2020).
Note that the development set is held out in every experi-
ments so that it is not used for training models. We describe
our implementation details in Appendix C.

Results and Discussion
We present the empirical findings for the following three re-
search questions:
RQ1: Does TrustAL outperform AL baselines?
RQ2: How does TrustAL help data acquisition?
RQ3: Does TrustAL make consistent and robust models?
Additional experiments on hyperparameter sensitivity are
presented in Appendix D.

Overall Performance (RQ1) First, we compare the per-
formance of AL methods across AL iterations with and with-
out TrustAL. Figure 3 shows accuracy and MCI of AL meth-
ods on TREC. The empirical results in SST-2 and Movie
Review are presented in Appendix F.

Overall, AL strategies combined with TrustAL-NC/MC
show improved label efficiency and relieved MCI compared
to stand-alone baselines in all datasets. The models trained
with TrustAL framework require much smaller number of
labeled samples to achieve the same level of accuracy than
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Figure 5: Data acquisition analysis in stable phase on TREC;
x-axis represents the ratio of labeled samples and y-axis rep-
resents the corresponding metrics.

baselines. To facilitate the comparison of label efficiency
of TrustAL and a baseline, we draw the horizontal refer-
ence line where the baseline starts to show convergence in
Figure 3 (c). As a result, we find that TrustAL-MC and
TrustAL-NC require only 40% and 30% of the training data
pool, respectively, while baselines requires 50% of total
training data to reach the same level of accuracy. This re-
sult suggests that keeping consistency of model in AL is an
essential criterion, and TrustAL successfully satisfies the ul-
timate goal of AL, i.e., improving the label efficiency.

Further, TrustAL-NC performs comparably to ensemble
based distillation method (Fukuda et al. 2017) which aims
to distill the ensembled (i.e. averaged) probability distribu-
tion of multiple models. This indicates TrustAL-NC selects
a teacher model that can effectively relieve forgotten knowl-
edge, even without using all predecessor models. Figure 4
visualizes the behavior of teacher selection by TrustAL. The
figure shows that TrustAL-MC selects the most recent model
as its definition and TrustAL-NC chooses the teacher model
based on the consistency guidance. While preferring the
more generalized teacher models from the end of the stable
learning stages (16-20) rather than earlier stages, TrustAL-
NC also selects earlier generation that might be inferior
but professional in terms of forgotten knowledge. That is,
TrustAL-NC can select complementary models for forgot-
ten knowledge in an automatic manner.

Data Acquisition Quality (RQ2) Having tested for the
overall accuracy and MCI of TrustAL, we evaluate the
quality of data acquisition results when using TrustAL. To
discuss how TrustAL affects data acquisition, we analyze
TrustAL-NC based on the two distinctive strategies on data
acquisition: uncertainty and diversity. Note that, we choose
to compare acquisition quality of stable phase only since the
label efficiency of saturated phase is negative for traditional
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TREC Movie review SST-2

A

baseline 0.726 0.637 0.686
Ensemble 0.770 0.669 0.727
TrustAL-MC 0.743 0.654 0.705
TrustAL-NC 0.774 0.676 0.730

B

baseline 0.727 0.627 0.697
Ensemble 0.777 0.658 0.724
TrustAL-MC 0.753 0.654 0.707
TrustAL-NC 0.785 0.665 0.724

C

baseline 0.735 0.636 0.681
Ensemble 0.773 0.668 0.722
TrustAL-MC 0.748 0.653 0.711
TrustAL-NC 0.780 0.670 0.729

Table 1: Correct consistency of TrustAL-NC with (A)
CONF (B) CORESET and (C) BADGE

data acquisition strategies in AL.
For uncertainty, following (Yuan, Lin, and Boyd-Graber

2020), we first obtain a reference model trained on the full
training data of a target task, then measure the uncertainty
of samples selected on each iteration. Specifically, by using
Shannon Entropy (Shannon 2001), we compute the entropy
of the predicted probability distribution of individual sam-
ples, and report their average values for each AL iteration in
Figure 5a, where a higher value implies each iteration suc-
cessfully acquires uncertain samples.

For diversity, we reuse the reference model to encode
the full training data into a feature space, then obtain the
k disjoint sets of the all training data by K-means algorithm
where we set k as the number of samples acquired per AL
iterations. Then, based on these k groups, we measure the
diversity of a sample set selected on each iteration, by com-
puting the entropy of a cluster distribution of the selected
samples, which we report in Figure 5b. The measure shows
whether the samples are uniformly picked among the clus-
ters, since diversely acquired samples would belong to dif-
ferent clusters (Ash et al. 2019).

As shown in Figure 5, providing more labeled data leads
to improvement of uncertainty and diversity for both base-
line and TrustAL. Considering the reported increase of gen-
eralization performance in RQ1, this suggests that better
model training leads to better acquisition, strengthening
model’s ability to identify more informative samples. For
CONF and CORESET each representing uncertainty and di-
versity based strategies, we observe that TrustAL largely im-
proves the quality of acquisition across the AL procedure.
Since TrustAL aims to enhance the model’s ability of sur-
rogating the labeled dataset, we believe that TrustAL can
be orthogonally and effectively applicable to any acquisition
strategy with its synergetic nature.

Model Consistency and Robustness (RQ3) The correct
consistency (Wang et al. 2020), i .e., avg∀i1ŷm

i =ŷn
i =yi

, is
a measure for the consistency between mth and nth gen-
eration models. By measuring the correct consistency be-
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Figure 6: Robustness analysis varying the ratio of noise. Ac-
curacy and MCI are shown in pair for each noise ratio.

tween any two models, we demonstrate that our framework
contributes not only to the label efficiency, but also to the
overall consistency of model generations. Shown in Table 1,
TrustAL-NC shows better correct consistency than base-
lines. This reveals that models in AL iterations accord with
each other for the correctly classified samples, which is also
related to user’s trust on system (Wang et al. 2020).

To demonstrate the robustness of TrustAL on the care-
less transition from human labeling, we deliberately corrupt
the acquired samples by randomly flipping certain ratio of
labels. Specifically, after stable phase, we corrupt 7% and
15% of the labels. In Figure 6, the result of BADGE and
TrustAL(BADGE) are shown. Since other strategies show
similar behaviors, we only present the result of BADGE.
When the stable phase ends, the noisy labels cause the rapid
increase of forgotten knowledge. Based on this observation,
we believe that one of the possible suspects of performance
degradation in the saturated phase might be noisy examples.
Despite such degradation, TrustAL performs more robustly
which is in strike contrast to the baseline. With 7% of noise,
TrustAL even shows comparable result to the one trained
without noise. This result shows that TrustAL is robust to ac-
cidental noise in labels produced by human annotators since
TrustAL regularizes the negative impact of such labels by
pursuing consistency as an additional objective in training.

Conclusion
In this paper, we debunk the monotonicity assumption which
is a common belief in conventional AL methods by empir-
ical observation of example forgetting. For that, we present
TrustAL, an effective and robust framework that uses the
predecessor model as an expert model for knowledge distil-
lation to compensate the loss of knowledge between data and
model. Especially, our framework can be orthogonally appli-
cable to existing data acquisition in a highly efficient way.
Further, we present multi-pronged analysis for our method
through extensive experiments.
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