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Abstract

Reinforcement learning typically assumes that agents observe
feedback for their actions immediately, but in many real-
world applications (like recommendation systems) feedback
is observed in delay. This paper studies online learning in
episodic Markov decision processes (MDPs) with unknown
transitions, adversarially changing costs and unrestricted
delayed feedback. That is, the costs and trajectory of episode
k are revealed to the learner only in the end of episode
k + dk, where the delays dk are neither identical nor
bounded, and are chosen by an oblivious adversary. We
present novel algorithms based on policy optimization that
achieve near-optimal high-probability regret of

√
K +D

under full-information feedback, where K is the number of
episodes and D =

∑
k d

k is the total delay. Under bandit
feedback, we prove similar

√
K +D regret assuming the

costs are stochastic, and (K + D)2/3 regret in the general
case. We are the first to consider regret minimization in the
important setting of MDPs with delayed feedback.

1 Introduction
Delayed feedback is a fundamental challenge in sequential
decision making arising in almost all practical applications.
For example, recommendation systems learn the utility of a
recommendation by detecting occurrence of certain events
(e.g., user conversions), which may happen with a variable
delay after the recommendation was issued. Other examples
include display advertising, autonomous vehicles, video
streaming (Changuel, Sayadi, and Kieffer 2012), delays in
communication between learning agents (Chen et al. 2020)
and system delays in robotics (Mahmood et al. 2018).

Although handling feedback delays is crucial for applying
reinforcement learning (RL) in practice, it was only barely
studied from a theoretical perspective, as most of the RL
literature focuses on the MDP model in which the agent
observes feedback regarding her immediate reward and
transition to the next state right after performing an action.

This paper makes a substantial step towards closing the
major gap on delayed feedback in the RL literature. We
consider the challenging adversarial episodic MDP setting
where cost functions change arbitrarily between episodes

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

while the transition function remains stationary over time
(but unknown to the agent). We present the adversarial MDP
with delayed feedback model in which the agent observes
feedback for episode k only in the end of episode k + dk,
where the delays dk are unknown and not restricted in any
way. This model generalizes standard adversarial MDPs
(where dk = 0 ∀k), and encompasses great challenges
that do not arise in standard RL models, e.g., exploration
without feedback and latency in policy updates. Adversarial
models are extremely important in practice, as they allow
dependencies between costs, unlike stochastic models that
assume i.i.d samples. This is especially important in the
presence of delays (that are also adversarial in our model),
since it allows dependencies between costs and delays.

We develop novel policy optimization (PO) algorithms
that perform their updates whenever feedback is available
and ignore feedback with large delay, and prove that they
obtain high-probability regret bounds of order

√
K +D

under full-information feedback and (K + D)2/3 under
bandit feedback, where K is the number of episodes and
D is the sum of delays. Unlike simple reductions that can
only handle fixed delay d, our algorithms are robust to
any kind of variable delays and do not require any prior
knowledge. Furthermore, we show that a naive adaptation
of existing algorithms suffers from sub-optimal dependence
in the number of actions, and present a novel technique
that forces exploration in order to achieve tight bounds. To
complement our results, we present nearly matching lower
bounds of order

√
K +D. See detailed bounds in Table 1.

1.1 Related Work
Delays in RL. Although delay is a common challenge
RL algorithms need to face in practice (Schuitema et al.
2010; Liu, Wang, and Liu 2014; Changuel, Sayadi, and
Kieffer 2012; Mahmood et al. 2018), the theoretical
literature on the subject is very limited. Previous work
only studied delayed state observability (Katsikopoulos and
Engelbrecht 2003) where the state is observable in delay
and the agent picks actions without full knowledge of
its current state. This setting is much related to partially
observable MDPs (POMDPs) and motivated by scenarios
like robotics system delays. Unfortunately, even planning
is computationally hard (exponential in the delay d) for
delayed state observability (Walsh et al. 2009).
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Known Transition
+ Delayed Trajectory

Unknown Transition
+ Delayed Cost

Unknown Transition
+ Delayed Trajectory

D-O-REPS (full) H
√
K +D H3/2S

√
AK +H

√
D H2S

√
AK +H3/2

√
SD

D-OPPO (full) H2
√
K +D H3/2S

√
AK +H2

√
D H2S

√
AK +H3/2

√
SD

Lower Bound (full) H
√
K +D H3/2

√
SAK +H

√
D H3/2

√
SAK +H

√
D

D-OPPO (bandit) HS
√
AK2/3 +H2D2/3 HS

√
AK2/3 +H2D2/3 HS

√
AK2/3 +H2D2/3

Lower Bound (bandit) H
√
SAK +H

√
D H3/2

√
SAK +H

√
D H3/2

√
SAK +H

√
D

Table 1: Regret bounds comparison (ignoring constant and poly-logarithmic factors) between our algorithms Delayed OPPO
(D-OPPO) and Delayed O-REPS (D-O-REPS), and our lower bound under full-information (full) and bandit feedback (bandit).
“Known Transition” assumes dynamics are known to the learner in advance, and “Unknown Transition” means that the learner
needs to learn the dynamics. “Delayed Cost” assumes only costs are observed in delay, while in “Delayed Trajectory” the
trajectory is also observed in delay, together with the costs.

This paper studies a different setting that we call delayed
feedback, where the delay only affects the information
available to the agent, and not the execution of its policy.
Delayed feedback is also an important setting, as it is
experienced in recommendation systems and applications
where the policy is executed by a different computational
unit than the main algorithm (e.g., policy is executed by
a robot with limited computational power, while heavy
computations are done by the main algorithm on another
computer that receives data from the robot in delay).
Importantly, unlike delayed state observability, it is not
computationally hard to handle delayed feedback, as we
show in this paper. The challenges of delayed feedback are
very different than the ones of delayed state observability,
and include policy updates that occur in delay and
exploration without observing feedback.

Delays in multi-armed bandit. Delays were extensively
studied in MAB recently as a fundamental issue that arises
in many real applications (Vernade, Cappé, and Perchet
2017; Pike-Burke et al. 2018; Cesa-Bianchi, Gentile, and
Mansour 2018; Zhou, Xu, and Blanchet 2019; Gael et al.
2020; Lancewicki et al. 2021). Our work is most related to
the literature on delays in adversarial MAB, starting with
Cesa-Bianchi et al. (2016) that showed the optimal regret for
MAB with fixed delay d is of order

√
(A+ d)K, where A

is the number of actions. Even earlier, variable delays were
studied by Quanrud and Khashabi (2015) in online learning
with full-information feedback, where they showed optimal√
K +D regret. More recently, Thune, Cesa-Bianchi, and

Seldin (2019); Bistritz et al. (2019); Zimmert and Seldin
(2020); György and Joulani (2020) studied variable delays
in MAB, proving optimal

√
AK +D regret. Unlike MDPs,

in MAB there is no underlying dynamics, and the only
challenge is feedback about the cost arriving in delay.

Regret minimization in stochastic MDPs. There is a vast
literature on regret minimization in RL that mostly builds on
the optimism in face of uncertainty principle. Most literature
focuses on the tabular setting, where the number of states
is small (see, e.g., Jaksch, Ortner, and Auer (2010); Azar,
Osband, and Munos (2017); Jin et al. (2018); Zanette and
Brunskill (2019)). Recently it was extended to function
approximation under various assumptions (see, e.g., Jin et al.

(2020b); Yang and Wang (2019); Zanette et al. (2020a,b)).

Adversarial MDPs. Early works on adversarial MDPs
(Even-Dar, Kakade, and Mansour 2009; Neu, György, and
Szepesvári 2010, 2012; Neu et al. 2014) focused on known
transitions and used various reductions to MAB. Zimin
and Neu (2013) presented O-REPS – a reduction to online
linear optimization achieving optimal regret bounds with
known dynamics. Later, O-REPS was extended to unknown
dynamics (Rosenberg and Mansour 2019a,b; Jin et al.
2020a) obtaining near-optimal regret bounds. Recently, Cai
et al. (2020); Shani et al. (2020); He, Zhou, and Gu (2021)
proved similar regret for PO methods (that are widely used
in practice).

2 Setting
An episodic adversarial MDP is defined by a tuple M =
(S,A, H, p, {ck}Kk=1), where S and A are finite state and
action spaces of sizes S andA, respectively,H is the episode
length, p = {ph : S × A → ∆S}Hh=1 is the transition
function, and ck = {ckh : S × A → [0, 1]}Hh=1 is the cost
function for episode k. For simplicity, S ≥ max{A,H2}.

The interaction between the learner and the environment
proceeds as follows. At the beginning of episode k, the
learner starts in a fixed initial state1 sk1 = sinit ∈ S and
picks a policy πk = {πkh : S → ∆A}Hh=1 where πkh(a | s)
gives the probability that the agent takes action a at time h
given that the current state is s. Then, the policy is executed
in the MDP generating a trajectory Uk = {(skh, akh)}Hh=1,
where akh ∼ πkh(·|skh) and skh+1 ∼ ph(·|skh, akh). With no
delays, the learner observes the feedback in the end of the
episode, that is, the trajectory Uk and either the entire cost
function ck under full-information feedback or the suffered
costs {ckh(skh, a

k
h)}Hh=1 under bandit feedback. In contrast,

with delayed feedback, these are revealed to the learner only
in the end of episode k + dk, where the delays {dk}Kk=1 are
unknown and chosen by an oblivious adversary before the
interaction starts. Denote the total delay by D =

∑
k d

k and
the maximal delay by dmax = maxk d

k. Note that standard
adversarial MDPs are a special case in which dk = 0 ∀k.

1The algorithm readily extends to a fixed initial distribution.
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For a given policy π, we define its expected cost with
respect to cost function c, when starting from state s at
time h, as V πh (s) = E

[∑H
h′=h ch′(sh′ , ah′)|sh = s, π, p

]
,

where the expectation is taken over the randomness of the
transition function p and the policy π. This is known as the
value function of π, and we also define the Q-function by
Qπh(s, a) = E

[∑H
h′=h ch′(sh′ , ah′)|sh = s, ah = a, π, p

]
.

It is well-known (see Sutton and Barto (2018)) that the value
function and Q-function satisfy the Bellman equations:
Qπh(s, a) = ch(s, a) + 〈ph(· | s, a), V πh+1〉; V πh (s) =

〈πh(· | s), Qπh(s, ·)〉,where 〈·, ·〉 is the dot product. Let V k,π

be the value function of π with respect to ck. We measure
the performance of the learner by the regret – the cumulative
difference between the value of the learner’s policies and the
value of the best fixed policy in hindsight, i.e.,

RK =
K∑
k=1

V k,π
k

1 (sk1)−min
π

K∑
k=1

V k,π1 (sk1).

Notations. Episode indices appear as superscripts and in-
episode steps as subscripts. Fk = {j : j + dj = k} denotes
the set of episodes that their feedback arrives in the end of
episode k, and the of number visits to state-action pair (s, a)
at time h by the end of episode k−1 is denoted bymk

h(s, a).
Similarly, nkh(s, a) denotes the number of these visits for
which feedback was observed until the end of episode k−1.
Eπ[·] = E[· | sk1 = sinit, π, p] denotes the expectation given
a policy π, the notation Õ(·) ignores constant and poly-
logarithmic factors and x ∨ y = max{x, y}. We denote the
set {1, . . . , n} by [n], and the indicator of event E by I{E}.

3 Warm-up: a Black-box Reduction
One simple way to deal with delays (adopted in several
MAB and online optimization works, e.g., Weinberger and
Ordentlich (2002); Joulani, Gyorgy, and Szepesvári (2013))
is to simulate a non-delayed algorithm and use its regret
guarantees. Specifically, we can maintain dmax+1 instances
of the non-delayed algorithm, running the i-th instance on
the episodes k such that k = i mod (dmax + 1). That is, at
the first dmax + 1 episodes, the learner plays the first policy
that each instance outputs. By the end of episode dmax + 1,
the feedback for the first episode is observed, allowing the
learner to feed it to the first instance. The learner would
then play the second output of that instance, and so on.
Effectively, each instance plays K/(dmax+1) episodes, so we
can use the regret of the non-delayed algorithm R̃K in
order to bound RK ≤ (dmax + 1)R̃K/(dmax+1). Plugging
in standard adversarial MDP regret bounds (Rosenberg and
Mansour 2019a; Jin et al. 2020a), we obtain the following
regret for both full-information and bandit feedback:

RK = Õ
(
H2S

√
AK(dmax + 1) +H2S2A(dmax + 1)

)
.

While simple in concept, the black-box reduction suffers
from many evident shortcomings. First, it is highly non-
robust to variable delays as its regret scales with the worst-
case delay Kdmax which becomes very large even if the
feedback from just one episode is missing. One of the major

challenges that we tackle in the rest of the paper is to
achieve regret bounds that are independent of dmax and
scale with the average delay, i.e., the total delay D which
is usually much smaller than worst-case. Second, even if
we ignore the problematic dependence in the worst-case
delay, this regret bound is still sub-optimal as it suggests
a multiplicative relation between dmax and A (and S2)
which does not appear in the MAB setting. Our analysis
focuses on eliminating this sub-optimal dependence through
a clever algorithmic feature that forces exploration and
ensures tight near-optimal regret. Finally, the reduction
is highly inefficient as it requires running dmax + 1
different algorithms in parallel. Moreover, the

√
Kdmax

regret under bandit feedback is only achievable using O-
REPS algorithms that are extremely inefficient to implement
in practice. In contrast, our algorithm is based on efficient
and practical PO methods. Its running time is independent
of the delays and it does not require any prior knowledge
or parameter tuning (unlike the reduction needs to know
dmax). In Section 5 we present experiments showing that our
algorithm outperforms generic approaches, such as black-
box reduction, not only theoretically but also empirically.

4 Delayed OPPO
In this section we present Delayed OPPO (Algorithm 1
and with more details in the full version of the
paper (Lancewicki, Rosenberg, and Mansour 2020)) –
the first algorithm for regret minimization in adversarial
MDPs with delayed feedback. Delayed OPPO is a
policy optimization algorithm, and therefore implements
a smoother version of Policy Iteration (Sutton and Barto
2018), i.e., it alternates between a policy evaluation step
– where an optimistic estimate for the Q-function of the
learner’s policy is computed, and a policy improvement step
– where the learner’s policy is improved in a “soft” manner
regularized by the KL-divergence.

Delayed OPPO is based on the optimistic proximal policy
optimization (OPPO) algorithm (Cai et al. 2020; Shani
et al. 2020). As a policy optimization algorithm, it enjoys
many merits of practical PO algorithms that have had great
empirical success in recent years, e.g., TRPO (Schulman
et al. 2015), PPO (Schulman et al. 2017) and SAC (Haarnoja
et al. 2018) – It is easy to implement, computationally
efficient and readily extends to function approximation.

The main difference that Delayed OPPO introduces is
performing updates using all the available feedback at the
current time step. Furthermore, in Sections 4.1 and 4.2 we
equip our algorithm with novel mechanisms that make it
robust to all kinds of variable delays without any prior
knowledge and enable us to prove tight regret bounds.
Importantly, these mechanisms improve existing results
even for the fundamental problem of delayed MAB. Even
with these algorithmic mechanisms, proving our regret
bounds requires careful analysis and new ideas that do not
appear in the MAB with delays literature, as we tackle the
much more complex MDP environment.

In the beginning of episode k, the algorithm computes
an optimistic estimate Qj of Qπ

j

for all the episodes j
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Algorithm 1: Delayed OPPO

Input: S,A, H, η > 0, γ > 0, δ > 0.
Initialization: Set π1

h(a | s) = 1/A for every (s, a, h).
for k = 1, 2, . . . ,K do

Play episode k with policy πk.
Observe feedback from all episodes j ∈ Fk.
Compute cost estimators ĉj and confidence set Pk.
# Policy Evaluation
for j ∈ Fk do

Set V jH+1(s) = 0 for every s ∈ S .
for h = H, . . . , 1 and (s, a) ∈ S ×A do
p̂jh(·|s, a) ∈ arg min

p′h(·|s,a)∈Pk
h(s,a)

〈p′h(·|s, a), V jh+1〉.

Qjh(s, a) = ĉjh(s, a) + 〈p̂jh(· | s, a), V jh+1〉.
V jh (s) = 〈Qjh(s, ·), πjh(· | s)〉.

end for
end for
# Policy Improvement

πk+1
h (a|s) =

πk
h(a|s) exp

(
−η

∑
j∈Fk Q

j
h(s,a)

)
∑

a′∈A πk
h(a′|s) exp

(
−η

∑
j∈Fk Q

j
h(s,a′)

) .

end for

that their feedback just arrived. To that end, we maintain
confidence sets that contain the true transition function p
with high probability, and are built using all the trajectories
available at the moment. That is, for every (s, a, h), we
compute the empirical transition function p̄kh(s′ | s, a) and
define the confidence set Pkh(s, a) as the set of transition
functions p′h(· | s, a) such that, for every s′ ∈ S ,
|p′h(s′ | s, a) − p̄kh(s′ | s, a)| ≤ εkh(s′ | s, a), where
εkh(s′|s, a) = Θ̃(

√
p̄kh(s′|s,a)/nk

h(s,a) + 1/nk
h(s,a)) is the

confidence set radius. Then, the confidence set for episode k
is defined by Pk = {Pkh(s, a)}s,a,h. Under bandit feedback,
the computation of Qj also requires estimating the cost
function cj in state-action pairs that were not visited in that
episode. For building these estimates, we utilize optimistic
importance-sampling estimators (Jin et al. 2020a) that first
optimistically estimate the probability to visit each state s in
each time h of episode j by ujh(s) = maxp′∈Pj Pr[sh = s |
s1 = sinit, π

j , p′] and then set the estimator to be ĉjh(s, a) =
cjh(s,a)I{sjh=s,ajh=a}
uj
h(s)πj

h(a|s)+γ
with an exploration parameter γ > 0.

After the optimistic Q-functions are computed, we use
them to improve the policy via a softmax update, i.e., we
update πk+1

h (a | s) ∝ πkh(a | s) exp(−η
∑
j∈Fk Q

j
h(s, a))

for learning rate η > 0. This update form, which may
be characterized as an online mirror descent (Beck and
Teboulle 2003) step with KL-regularization, stands in the
heart of the following regret analysis. The full proofs are
in the full version of the paper (Lancewicki, Rosenberg,
and Mansour 2020). We note that Theorem 1 handles only
delayed feedback regarding the costs, while assuming that
feedback regarding the learner’s trajectory arrives without
delay.

Theorem 1. Running Delayed OPPO with delayed cost

feedback and non-delayed trajectory feedback guarantees,
with probability 1 − δ, under full-information feedback:
RK = Õ(H3/2S

√
AK + H2

√
D), and under bandit

feedback:RK = Õ(HS
√
AK2/3 +H2D2/3 +H2dmax).

Proof sketch. With standard regret decomposition (based on
the value difference lemma), we can show that the regret
scales with two main terms: (A) =

∑
k V

πk

1 (sk1) − V k1 (sk1)
is the bias between the estimated and true value of πk; and
(B) =

∑
k,h Eπ[〈Qkh(skh, ·), πkh(· | skh)−πh(· | skh)〉] which,

for a fixed (s, h) ∈ S × [H], can be viewed as the regret of
a delayed MAB algorithm with full-information feedback,
where the losses are the estimated Q-functions.

Since the trajectories are not observed in delay, we can
bound term (A) similarly to Shani et al. (2020) using our
confidence sets that shrink over time. To bound term (B),
we fix (s, h) and follow a “cheating” algorithm technique
(György and Joulani 2020). To that end, we define the
“cheating” algorithm that does not experience delay and sees
one step into the future, i.e., in episode k it plays policy
π̄k+1
h (a|s) ∝ e−η

∑k
j=1Q

j
h(s,a). Then, we can break term (B)

into two terms: (i) The regret of the “cheating” algorithm
which is bounded by logA

η using a Be-The-Leader argument
(see, e.g., Joulani, György, and Szepesvári (2020)), and
(ii) The difference between π̄k+1 and πk which we can
bound by looking at the exponential weights update form.
Specifically, we bound the ratio π̄k+1

h (a|s)/πk
h(a|s) from below

by 1− η
∑
j≤k,j+dj≥kQ

j
h(s, a) and this bounds term (ii) in

terms of the missing feedback, i.e.,

(ii) =
K∑
k=1

∑
a∈A

Qkh(s, a)
(
πkh(a | s)− π̄k+1

h (a | s)
)

=
K∑
k=1

∑
a∈A

πkh(a|s)Qkh(s, a)
(

1−
π̄k+1
h (a | s)
πkh(a | s)

)

≤ η
K∑
k=1

∑
a∈A

πkh(a | s)Qkh(s, a)
∑

j≤k,j+dj≥k

Qjh(s, a).

Under full-information feedback, our estimates of the Q-
function are always bounded by H , which leads to

(ii) ≤ ηH2
K∑
k=1

K∑
j=1

I{j ≤ k, j + dj ≥ k}

= ηH2
K∑
j=1

K∑
k=1

I{j ≤ k ≤ j + dj}

≤ ηH2
K∑
j=1

(1 + dj) = ηH2(K +D).

To finish the proof we set η = 1/H
√
K+D. Under bandit

feedback, this argument becomes a lot more delicate because
the Q-function estimates are naively bounded only by H/γ.
Thus, we need to prove concentration of

∑
k V

k
h (s) around∑

k V
πk

h (s) (which is indeed bounded by HK).
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Notice that the regret bound in Theorem 1 overcomes the
major problems that we had with the black-box reduction
approach. Namely, the regret scales with the total delay D
and not the worst-case delay Kdmax (the extra additive
dependence in dmax is avoided altogether in Section 4.2),
and D is not multiplied by neither S nor A. Finally, as a
direct corollary of Theorem 1, we deduce the regret bound
for the known transitions case, in which term (A) does not
appear (at least under full-information feedback). Notice
that with known transitions, there is no need to handle delays
in the trajectory feedback since dynamics are known.
Theorem 2. Running Delayed OPPO with known transition
function guarantees, with probability 1 − δ, under full-
information feedback: RK = Õ(H2

√
K +D), and bandit

feedback:RK = Õ(HS
√
AK2/3 +H2D2/3 +H2dmax).

4.1 Handling Delayed Trajectories
Previously, we analyzed the Delayed OPPO algorithm in the
setting where only cost is observed in delay. In this section,
we face the delayed trajectory feedback setting in which the
trajectory of episode k is observed only in the end of episode
k + dk together with the cost. We emphasize that, while the
trajectory from episode k is observed in delay, the policy
πk is executed regularly (see discussion in Section 1.1).
Delayed trajectory feedback is a unique challenge in MDPs
that does not arise in MAB, as no underlying dynamics exist.
Next, we provide the first analysis for delays of this kind and
present novel ideas which are crucial for obtaining optimal
bounds. Some of the ideas in this section are applicable
in other regimes and allow, for example, to enhance the
famous UCB algorithm for stochastic MAB to be optimal
in the presence of delays (see discussion in Section 5).
To convey the main ideas, we focus on full-information
feedback. For bandit feedback see the full version of the
paper (Lancewicki, Rosenberg, and Mansour 2020).

The most natural approach to handle delayed trajectory
feedback is simply to update the confidence sets once
data becomes available, and then investigate the stochastic
process describing the way that the confidence sets shrink
over time (with the effect of the delays). With a naive
analysis of this approach, we can bound term (A) from
the proof of Theorem 1 by H2S

√
A(K +D). However,

as discussed before, this is far from optimal since the total
delay should not scale with the number of states and actions.

To get a tighter regret bound, we must understand the new
challenges that cause this sub-optimality. The main issue
here is wasted exploration due to unobserved feedback. To
tackle this issue, we leverage the following key observation:
the importance of unobserved exploration becomes less
significant as time progresses, since our understanding of
the underlying dynamics is already substantial. With this
in mind we propose a new technique to analyze term (A):
isolate the first dmax visits to each state-action pair, and for
other visits use the fact that some knowledge of the transition
function is already evident. With this technique we are able
to get the improved bound (A) . H2S

√
AK+H2SAdmax.

This is a major improvement especially whenever dmax <√
D, and even if not, the second term can be always

substituted for H3/2
√
SAD using the skipping scheme

in Section 4.2. However, we still see the undesirable
multiplicative relation with S and A. To tighten the
regret bound even further we propose a novel algorithmic
mechanism to specifically direct wasted exploration. The
mechanism, that we call explicit exploration, forces the
agent to explore until it observes sufficient amount of
feedback. Specifically, until we observe feedback for
2dmax log HSA

δ visits to state s at time h, we pick actions
uniformly at random in this state. The explicit exploration
mechanism directly improves the bound on term (A) by a
factor of A (as shown in the following theorem), and is in
fact a necessary mechanism for optimistic algorithms in the
presence of delays (see Section 5).

Theorem 3. Running Delayed OPPO with explicit
exploration, with delayed cost feedback and delayed
trajectory feedback guarantees, with probability 1 − δ,
under full-information feedback: RK = Õ(H2S

√
AK +

H2
√
D + H2Sdmax), and under bandit feedback: RK =

Õ(HS
√
AK2/3 +H2D2/3 +H2SAdmax).

Proof sketch. We start by isolating episodes in which
we visit some state for which we observed less than
2dmax log HSA

δ visits. Since dmax is the maximal delay,
there are only Õ(HSdmax) such episodes (and the cost in
each episode is at most H). For the rest of the episodes, by
virtue of explicit exploration, we now have that the number
of observed visits to each (s, a, h) is at least dmax/A.

Term (A) that measures the Q-functions estimation error
is controlled by the rate at which the confidence sets shrink.
Let Ikh(s, a) = I{skh = s, akh = a}, we can bound it as
follows with standard analysis,

(A) . H
√
S
∑
s∈S

∑
a∈A

H∑
h=1

∑
k

Ikh(s, a)√
nkh(s, a)

. (1)

Now we address the delays. Fix (s, a, h) and denote the
number of unobserved visits by Nk

h (s, a) = (mk
h(s, a) −

nkh(s, a)). Next, we decouple the statistical estimation error
and the effect of the delays in the following way,

∑
k

Ikh(s, a)√
nkh(s, a)

=
∑
k

Ikh(s, a)√
mk
h(s, a)

√
mk
h(s, a)

nkh(s, a)
(2)

≤
∑
k

Ikh(s, a)√
mk
h(s, a)

√
1 +

Nk
h (s, a)

nkh(s, a)

≤
∑
k

Ikh(s, a)√
mk
h(s, a)

+
∑
k

Ikh(s, a)√
mk
h(s, a)

√
Nk
h (s, a)

nkh(s, a)
.

The first term is unaffected by delays and bounded
by H2S

√
AK. For the second term, we utilize explicit

exploration in the sense that nkh(s, a) ≥ dmax/A. Combine
this with the observation that Nk

h (s, a) ≤ dmax (since
dmax is the maximal delay), to obtain the boundH2SA

√
K.
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Finally, to get the tight bound (i.e., eliminate the extra
√
A),

we split the second sum into: (1) episodes with nkh(s, a) ≥
dmax where Nk

h (s,a)/nk
h(s,a) is tightly bounded by 1 (and not

A), and (2) episodes with nkh(s, a) < dmax in which the
regret scales as

√
dmax (which is at most

√
K).

4.2 Large Delays and Unknown Total Delay
In this section we address two final issues with our Delayed
OPPO algorithm. First, we eliminate the dependence in the
maximal delay dmax that may be as large as K even when
the total delay is relatively small. Second, we avoid the need
for any prior knowledge regarding the delays which is hardly
ever available, making the algorithm parameter-free.

To handle large delays, we use a skipping technique
(Thune, Cesa-Bianchi, and Seldin 2019). That is, if some
feedback arrives in delay larger than β (where β > 0 is a
skipping parameter), we just ignore it. Thus, effectively, the
maximal delay experienced by the algorithm is β. Moreover,
one can show that the number of skipped rounds is at
most D/β. For more details see the full version of the
paper (Lancewicki, Rosenberg, and Mansour 2020), where
we apply the skipping technique to all of our settings to
obtain the final regret bounds in Table 1. As an example,
setting β =

√
D/SH under unknown transitions case with

delayed trajectory feedback and full-information yields the
following bound that is independent of the maximal delay
dmax:RK = Õ(H2S

√
AK +H2

√
D +H2Sβ +HD/β)

= Õ(H2S
√
AK +H3/2

√
SD).

To address unknown number of episodes and total delay,
we design a new doubling scheme. Unlike Bistritz et al.
(2019) that end up with a worse bound in delayed MAB due
to doubling, our carefully tuned mechanism obtains the same
regret bounds (as ifK andD were known). Moreover, when
applied to MAB, our technique confirms the conjecture of
Bistritz et al. (2019) that optimal regret with unknown K
and D is achievable using a doubling scheme (for details,
see the full version of the paper (Lancewicki, Rosenberg,
and Mansour 2020)). Note that K and D are the only
parameters that the algorithm requires, since the skipping
scheme replaces the need to know dmax with the parameter
β (which is tuned using D). The doubling scheme manages
the tuning of the algorithm’s parameters η, γ, β, making it
completely parameter-free and eliminating the need for any
prior knowledge regarding the delays.

The doubling scheme maintains an optimistic estimate of
D and uses it to tune the algorithm’s parameters. Every
time the estimate doubles, the algorithm is restarted with
the new doubled estimate. This ensures that the number of
restarts is only logarithmic, allowing us to keep the same
regret bounds. The optimistic estimate of D is computed as
follows. Let Mk be the number of episodes with missing
feedback at the end of episode k. Notice that

∑K
k=1M

k ≤
D because the feedback from episode j was missing in
exactly dj episodes. Thus, at the end of episode k our
optimistic estimate is

∑k
j=1M

j . So for every episode j with
observed feedback, its delay is estimated by exactly dj , and
if its feedback was not observed, then we estimate it as if

feedback will be observed in the next episode. In the full
version of the paper (Lancewicki, Rosenberg, and Mansour
2020) we give the full pseudo-code of Delayed OPPO when
combined with doubling, and formally prove that our regret
bounds are not damaged by doubling.

5 Additional Results and Experiments
Lower bound. For episodic stochastic MDPs, the optimal
minimax regret bound is Θ̃(H3/2

√
SAK) (Azar, Osband,

and Munos 2017; Jin et al. 2018). As adversarial MDPs
generalize the stochastic MDP model, this lower bound
also applies to our setting. The lower bound for multi-arm
bandits with delays is based on a simple reduction to non-
delayed MAB with full-information feedback. Namely, we
can construct a non-delayed algorithm for full-information
feedback using an algorithm A for fixed delay d by simply
feeding A with the same cost function for d consecutive
rounds. Using the known lower bound for full-information
MAB, this yields a Ω(

√
dK) = Ω(

√
D) lower bound which

easily translates to a Ω(H
√
D) lower bound in adversarial

MDPs. Combining these two bounds gives a lower bound
of Ω(H3/2

√
SAK+H

√
D) for all settings, except for full-

information feedback with known dynamics where the lower
bound is Ω(H

√
K +D). In light of this lower bound, we

discuss the regret of Delayed OPPO and open problems.
For bandit feedback, our (K + D)2/3 regret bounds are

still far from the lower bound. However, it is important to
emphasize that we cannot expect more from PO methods.
Our bounds match state-of-the-art regret bounds for policy
optimization under bandit feedback (Shani et al. 2020). It
is an open problem whether PO methods can obtain

√
K

regret in adversarial MDPs under bandit feedback (even with
known dynamics). Currently, the only algorithm with

√
K

regret for this setting is O-REPS (Jin et al. 2020a). It remains
an important and interesting open problem to extend it to
delayed feedback in the bandit case (see next paragraph).

Under full-information feedback, our regret bounds match
the lower bound up to a factor of

√
S (there is also sub-

optimal dependence inH but it can be avoided with Delayed
O-REPS as discussed in the next paragraph). However, this
extra

√
S factor already appears in the regret bounds for

adversarial MDPs without delays (Rosenberg and Mansour
2019a; Jin et al. 2020a). Determining the correct dependence
in S for adversarial MDPs is an important open problem that
must be solved without delays first. We note that if only cost
feedback is delayed (and not trajectory feedback), then the
delays are not entangled in the estimation of the transition
function, and therefore the

√
D term in our regret is optimal!

Another important note: even with delayed trajectory
feedback, our

√
D term is still optimal for a wide class of

delays – monotonic delays. That is, if the sequence of delays
is monotonic, i.e., dj ≤ dk for j < k, then the

√
D term

of our regret bound for delayed trajectory feedback is not
multiplied by

√
S. This follows because in this case term

(A) that handles estimation error of p can be analysed with
respect to the actual number of visitation, since by the time
we estimate Qk at the end of episode k + dk we already
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have all the feedback for j < k. Monotonic delays include
the fundamental setting of a fixed delay d.

O-REPS vs OPPO. PO methods directly optimize the
policy. Practically, this translates to estimating the Q-
function and then applying a closed-form update to the
policy in each state. Alternatively, O-REPS methods (Zimin
and Neu 2013) optimize over the state-action occupancy
measures instead of directly on policies. This requires
solving a global convex optimization problem of sizeHS2A
(Rosenberg and Mansour 2019a) in the beginning of each
episode, which has no closed-form solution and is extremely
inefficient computationally. Another significant shortcoming
of O-REPS is the difficulty to scale it up to function
approximation, since the constrained optimization problem
becomes non-convex. On the other hand, PO methods
extend naturally to function approximation and enjoy great
empirical success (e.g., Haarnoja et al. (2018)).

Other than their practical merits, this paper reveals an
important theoretical advantage of PO methods over O-
REPS – simple update form. We utilize the exponential
weights update form of Delayed OPPO in order to
investigate the propagation of delayed feedback through
the episodes. This results in an intuitive analysis that
achieves the best available PO regret bounds even when
feedback is delayed. On the other hand, there is very
limited understanding regarding the solution for the O-REPS
optimization problem, making it very hard to extend beyond
its current scope. Specifically, studying the effect of delays
on this optimization problem is extremely challenging and
takes involved analysis. While we were able to analyze
Delayed O-REPS under full-information feedback (see the
full version of the paper (Lancewicki, Rosenberg, and
Mansour 2020)) and give tight regret bounds (Theorem 4),
we were not able to extend our analysis to bandit feedback
because it involves a complicated in-depth investigation
of the difference between any two consecutive occupancy
measures chosen by the algorithm. Our analysis bounds this
difference under full-information feedback, but in order to
bound the regret under bandit feedback its ratio (and the
high variance of importance-sampling estimators) must also
be bounded. Extending Delayed O-REPS to bandit feedback
remains an important open problem, for which our analysis
lays the foundations, and is currently the only way that can
achieve

√
K regret in the presence of delays.

Theorem 4. Running Delayed O-REPS under full-
information feedback guarantees, with probability 1 − δ,
with known transitions: RK = Õ(H

√
K +D), and with

unknown dynamics, delayed cost feedback and non-delayed
trajectory feedback:RK = Õ(H3/2S

√
AK +H

√
D).

Stochastic MDP with delayed feedback. Most of the
RL literature has focused on stochastic MDPs – a special
case of adversarial MDPs where cost ckh(s, a) of episode
k is sampled i.i.d from a fixed distribution Ch(s, a). Thus,
studying the effects of delayed feedback on stochastic MDPs
is a natural question. With stochastic costs, OPPO obtains√
K regret even under bandit feedback, since we can replace

importance-sampling estimators with an empirical average.

Figure 1: Average cost of delayed algorithms in grid world
with geometrically distributed delays.

This means that with stochastic costs and bandit feedback,
our Delayed OPPO algorithm obtains the same near-optimal
regret bounds as under full-information feedback. However,
the
√
D lower bound heavily relies on adversarial costs, as

it uses a sequence of costs that change every d episodes,
suggesting that

√
D dependence might not be necessary.

Indeed, for stochastic cost, delayed versions of optimistic
algorithms (e.g., Zanette and Brunskill (2018)) have regret
scaling as the estimation error (term (A) in Eq. (1)), which
means that our analysis (Section 4.1) proves regret that does
not scale with

√
D but only with H2SAdmax. Again, this

can be improved to H2Sdmax using explicit exploration.
Theorem 5. Running an optimistic algorithm with explicit
exploration, with delayed bandit cost feedback and delayed
trajectory feedback guarantees, with probability 1−δ, regret
bound of Õ(H2S

√
AK +H2Sdmax) in stochastic MDPs.

This contribution is important, even for the rich literature
on delayed stochastic MAB. Lancewicki et al. (2021) show
that the (optimistic) UCB algorithm may suffer sub-optimal
regret of Admax. Furthermore, they were able to remove the
A factor by an action-elimination algorithm which explores
active arms equally. Since optimism is currently the only
approach for handling unknown transitions in adversarial
MDPs, it was crucial for us to find a novel solution to
handle delays in optimistic algorithms. Theorem 5 shows
that optimistic algorithms (like UCB) can indeed be “fixed”
to handle delays optimally, using explicit exploration.

Empirical evaluation. We used synthetic experiments to
compare the performance of Delayed OPPO to two other
generic approaches for handling delays: Parallel-OPPO –
running in parallel dmax online algorithms, as described in
Section 3, and Pipeline-OPPO – another simple approach
for turning a non-delayed algorithm to an algorithm that
handles delays by simply waiting for the first dmax episodes
and then feeding the feedback always with delay dmax.
We used a simple 10 × 10 grid world where the agent
starts in one corner and needs to reach the opposite corner,
which is the goal state. The cost is 1 in all states except
for 0 cost in the goal state. Delays are drawn i.i.d from
a geometric distribution with mean 10, and the maximum
delay dmax is computed on the sequence of realized delays.
Fig. 1 shows Delayed OPPO significantly outperforms
the other approaches, thus highlighting the importance of
handling variable delays and not simply considering the
worst-case delay dmax. An important note is that, apart
from its very high cost, Parallel-OPPO also requires much
more memory (factor dmax more). For more implementation
details and additional experiments, see the full version of the
paper (Lancewicki, Rosenberg, and Mansour 2020).
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learning under delayed feedback. In International
Conference on Machine Learning, 1453–1461.
Joulani, P.; György, A.; and Szepesvári, C. 2020. A modular
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Online Markov Decision Processes Under Bandit Feedback.
IEEE Trans. Automat. Contr., 59(3): 676–691.
Pike-Burke, C.; Agrawal, S.; Szepesvari, C.; and
Grunewalder, S. 2018. Bandits with delayed, aggregated
anonymous feedback. In International Conference on
Machine Learning, 4105–4113. PMLR.

7288



Quanrud, K.; and Khashabi, D. 2015. Online learning
with adversarial delays. Advances in neural information
processing systems, 28: 1270–1278.
Rosenberg, A.; and Mansour, Y. 2019a. Online Convex
Optimization in Adversarial Markov Decision Processes.
In International Conference on Machine Learning, 5478–
5486.
Rosenberg, A.; and Mansour, Y. 2019b. Online Stochastic
Shortest Path with Bandit Feedback and Unknown
Transition Function. In Advances in Neural Information
Processing Systems, 2209–2218.
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