
Policy Learning for Robust Markov Decision Process
with a Mismatched Generative Model

Jialian Li1, Tongzheng Ren2, Dong Yan1, Hang Su1, Jun Zhu1*

1 Department of Computer Science and Technology, Beijing National Research Center for Information Science and
Technology, Tsinghua-Bosch Joint Center for Machine Learning, Institute for Artificial Intelligence, Tsinghua University,

Beijing 100084, China
2 Department of Computer Science, UT Austin

lijialian7@163.com, tongzheng@utexas.edu, sproblvem@gmail.com, suhangss@tsinghua.edu.cn, dcszj@tsinghua.edu.cn

Abstract

In high-stake scenarios like medical treatment and auto-
piloting, it’s risky or even infeasible to collect online ex-
perimental data to train the agent. Simulation-based training
can alleviate this issue, but may suffer from its inherent mis-
matches from the simulator and real environment. It is there-
fore imperative to utilize the simulator to learn a robust policy
for the real-world deployment. In this work, we consider pol-
icy learning for Robust Markov Decision Processes (RMDP),
where the agent tries to seek a robust policy with respect to
unexpected perturbations on the environments. Specifically,
we focus on the setting where the training environment can be
characterized as a generative model and a constrained pertur-
bation can be added to the model during testing. Our goal is
to identify a near-optimal robust policy for the perturbed test-
ing environment, which introduces additional technical dif-
ficulties as we need to simultaneously estimate the training
environment uncertainty from samples and find the worst-
case perturbation for testing. To solve this issue, we propose a
generic method which formalizes the perturbation as an oppo-
nent to obtain a two-player zero-sum game, and further show
that the Nash Equilibrium corresponds to the robust policy.
We prove that, with a polynomial number of samples from
the generative model, our algorithm can find a near-optimal
robust policy with a high probability. Our method is able to
deal with general perturbations under some mild assumptions
and can also be extended to more complex problems like ro-
bust partial observable Markov decision process, thanks to
the game-theoretical formulation.

Introduction
Reinforcement Learning (RL) (Sutton, Barto et al. 1998)
aims to identify good policies that can solve the sequential
decision-making problem, and has achieved amounts of in-
credible results on different challenging tasks (Mnih et al.
2013, 2015; Silver et al. 2017). Most of the current work fo-
cuses on the case where we can evaluate the performance of
learned policies on the training environments, which is rea-
sonable in multiple cases. For example, we can evaluate the
policy for video games under the same environment since
the environmental dynamics or game rules are the same for
both training and testing.

*corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, most of these algorithms need to interact with
the environment and collect online experimental data to train
the agent, which restricts the application of these algorithms
in high-stake scenarios like medical treatment and auto-
piloting. In certain cases, we have access to an additional
simulator (e.g. for auto-piloting we can train the agent in
a simulator that simulates the real traffic scenarios) which
allows us to train the agent on the simulator. However, the
simulator can substantially suffer from the domain mismatch
from the real application scenarios, which may lead to a
significant performance degeneration when deploying the
model in real world.

We can instead utilize this imperfect simulator for train-
ing and find a relatively robust policy such that it can also
work well in the real world. This indeed falls into the distri-
butional robust optimization (DRO) problem (Rahimian and
Mehrotra 2019).

In this work, we consider DRO problems where the en-
vironment can be formalized as a Markov Decision Process
(MDP) with finite steps. Several existing works (Nilim and
El Ghaoui 2004; Iyengar 2005) treat the difference of the
training and testing MDP as a perturbation and the goal is
to find a robust policy that ensures a near-optimal reward
against the worst-case perturbation, which is so-called a Ro-
bust MDP (RMDP) problem. Many previous works (e.g.
Nilim and El Ghaoui 2004; Iyengar 2005) assume that all
the parameters of the training MDP and the perturbation set
are known. Then the robust policy can be solved directly
by (approximated) dynamic programming. However, in the
practical problems, the simulator may be constructed as a
complex system with physical computation (Comair et al.
2014; Rasheed, San, and Kvamsdal 2020) which can only
provide samples through interactions. Other works (Delage
and Mannor 2010; Burges et al. 2013; Ghavamzadeh, Petrik,
and Chow 2016) attempt to address problems under param-
eter uncertainty, but they generally neither take extra per-
turbation into consideration, nor provide sample complexity
analysis for a near-optimal result.

Solving RMDPs in an online manner is quite hard, be-
cause we might not be able to reach some potentially impor-
tant states during online training. This might lead to pol-
icy’s bad performance during testing. Jiang (2018) gives
an extreme case where there is only one single state-action
pair difference between the simulator and real environment,

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7417

which makes the learned policy information-theoretically
useless. To the best of our knowledge, there are no satis-
factory results for solving RMDP in an online fashion. Jiang
(2018) assumes that it has access to the testing environment
and can get data to correct training simulator. However, we
want to remark that such cases may not be applicable in nu-
merous practical scenarios, as we cannot take such risk to
collect online data in the testing environment. Roy, Xu, and
Pokutta (2017) use model-free methods to solve the RMDP
problem by assuming the perturbation set fixed and given.
However, they do not provide the non-asymptotic sample
complexity. In some bad cases of online RMDP, where some
potential important states are hard to reach, the algorithm
may suffer a large sample complexity.

In this work, we consider the online training RMDP prob-
lems in a relaxed way. We assume the training environment
is characterized via a generative model and the agent queries
the generative model to gain samples from the training MDP.
Although solving an MDP with a generative model has
gained much interest (Kearns and Singh 1999; Azar, Munos,
and Kappen 2013; Cui and Yang 2020), the corresponding
analysis in RMDP remains mostly open problem. We extend
the fix perturbation set assumption in (Roy, Xu, and Pokutta
2017) to general constraints that the perturbation may be de-
pendent on the environment parameters. This would lead to
a new challenge that our estimation error for the training en-
vironment can further influence the robust policy solving.

Our Contributions. To address the aforementioned is-
sues, we propose a method for solving RMDPs under gen-
eral constraints. We first re-formulate the RMDP problem as
a two-player zero-sum game by considering the perturbation
as an adversarial player, and show that the Nash Equilib-
rium (NE) of the game corresponds to the robust policy and
worst-case perturbation. Then we propose a new algorithm
that uses a plug-in NE solver to find the robust policy.

We provide rigorous non-asymptotic sample complexity
bounds for our algorithm in certain cases. For RMDP with
S states, A actions, and horizon H , we give non-asymptotic
analysis for constraints with the Lipschitz condition. We
show that with samples of order Õ((1 + λ)2S2AH4/ϵ2)1,
our learned policy has an error no larger than ϵ with a high
probability, where λ is the Lipschitz constant.

We finally remark that, since we use a game-theoretical
framework to consider the environment uncertainty and ro-
bust policy solving separately, we can extend our method
to problems with other uncertainty. We give an example on
solving the robust partial-observable MDP problems.

Problem Formulation
In this section, we introduce the background of Markov De-
cision Process (MDP) and robust Markov Decision Process
(RMDP) problem in this work.

Markov Decision Process (MDP)
We consider the finite-horizon Markov Decision Process
(MDP) M = ⟨S,A, P, r,H⟩ where S is the state space and

1The notation Õ represents the order ignoring logarithm term.

A is the action space. We denote S = |S| and A = |A|.
Transition probability P (s, a) represents the probability dis-
tribution of transiting to states in S if taking action a at state
s. Reward function r maps a state-action pair (s, a) to a re-
ward value r(s, a) ∈ [0, 1]. One episode of interaction has a
depth of H which is denoted as [H] = {1, 2, ...,H}.

Usually for finite-horizon MDPs, the optimal actions for
one state at different depths can be different. For clarity, we
assume the state sets for different depths are disjoint. For-
mally, we use Sh to denote the set of states with depth h and
D = maxh |Sh|, where S = ∪H

h=1Sh and Sh ∩ Sh′ = ∅ if
h ̸= h′. Furthermore we denote the simplex of all possible
transition probability vectors on P (s, a) as ∆sa.

For clarity, we assume an initial state s0 at depth 1. At
state s ∈ Sh, the agent chooses one action a ∈ A. Then the
environment turns to state s′ ∈ Sh+1 with a probability of
P (s′|s, a). After H times of interactions from depth 1, one
episode ends. For the convenience of notation, we define a
terminal state sT at depth H+1 and the environment evolves
to sT from depth H .

A policy π of the agent maps each state s ∈ S to an action
in A. Usually, each state’s policy can be a distribution over
A. For a finite horizon MDP, there always exists a determin-
istic optimal policy(Puterman 2014). Here without further
clarification, our “policy” indicates a deterministic policy for
the agent.

Consider state s ∈ Sh, we use V π
M (s) to represent the

expected reward, following the policy π in MDP M with
transition P :

V π
M (s) = EP

 H∑
h′=h

r(sh′ , π(sh′))|sh = s

 ,

where EP indicates the expectation over transition function.
Similarly, we define the Q values for state-action pairs as

Qπ
M (s, a) = EP

r(s, a) + H∑
h′=h+1

r(sh′ , π(sh′))

 .

The Bellman equation for MDP M = ⟨S,A, P, r,H⟩ at
state s ∈ Sh is

V π
M (s) = r(s, π(s)) +

∑
s′∈Sh+1

P (s′|s, a)V π
M (s′).

Specifically, we define V π
M (sT) = 0 for any π or M . Our

final goal is to find a policy π′ such that

π′ = argmax
π

V π
M (s0).

Robust Markov Decision Process (RMDP)
We consider the problem where the environments at train-
ing and testing phases can be different. Denote the testing
MDP as M∗ = ⟨S,A, P ∗, r,H⟩ and the training MDP as
Ms = ⟨S,A, P s, r,H⟩. For clarity, here we only assume
the transitions are different between M∗ and Ms, while our
techniques to handle the transition can be easily generalized
to handle the rewards.

During the training time, P ∗ is not available for the agent
and only samples from P s are accessible via a generative

7418

Figure 1: The structure of the MDP

model. At each time step, the agent sends a state-action pair
(s, a) to the generative model and gains (s′, r(s, a)), where
s′ is sampled from P s(s, a). To enable a policy to transfer
from the training environment to the testing environment,
P s and P ∗ should be to some degree similar. Here we use
a constraint to describe their connection. We use

∏
to de-

note the Cartesian product and define P =
∏

(s,a) ∆sa to
be the set composed of all the transition probabilities. Here
denote dimension of P to be G ≤ SAD. Then we assume
a known constraint function C which maps each P ∈ P to
a set C(P) ⊆ P , and also assume that the testing transition
function P ∗ locates in C(P s). Further we subtract the tran-
sition P from C(P) to define the perturbation set as

U(P) := {p ∈ [−1, 1]G : P + p ∈ C(P)}. (1)

If U(P s) contains only elements near 0 (i.e., ∥p∥ is small),
then P ∗ is constrained to be within a neighborhood of P s.
Furthermore, we use C(M) to denote the set of MDPs whose
transition functions are located in C(P).

In order to learn a robust policy, we need to consider the
worst-case environment for each policy. We define a worst-
case V value for policy π as

Ṽ π(s) = min
M∈C(Ms)

V π
M (s), (2)

and the optimal robust policy π∗ can be defined as

π∗ = argmax
π

Ṽ π(s0).

For a policy π, we define the error between π and π∗ as

Err(π) := Ṽ π∗
(s0)− Ṽ π(s0). (3)

Our learning goal is to find a policy π′ such that

P(Err(π′) ≤ ϵ) ≥ 1− δ, (4)

for some δ ∈ (0, 1) and ϵ > 0. Here P(·) denotes the proba-
bility for some event. A key for this learning target is that the
optimal policy for Ms might work poorly under M∗, which
urges for a robust policy for testing phase.

A Simple Case for Intuition
Here we give an simple example to show that robustness is
indeed an import issue under the model mismatch problems.

We consider a training MDP Ms with only 2 layers.
Depth 1 has only one state, i.e. s0 and depth 2 has four states.
The agent has two actions a0 and a1 at each state. The agent
receives a reward at the end of one episode. The structure of

Figure 2: Results on 4 methods. Upper figure: worst pertur-
bation. Below figure: random perturbation.

the MDP and the rewards are given in Fig. 1. It easy to see
that the optimal strategy for Ms is always to choose a0 and
the optimal reward is 0.5.

Assume that the true MDP M∗ and Ms differs in the tran-
sitions. We assume a perturbation range u for this example.
That is, P ∗(s2|s0, a0) ∈ [0, u) and P ∗(s4|s0, a1) ∈ [0, u).
Now if u > 0.02, the robust policy for the agent is to choose
a1 at s0. It can be seen that methods concentrating on Ms

can hardly identify this robustness issue since they do not
pay attention to s4 whose reaching probability in Ms is 0.

We aim to use this simple case to show that: (1) the
optimal policy of Ms may be a bad policy for M∗; (2)
the online training process for RMDP can be very ineffi-
cient. Thus we test 4 methods: (1) OPT: solving the op-
timal policy of Ms; (2) RPS: our robust policy solving
method; (3) RQ-learning: the robust version of Q-learning;
and (4) RSARSA: the robust version of SARSA. Here OPT
and RPS are trained with the generative model and RQ-
learning and RSARSA (Roy, Xu, and Pokutta 2017) solves
a one-step mini-max optimization. Each method can interact
with the training environment for 20000 times. We choose
u ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. We give detailed
information about this experiment is given in the appendix2.

The results under worst-case perturbation are shown in
the upper of Fig. 2. Only RPS can always finding the ro-
bust solution while other three methods suffer a large error
for a large u. OTP suffer a large error because it ignores
the effect of the perturbation. Online methods RSARSA and
RQ-learning also fail because these online methods cannot
reach s4 at all. They cannot give a proper estimation for s4
and cannot find the near-optimal robust solution.

We also show the results on random perturbation in the

2The full version is available at
https://arxiv.org/abs/2203.06587.

7419

Algorithm 1: Solving the robust policy with a Nash Equili-
biurm (NE) solver

1: Input: The generative model M , the perturbation con-
straint U and the NE solver O

2: for (s, a) in S ×A do
3: Query M with (s, a) for N times
4: Calculate the transition empirical mean P̄ (s, a) and

the reward empirical mean r̄(s, a)
5: end for
6: Get an empirical model M̄ = ⟨S,A, P̄ , r̄, H⟩.
7: Solve the NE (π̂∗, σ̂∗) = O(M̄, U(P̄))
8: Output: The robust policy π̂∗

below of Fig. 2. The random perturbation here means that
the difference between the training and testing transitions
is sampled uniformly from the perturbation range. It can be
seen that for a relatively large perturbation, a robust policy
indeed gives higher expected rewards, since it takes the risks
into consideration.

Methodology
We now present a method to solve for the robust policy in
RMDP. It is hard to solve the problem when the uncertainty
estimation process and the robust policy solving process are
entangled. We treat them separately by re-formalizing the
RMDP as a two-player zero-sum game where the agent is a
player maximizing reward and the perturbation is the other
player minimizing the reward. We deal with the training es-
timation error by using sufficient samples to build an proper
model for the game. Then we can use a plug-in Nash Equi-
librium (NE) solver to solve the game. The NE corresponds
to the robust policy and the worst-case perturbation.

The idea of solving a minimax dynamic programming
have been used in previous works (Nilim and El Ghaoui
2004; Iyengar 2005). The key advantage of considering a
two-player zero-sum game rather than simply a minimax
dynamic programming is that we can handle the perturba-
tion in a more general way. By doing so, we can estimate
the environment uncertainty with RL methods and solve the
robust policy with game-theoretical techniques. This sepa-
ration can help us to handle problems with more complex
environment uncertainty or mismatch constraints. We give
more examples in the next section.

In this section, we first re-formulate the RMDP problem
as a two-player zero-sum game and then present a method
for RMDP with general constraint functions. Finally we give
a non-asymptotic sample complexity result for our method
under a mild assumption.

RMDP as a Two-player Zero-sum Game
We consider MDP M with a given transition P as well as

the corresponding U(P) defined in Eq. (1). We denote σ as
the elements in U(P). For convenience, we use M + σ to
denote a perturbed MDP with transition function P +σ. The
goal to learn a robust policy is to solve a maximin problem

max
π

min
σ∈U(P)

V π
M+σ(s0). (5)

With the above formulation, we can consider this task as
a two-player zero-sum game where player 1 chooses π to
maximize V π

M+σ(s0) while player 2 chooses σ to minimize
V π
M+σ(s0). From this point of view, we define V and Q val-

ues to replace the V and Q values as

Vπ,σ
M (s) := V π

M+σ(s), Q
π,σ
M (s, a) := Qπ

M+σ(s, a). (6)

Here (π, σ) are the policy pair of the two players and
Vπ,σ
M (s) represents the expected value for player 1 at state s

of depth h. The expected reward for player 2 is accordingly
−Vπ,σ

M (s).
We further use σ(s, a) and σ(s′|s, a) to denote the pertur-

bations added to P (s, a) and P (s′|s, a), respectively. Then
the Bellman Equation for this game can be shown as:

Vπ,σ
M (s) = r(s, π(s))

+
∑
s′

(
P (s′|s, π(s)) + σ(s′|s, π(s))

)
Vπ,σ
M (s′).

Solving problem (5) is equivalent to solving the Nash
Equilibrium (NE) of the game. More specifically, the NE
solution is corresponding to the robust policy and the worst-
case perturbation. Note that there might be multiple NEs for
one game. In two-player zero-sum games, all the NEs have
the same reward values. Thus any NE can be considered as
a solution of the original problem.

Now we turn to solve the NE of the game. We assume that
we have access to an NE solver O which maps the MDP
M and perturbation set U(P) to a policy pair (π′, σ′) =
O(M,U(P)) that satisfies

π′ =argmax
π

Vπ,σ′

M (s0), σ
′ = argmin

σ∈U(P)

Vπ′,σ
M (s0).

Then the policy pair (π∗, σ∗) = O(Ms, U(P s)) is ex-
actly an NE for our learning goal of problem (5) and π∗ is
exactly the robust policy we aim to solve.

Method for General Constraints
Based on the above formulation, our method is simple and
intuitive. We consider our setting that a generative model
Ms = ⟨S,A, P s, r,H⟩ is given for training. For each state-
action pair (s, a), we query the generative model for N times
and gain corresponding samples for next steps and rewards,
denoted as {st, rt}Nt=1. The number N is calculated based on
the target ϵ and δ, as we will give in Sec.. Since we assume
the reward to be deterministic and we have visited each state-
action pair for N times, we already know the reward r. Here
use I[·] as the indicator function. With these N samples, we
estimate the transition function at (s, a) with

P̂ (s′|s, a) = 1

N

N∑
t=1

I[st = s′]. (7)

We construct an empirical RMDP M̂ = ⟨S,A, P̂ , r,H⟩
and calculate its perturbation set U(P̂). We directly con-
struct a two-player zero-sum game with M̂ and U(P̂), as
in Sec. . We apply the NE solver O to this game to output
the policy pair (π̂∗, σ̂∗) = O(M̂, U(P̂)) such that:

π̂∗ = argmax
π

Vπ,σ̂∗

M̂
(s0), σ̂

∗ = argmin
σ∈U(P̂)

V π̂∗,σ

M̂
(s0). (8)

7420

For convenience, here we denote V̂∗(s) = V π̂∗,σ̂∗

M̂
(s),

Q̂∗(s, a) = Qπ̂∗,σ̂∗

M̂
(s, a) for s ∈ Sh.

Notice that (π̂∗, σ̂∗) is solved in the constraint C(M̂),
rather than C(Ms). In the next section, we will show that
under some mild assumptions on C, with a polynomial num-
ber of samples, M̂ can be a good approximation for Ms and
our solution π̂∗ is guaranteed to be a near-optimal policy.

Theoretical Analysis
Our method above uses a plug-in NE solver to solve the em-
pirical RMDP. Besides the estimation error caused by the
sampling, the policy π̂∗ is calculated from the perturbation
U(P̂) rather than U(P s), which causes another error. Intu-
itively, for a large N , M̂ would be sufficiently close to Ms.
Thus the gaps between P̂ and P s would be bounded. If the
error caused by the difference between U(P̂) and U(P s)
can also be bounded, we can show that π̂∗ is a near-optimal
policy. Here we make mild assumptions for C under which
we can gain a near-optimal π̂∗ from a polynomial number of
samples from the generative model.

To show that the policy π̂∗ learned by the plug-in NE
solver is near optimal, we need to show that the error term
Err(π̂∗) defined in Eq. (3) can be bounded by a small value
with a high probability. In general, we cannot guarantee π̂∗

to be the near-optimal robust policy even when N is large,
because the difference between U(P s) and U(P̂) can cause
a large error. We add a mild assumption for the constraint C
and then we can give sample complexity analysis.
Assumption 1 (Lipschitz condition for the perturbation).
For two MDPs M = ⟨S,A, P, r,H⟩ and M ′ =
⟨S,A, P ′, r,H⟩, the constraint C and its corresponding per-
turbation U satisfy that for any σ ∈ U(P) and the projection
of σ onto U(P ′),

σ′ := argmin
σ′′∈U(P ′)

(
max
(s,a)

||σ′′(s, a)− σ(s, a)||1

)
,

there exits a constant λ such that for any (s, a),

||σ(s, a)− σ′(s, a)||1 ≤ λ||P (s, a)− P ′(s, a)||1. (9)

This assumption indicates that the distance of σ′ ∈ U(P ′)
and σ ∈ U(P) satisfies a Lipschitz condition, where σ′ is the
closest perturbation in U(P ′) to σ. This is a relatively gen-
eral assumption for constraints. For example, the total vari-
ance distance, where the total variance of the perturbation is
bounded, satisfies this assumption by choosing λ = 2.

For constraints satisfying Assumption 1, our learned pol-
icy is guaranteed to be near-optimal, as shown by the fol-
lowing theorem.
Theorem 1. For a given (ϵ, δ), where ϵ ∈ (0, H) and δ ∈
(0, 1), and a constraint C satisfying Assumption 1, if

N ≥ 8(1 + λ)2H4D ln(2/δ′)

ϵ2
, (10)

then with a probability no less than 1− δ, we have

Err(π̂∗) ≤ ϵ. (11)

The complete proof for this theorem is given in the ap-
pendix. Below we give a brief proof overview.

Proof. The proof process can be decomposed into 3 steps. In
the first step we decompose Err(π̂∗) into 2 terms, and then
we provide upper bound for the two terms correspondingly.

We first define four auxiliary policies as

σ∗ =argmin
σ∈U(P s)

Vπ∗,σ
Ms (s0), σ̃

∗ = argmin
σ∈U(P s)

(max
(s,a)

||σ̂∗ − σ||1),

σ′ =argmin
σ∈U(P s)

V π̂∗,σ
Ms (s0), σ̃

′ = argmin
σ∈U(P̂)

(max
(s,a)

||σ′ − σ||1).

The left two represent the best responses to π∗ and π̂∗ re-
spectively under U(P s). σ̃∗ is the projection of σ̂∗ (recall
the definition in Eq. (8), and notice that σ̂∗ ∈ U(P̂).) onto
U(P s). The last σ̃′ is the projection of σ′ onto U(P̂).

Now we sketch the proof in 3 steps.
Step 1. We first provide an upper bound for Err(π̂∗) with

the following lemma.

Lemma 1.
Err(π̂∗) ≤ e1 + e2, (12)

where

e1 := Vπ∗,σ̃∗

Ms (s0)−Vπ∗,σ̂∗

M̂
(s0), e2 := V π̂∗,σ̃′

M̂
(s0)−V π̂∗,σ′

Ms (s0).

Here e1 measures the error from transferring σ̂∗ on M̂ to
σ̃∗ on Ms given fixed π∗. Similarly, e2 measures the error
under π̂∗. We then bound the two errors separately.

Step 2. For e1, notice that the difference between the two
V values is caused by the difference of transitions and pertur-
bations. We can decompose e1 into state-action pair-wise er-
ror terms (refer to Appendix for more details). For clarity, we
use Vπ∗,σ̂∗

M̂,h
to denote the vector composed of all Vπ∗,σ̂∗

M̂
(s)

where s ∈ Sh. Then we have

Vπ∗,σ̃∗

Ms (s0)− Vπ∗,σ̂∗

M̂
(s0)

=

H∑
h=1

∑
s∈Sh

∑
a

ξπ
∗,σ̃∗

Ms (s, a)
(
(P s(s, a)− P̂ (s, a))⊤Vπ∗,σ̂∗

M̂,h+1

)
(13)

+

H∑
h=1

∑
s∈Sh

∑
a

ξπ
∗,σ̃∗

Ms (s, a)
(
(σ̃∗(s, a)− σ̂∗(s, a))⊤Vπ∗,σ̂∗

M̂,h+1

)
.

(14)

where ξπ,σM (s, a) is defined as the probability of reaching
(s, a) on MDP M following policy π and perturbation σ.

Here the first summation term characterizes the estimation
error caused by the samples, and the second characterizes
the error caused by using an improper perturbation set.

Consider (P s(s, a) − P̂ (s, a))⊤Vπ∗,σ̂∗

M̂,h+1
in Eq. (13). For

general constraint C, σ̂∗ can be correlated with P̂ . There-
fore, P̂ and Vπ∗,σ̂∗

M̂,h+1
are not independent random variables.

According to the Azuma’s inequality on ℓ1-norm, we have
that with a probability at least 1− δ′,

||P s(s, a)− P̂ (s, a)||1 ≤ α(N), (15)

7421

where we define

α(N) =
√
2D ln(2/δ′)/N. (16)

Recall our definition of D ≥ |Sh| for all h ∈ [H]. This
property holds for all (s, a) pairs.

Using the Cauchy-Schwarz inequality, we have that

(P s(s, a)− P̂ (s, a))⊤Vπ∗,σ̂∗

M̂,h+1

≤||P s(s, a)− P̂ (s, a)||1||Vπ∗,σ̂∗

M̂,h+1
||∞ ≤ Hα(N). (17)

For the (σ̃∗(s, a)− σ̂∗(s, a))⊤Vπ∗,σ̂∗

M̂,h+1
in Eq. (14), we use

the Cauchy–Schwarz inequality and Assumption 1 to get

(σ̃∗(s, a)− σ̂∗(s, a))⊤Vπ∗,σ̂∗

M̂,h+1
≤ λHα(N). (18)

Recall our definition for reaching probability ξπ,σM (s, a)
and we have that

∑
s∈Sh,a∈A ξπ,σM (s, a) = H .

Notice that α is a decreasing function with respect to N ,
and converges to 0 as N goes to infinity. Then with

N ≥ α−1(ϵ/(2(1 + λ)H2)) =
8(1 + λ)2H4D ln(2/δ′)

ϵ2
, (19)

we have that e1 ≤ ϵ/2.
Step 3. Using similar analysis techniques (refer to Ap-

pendix) and N in Eq. (19), we also have e2 ≤ ϵ/2. Finally,
we choose δ′ = δ/(4SA) and use the union bound to get
that with a probability no less than 1− δ, Err(π̂∗) ≤ ϵ.

By roughly considering D as S, this theorem shows that
with a sample complexity of Õ(S2AH4(1 + λ)2/ϵ2), our
method with a plug-in NE solver can find an ϵ-optimal pol-
icy with a high probability. Further if our NE solver returns
an approximate NE with a value error ϵ′, then we can simply
replace ϵ with ϵ− ϵ′ to calculate N .

Cases and Extensions
In this section, we give some examples for RMDPs. Finally
we give a further extension which is also suitable to apply
our game-theoretical framework.

Pair-Wise Constraint (PWC)
Here we consider a specific kind of constraints, where the
constraint C has independent effect on each state-action pair.
We call this as the Pair-Wise Constraint (PWC). Many prac-
tical problems provide constraints directly on state-action
pairs, such as Total Variation distance bound on transitions.
These constraints can be included in the PWC.

For PWC problems, we can implement a simple NE solver
based on value back-propagation, which has a quite similar
form to methods in previous works (Nilim and El Ghaoui
2004; Iyengar 2005). Detailed definition for PWC and its
NE solver are given in Appendix. Here we only give its the-
oretical result.
Theorem 2. For a given (ϵ, δ), where ϵ ∈ (0, H) and δ ∈
(0, 1), and a PWC C satisfying Assumption 1, if

N ≥ 8H4 ln(8SA/δ)

ϵ2
(2 + λ

√
D)2, (20)

then with a probability no less than 1− δ,

Err(π̂∗) ≤ ϵ. (21)

The detail of the proof is given in Appendix. This theorem
shows that compared with Theorem 1, the sample complex-
ity of PWCs for model estimation can be improved from
Õ(DSAH4/ϵ2) to Õ(SAH4/ϵ2), while the bound for per-
turbation set error still suffers a scale of Dλ2.

We also give more results for specific PWC cases. For
RMDP with fixed perturbation sets, where the perturba-
tion is independent of the environment parameters, we have
Err(π̂∗) ≤ ϵ with a probability no less than 1 − δ, with
N ≥ 8H4 ln(8SA/δ)

ϵ2 . Notice that this sample complexity is
comparable to the results of solving MDPs without pertur-
bation, which has an order of Õ(SAH3 min(H,S)/ϵ2) (See
Sec. C.2 of Cui and Yang (2020)). In other words, if our
estimation of P̂ would not cause a perturbation difference,
the complexity for solving a RMDP is comparable to that of
solving an MDP.

Further we consider another kind of PWC constraint, the
Total Variation Distance Constraint (TVDC). For a fixed
value u, for each state-action pair (s, a) and any probabil-
ity p ∈ ∆sa, the TVDC is defined as

CTV D(p;u) := {p′ ∈ ∆sa : ||p′ − p||TV ≤ u}. (22)

We also aim to ensure Err(π̂∗) ≤ ϵ with a probabil-
ity no less than 1 − δ. If u ≤ ϵ/(16H2), then we can
choose N ≥ 128H4 ln(8SA/δ)

ϵ2 ; otherwise we choose N ≥
max

(
16H4 ln(8SA/δ)

ϵ2 (
√
2 + 6

√
uD)2, 49D ln(8SA/δ)

27u

)
.

The complete theorem and its proof are given in Ap-
pendix. We can see that for a small u, we can nearly con-
sider the TVDC as a fixed perturbation constraint and it
has the sample complexity order comparable to that of
solving a MDP without perturbation. For u > ϵ/(16H2),
the perturbation set difference would cause a scale of
1 + uD on the sample complexity. That is, the larger u
is, the larger the sample complexity is needed to guaran-
tee the Err(π̂∗). Finally, there is a higher order term of
49D ln(8SA/δ)/(27u) ≤ 49 ∗ 16H2D ln(8SA/δ)/(27ϵ).

Homogeneous Perturbation
PWC problems can be solved by minimax dynamic pro-
gramming, which is quite similar to previous methods. Here
we give a simple example to show that our game-theoretical
framework is able to handle more flexible constraints. Here
we consider a homogeneous perturbation (HP), where the
perturbation on all state-action pairs should be the same.
Here we simply assume that ∆sa has the same dimension
for all (s, a) and perturbation σ from a fixed perturbation set
U is added on all state-action pairs simultaneously. For HP,
we cannot choose a worst-case perturbation for each (s, a),
and we need to consider the MDP parameters as a whole.

This problem cannot be solved by a directly minimax op-
timization on state-action pairs. From our game-theoretical
point of view, our two-player zero-sum game defined in Sec.
reduce to a two-player zero-sum extensive game with im-
perfect information (TZEGI) (Refer Sec. 3.7 of Nisan et al.
(2007) and Def 1 of Zinkevich et al. (2007)). In TZEGI,
players make decisions on infosets, which includes all the
states that the player cannot distinguish. Here we consider

7422

the perturbation play takes action the infoset which includes
all state-action pairs. Therefore we only need to find an NE
solver for TZEGI. Fortunately Zinkevich et al. (2007) pro-
vide us an approximate NE solver, the counterfactual regret
minimization (CFR)3. We can use CFR as the solver to re-
turn an ϵ/4-NE and choose N = O(H4D ln(1/δ)/ϵ2).

Hence our game-theoretical framework indeed provide us
a way to handle RMDP with more general constraints. More
detailed discussion for this is given in Appendix.

Extension to Robust Partial Observable MDP
Our method is even able to extend to robust Partial Observ-
able MDP (RPOMDP) problems, where the agent is given
observations instead of states.

Consider an RPOMDP problem with the training environ-
ment parameters give. The key to solve an RPOMDP is to
formalize this problem as a TZEGI, where the agent’s infos-
ets includes all the histories it cannot distinguish now. Again
we apply the CFR algorithm to find the robust policy for this
task. We give detailed discussion in Appendix.

Discussions
Here we give some discussions for our results.

Rectangularity Assumption (RA): many previous
works (Yang, Zhang, and Zhang 2021) consider RA, which
is also a PWC and is appliable with Thm. 2. The standard
robust dynamic programming technique is suitable for RA,
but cannot be used under our weak Lipschitz assumption.

Lower bound: Azar, Munos, and Kappen (2013) give the
lower bound for solving an episodic MDP with a generative
model of order O(SAH3 ln(SA/δ)/ϵ2). This can be con-
sidered as a lower bound for RMDP. However, it is not clear
whether the lower bound can be improved according to the
property of the constraints. For the fixed perturbation con-
straint and the TVDC with small u, our method matches this
lower bound except an extra H . For the general constraint
with a Lipschitz constant λ, our upper bound matches the
lower bound except an extra scale of HD(1 + λ)2.

Online setting: In the online setting, the agent interacts
with the environment to gain trajectories and uses the trajec-
tories to learn policy. The lower bound for online and gener-
ative model settings are the same (Azar, Munos, and Kappen
2013). However, for the RMDP problem in this work, the
online methods might suffer a sample complexity growing
exponentially with H or even infinity. The key challenge is
that the agent in the online problem can only reach states ac-
cording to P s. For example, consider the case that the reach-
ing probability to a state s under MDP Ms and any policy π
is 0, while it can be reached under the true environment M∗.
Then the agent can never know the reward at and after s, and
this might cause a large error. It is still not clear whether we
can solve this issue for the online setting.

Comparison with MDP without perturbations: Com-
pared to current results of Õ(SAH3 min(H,S)/ϵ2) in Cui
and Yang (2020) for finite-horizon MDPs without perturba-
tion, our result in Theorem 1 suffers an extra D(1 + λ)2

3Notice that CFR usually returns a random policy.

term. The term (1+λ)2 comes from the Lipschitz condition
of C, and the D appears as we require transitions for all state-
action pair (s, a) to be tight enough. The appearance of D is
similar to the conclusion of the recently studied reward-free
reinforcement learning setting (e.g. Jin et al. 2020; Zhang,
Du, and Ji 2020).

Related Work

Many existing works concentrate on the training and testing
mismatch problem on MDPs. A straightforward way is to
connect the two MDPs and transfer knowledge from Ms to
M∗. Rusu et al. (2017) apply transfer learning to transfer
features for testing. Jiang (2018) theoretically gives some
results on how to repair a mismatched training MDP.

As for the problems where the testing environment is not
accessible, there are also various works focusing on solving
the robust policies via maximin methods. Dupačová (1987)
discusses the minimax approaches for stochastic problems
and Shapiro and Kleywegt (2002) give a Bayesian approach.
Nilim and El Ghaoui (2004) and Iyengar (2005) propose a
general framework for the maximin solutions for RMDPs.
However, they require full knowledge of Ms and the per-
turbations. Wiesemann, Kuhn, and Rustem (2013) concen-
trate on RMDP under RA and Puggelli et al. (2013) focus
on convec uncertainties. Recent work proposes a model-free
method for RMDPs (Roy, Xu, and Pokutta 2017) and the
extension to MDPs with functional approximations is also
considered (Tamar, Mannor, and Xu 2014; Panaganti and
Kalathil 2020). Derman et al. (2020) propose a Bayesian
method for RMDPs. Although they consider the problems
where the interactions with Ms are needed, they lack non-
asymptotic analysis for the sample complexity. Some further
work (Cubuktepe et al. 2021) considers RPOMDPs under
certain assumptions.

As for the solving an MDP with a generative model,
plenty of works (Kearns and Singh 1999; Kakade 2003;
Azar, Munos, and Kappen 2012, 2013; Cui and Yang 2020)
have been done for the sample complexity to find an optimal
policy. They mostly concentrate on infinite-horizon MDP
with a discount factor γ and currently have reached the lower
bound of Õ(SA/((1−γ)3ϵ2). However, their results cannot
be applied to RMDPs directly since the perturbation makes
the environment for the agent no longer stable.

Conclusion

We focus on the policy learning for Robust Markov Deci-
sion Process where the training and testing MDPs are mis-
matched. For general constraints on the perturbation, we
solve RMDP problems by re-formalizing the problem as
finding an NE of a two-player zero-sum game and applying
a plug-in NE solver. For a constraint satisfying the Lipschitz
condition with a constant λ, our method has a sample com-
plexity of Õ(DSAH4(1 + λ)2/ϵ2). Our method can solve
constraints like PWC and HP and is able to extend to solve
problems like RPOMDPs.

7423

Acknowledgments
This work was supported by the National Key Research and
Development Program of China (No.s 2020AAA0106000,
2020AAA0104304, 2020AAA0106302), NSFC Projects
(Nos. U19A2081, 62061136001, 62076147, U19B2034,
U1811461), Beijing NSF Project (No. JQ19016), Tsinghua-
Huawei Joint Research Program, and Tsinghua Institute for
Guo Qiang.

References
Azar, M. G.; Munos, R.; and Kappen, B. 2012. On the sam-
ple complexity of reinforcement learning with a generative
model. arXiv preprint arXiv:1206.6461.
Azar, M. G.; Munos, R.; and Kappen, H. J. 2013. Mini-
max PAC bounds on the sample complexity of reinforcement
learning with a generative model. Machine Learning, 91(3):
325–349.
Burges, C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Wein-
berger, K. Q.; Hanasusanto, G. A.; and Kuhn, D. 2013. Ro-
bust data-driven dynamic Programming. Advances in Neural
Information Processing Systems, 827–835.
Comair, G. F.; Mckinney, D.; Maidment, D. R.; Espinoza,
G.; Sangiredy, H.; Fayad, A.; and Salas, F. R. 2014. Hy-
drology of the Jordan River Basin: A GIS-based system to
better guide water resources management and decision mak-
ing. Water Resources Management An International Journal
Published for the European Water Resources Association,
28(4): 933–946.
Cubuktepe, M.; Jansen, N.; Junges, S.; Marandi, A.; Suilen,
M.; and Topcu, U. 2021. Robust finite-state controllers for
uncertain POMDPs. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 11792–11800.
Cui, Q.; and Yang, L. F. 2020. Is plug-in solver sample-
efficient for feature-based reinforcement learning? arXiv
preprint arXiv:2010.05673.
Delage, E.; and Mannor, S. 2010. Percentile optimization
for Markov decision processes with parameter uncertainty.
Operations Research, 58: 203–213.
Derman, E.; Mankowitz, D.; Mann, T.; and Mannor, S. 2020.
A bayesian approach to robust reinforcement learning. In
Uncertainty in Artificial Intelligence, 648–658. PMLR.
Dupačová, J. 1987. The minimax approach to stochastic pro-
gramming and an illustrative application. Stochastics: An In-
ternational Journal of Probability and Stochastic Processes,
20(1): 73–88.
Ghavamzadeh, M.; Petrik, M.; and Chow, Y. 2016. Safe
policy improvement by minimizing robust baseline regret.
Advances in Neural Information Processing Systems, 29:
2298–2306.
Iyengar, G. N. 2005. Robust dynamic programming. Math-
ematics of Operations Research, 30(2): 257–280.
Jiang, N. 2018. PAC reinforcement learning with an im-
perfect model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32.

Jin, C.; Krishnamurthy, A.; Simchowitz, M.; and Yu, T.
2020. Reward-free exploration for reinforcement learning.
In International Conference on Machine Learning, 4870–
4879. PMLR.
Kakade, S. M. 2003. On the sample complexity of reinforce-
ment learning. Ph.D. thesis, UCL (University College Lon-
don).
Kearns, M.; and Singh, S. 1999. Finite-sample convergence
rates for Q-learning and indirect algorithms. Advances in
Neural Information Processing Systems, 996–1002.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Nilim, A.; and El Ghaoui, L. 2004. Robustness in Markov
decision problems with uncertain transition matrices. In Ad-
vances in Neural Information Processing Systems, 839–846.
Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V.
2007. Algorithmic Game Theory. Cambridge University
Press.
Panaganti, K.; and Kalathil, D. 2020. Model-free robust
reinforcement learning with linear function approximation.
arXiv e-prints, arXiv–2006.
Puggelli, A.; Li, W.; Sangiovanni-Vincentelli, A. L.; and Se-
shia, S. A. 2013. Polynomial-time verification of PCTL
properties of MDPs with convex uncertainties. In Inter-
national Conference on Computer Aided Verification, 527–
542. Springer.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Rahimian, H.; and Mehrotra, S. 2019. Distribution-
ally robust optimization: A review. arXiv preprint
arXiv:1908.05659.
Rasheed, A.; San, O.; and Kvamsdal, T. 2020. Digital twin:
values, challenges and enablers from a modeling perspec-
tive. IEEE Access, PP(99): 1–1.
Roy, A.; Xu, H.; and Pokutta, S. 2017. Reinforcement learn-
ing under model mismatch. In Advances in Neural Informa-
tion Processing Systems, 3043–3052.
Rusu, A. A.; Večerı́k, M.; Rothörl, T.; Heess, N.; Pascanu,
R.; and Hadsell, R. 2017. Sim-to-real robot learning from
pixels with progressive nets. In Conference on Robot Learn-
ing, 262–270. PMLR.
Shapiro, A.; and Kleywegt, A. 2002. Minimax analysis of
stochastic problems. Optimization Methods and Software,
17(3): 523–542.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature, 550(7676): 354–359.

7424

Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to rein-
forcement learning, volume 135. MIT press Cambridge.
Tamar, A.; Mannor, S.; and Xu, H. 2014. Scaling up robust
MDPs using function approximation. In International Con-
ference on Machine Learning, 181–189. PMLR.
Wiesemann, W.; Kuhn, D.; and Rustem, B. 2013. Robust
Markov decision processes. Mathematics of Operations Re-
search, 38(1): 153–183.
Yang, W.; Zhang, L.; and Zhang, Z. 2021. Towards The-
oretical Understandings of Robust Markov Decision Pro-
cesses: Sample Complexity and Asymptotics. arXiv preprint
arXiv:2105.03863.
Zhang, Z.; Du, S. S.; and Ji, X. 2020. Nearly minimax
optimal reward-free reinforcement learning. arXiv preprint
arXiv:2010.05901.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C.
2007. Regret minimization in games with incomplete infor-
mation. Advances in neural information processing systems,
20: 1729–1736.

7425

