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Abstract

We study the theoretical properties of random Fourier features
classification with Lipschitz continuous loss functions such as
support vector machine and logistic regression. Utilizing the
regularity condition, we show for the first time that random
Fourier features classification can achieve O(1/

√
n) learn-

ing rate with only Ω(
√
n log n) features, as opposed to Ω(n)

features suggested by previous results. Our study covers the
standard feature sampling method for which we reduce the
number of features required, as well as a problem-dependent
sampling method which further reduces the number of fea-
tures while still keeping the optimal generalization property.
Moreover, we prove that the random Fourier features classifica-
tion can obtain a fast O(1/n) learning rate for both sampling
schemes under Massart’s low noise assumption. Our results
demonstrate the potential effectiveness of random Fourier fea-
tures approximation in reducing the computational complexity
(roughly from O(n3) in time and O(n2) in space to O(n2)
and O(n

√
n) respectively) without having to trade-off the sta-

tistical prediction accuracy. In addition, the achieved trade-off
in our analysis is at least the same as the optimal results in the
literature under the worst case scenario and significantly im-
proves the optimal results under benign regularity conditions.

Introduction
Kernel methods have been widely used in many ma-
chine learning tasks such as regression and classification
(Schölkopf and Smola 2001; Schölkopf, Tsuda, and Vert
2004), as they provide a simple framework to model highly
complicated functional relationships and well-established the-
oretical guarantees (Caponnetto and De Vito 2007; Steinwart
and Christmann 2008). The power of kernel methods comes
from the so-called ”kernel trick”, where it utilizes a feature
function φ(·) to implicitly map the data into a high or possibly
infinite dimensional feature space and thus allows non-linear
functional learning. However, kernel methods are notorious
for being time-consuming, since a typical kernel learning
algorithm requires O(n3) computation and O(n2) memory,
where n is the number of training samples. Due to the pro-
hibitive computational requirements, a flurry of research has
been devoted to developing algorithms that efficiently approx-
imate kernel functions (Smola and Schökopf 2000; Williams
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and Seeger 2001a; Rahimi and Recht 2007; Mahoney and
Drineas 2009; Alaoui and Mahoney 2015; Rudi, Carratino,
and Rosasco 2017; Zhang, Duchi, and Wainwright 2015).

Among many approximation frameworks, the random
Fourier features (RFFs) method proposed by (Rahimi and
Recht 2007) has received great attention recently (see Liu
et al. 2020, for a comprehensive review). The key idea of
RFFs is to approximate the infinite dimensional feature map
φ(·) with an explicit s-dimensional random feature map φs(·)
through Bochner’s theorem (Bochner 1932; Rudin 2017),
which states that φs(·) can be constructed through sampling
from some spectral measure. Kernel methods are now re-
duced to linear learning in the feature space, which can be
computed via fast linear solver (Shalev-Shwartz et al. 2011).
The computational cost decreases from roughly O(n3) in
time and O(n2) in space to O(ns2) and O(ns) respectively.
As a result, significant computational savings can be achieved
as long as s� n.

Despite their empirical success (Rahimi and Recht 2007;
Huang et al. 2014; Dai et al. 2014), theoretical understand-
ing of the RFFs is incomplete. In particular, the question of
how to choose s in order to obtain the RFFs estimators with
performance provably comparable to original kernel methods
remains unclear. To this end, several authors study the prop-
erties of the RFFs to approximate the kernel function and
the kernel Gram-matrix (see e.g., Rahimi and Recht 2007;
Sriperumbudur and Szabó 2015; Sutherland and Schneider
2015, and references therein). However, all of these works
require s = Ω(n) features to guarantee no loss of prediction
accuracy, which translates to no computational savings at all.
A highly refined analysis in the context of ridge regression is
proposed recently (see e.g., Rudi and Rosasco 2017; Avron
et al. 2017; Li et al. 2021). When the spectral measure is
used for sampling, they first show that O(

√
n log n) features

are adequate to guarantee the minimax optimal learning rate
O(1/

√
n), the same learning rate obtained with full kernel

ridge regression. Furthermore, they prove that the RFFs re-
gression can obtain a fast learning rate at the expense of
increasing the number of features. Finally, they demonstrate
that using a problem-dependent sampling distribution can
significantly reduce the number of features to s = Ω(1).

A question motivating our study is whether similar theo-
retical results hold in the classification setting where a key
difference is the loss functions employed (Lipschitz con-
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tinuous loss such as support vector machine and logistic
regression). (Bach 2017), (Sun, Gilbert, and Tewari 2018),
and (Li et al. 2021) study the generalization properties of
RFFs approximations in the classification setting. They show
that RFFs estimators can provide computational gains while
still preserving the statistical properties of the original kernel
method. Nevertheless, a key requirement in these analyses is
to employ a certain problem-dependent sampling distribution.
Computing such a distribution often requires O(n3) in time
and O(n2) in space already and hence is itself intractable.
Therefore, whether RFFs classification can provide computa-
tional savings without using the problem-dependent sampling
distribution remains unclear, and a detailed trade-off between
the number of features required and the statistical prediction
accuracy is still missing.

A key step in obtaining a better trade-off for RFFs regres-
sion is to employ the regularity condition (see Assumption
A.3). However, this property is not used while analyzing
the RFFs classification. In this paper, by incorporating the
regularity condition, we improve the optimal results in the
literature and provide a definitive answer to questions men-
tioned above by making the following contributions

• Under suitable regularity condition (Assumption A.3),
Theorem 1 shows that RFFs classification only requires
Ω(
√
n log n) features to guarantee the minimax optimal

O(1/
√
n) learning rate, the same prediction accuracy as

the original kernel classification methods. Our analysis
allows the computational cost to reduce from O(n3) in
time and O(n2) in space to O(n2) and O(n

√
n) respec-

tively, and suggest that for a wide range of classification
problems, RFFs approximations provide dramatic compu-
tational cost savings without loss of prediction accuracy.
To the best of our knowledge, this is the first result con-
firming that such a computational gain is possible in the
classification setting when the standard sampling method
is used.

• Using Massart’s low noise assumption (Assumption A.4),
Theorem 2 further provides a more refined analysis on
the generalization properties of the RFF classification
estimators. We obtain a sharp O(1/n) learning rate for
classification at the expense of more random features
required.

• We also discuss how problem-dependent sampling dis-
tribution further reduces the computational cost in the
O(1/

√
n) rate setting and the O(1/n) rate setting. Our

analysis expresses the trade-off between the number of
features required and the statistical prediction accuracy in
terms of the regularization parameter (λ) and the effective
degree of freedom (d(λ)) and points out how utilizing the
optimized feature can lead to a significant reduction in the
computational cost.

• Finally, in Table 1 and 2, we provide a comprehensive
comparison between achieved results in this paper and
the optimal bound in the literature. The analysis demon-
strates that under benign conditions, our study obtains
the sharpest bound on the number of features required in
literature, while under worst case scenario, we match the
optimal results in the literature.

Background
Supervised Learning with Kernels
Let P (x, y) = PxP (y | x) be a joint probability density
function defined on X × Y where X is an instance space
and Y a label space. While in regression tasks Y ⊂ R, in
classification tasks it is typically the case that Y = {−1, 1}.
Let {(xi, yi)}ni=1 be a training set sampled independently
from P (x, y). The goal of a supervised learning defined with
a kernel function k (and the associated reproducing kernel
Hilbert space H) is to find a hypothesis f : X → Y such
that f ∈ H and f(x) is a good estimate of the label y ∈ Y
corresponding to a previously unseen instance x ∈ X . In
particular, the learning can be formulated as the following
optimization problem

f̂λ := arg min
f∈H

1

n

n∑
i=1

l(yi, f(xi)) + λ‖f‖2H .

where l : Y × Y → R+ is a loss function and λ is the
regularization parameter to prevent overfitting. As a result
of the representer theorem (Schölkopf and Smola 2001), an
empirical risk minimization estimator in this setting can be
expressed as f̂λ =

∑n
i=1 αik(xi, ·) with α ∈ Rn and the

optimization problem can be reformulated as

α̂λk := arg min
α∈Rn

1

n

n∑
i=1

l(yi, (Kα)i) + λαTKα , (1)

where K is the kernel Gram-matrix with Ki,j = k(xi, xj).

Learning Risk The hypothesis f̂λ is an empirical estima-
tor and we use the learning risk to assess its ability to cap-
ture the relationship between instances and labels given by
P (Caponnetto and De Vito 2007)

EP [lf̂λ ] =

∫
X×Y

l(y, f̂λ(x))dP (x, y) ,

where we use lf to denote l(y, f(x)). When the context is
clear, we will omit P from the expectation and write E[lf̂λ ].

The empirical distribution Pn(x, y) is given by a sample
of n examples drawn independently from P (x, y). The em-
pirical risk is used to estimate the learning risk E[lf̂λ ] and it
is given by

En[lf̂λ ] =
1

n

n∑
i=1

l(yi, f̂
λ(xi)) .

Similar to Rudi and Rosasco (2017) and Caponnetto and
De Vito (2007), we will assume 1 the existence of fH ∈ H
such that fH = arg minf∈H E[lf ]. Note that E[lfH ] is the
lowest learning risk one can achieve in the reproducing kernel
Hilbert spaceH. Hence, theoretical studies of the estimator
f̂λ often concern how fast its learning risk E[lf̂λ ] converges
to E[lfH ], that is, how fast the excess risk E[lf̂λ ] − E[lfH ]
converges to zero. In the remainder of the manuscript, we
will refer to the rate at which the excess risk converges to
zero as the learning rate.

1The existence of fH depends on the complexity ofH which is
related to the data distribution P (y|x). For more details, please see
Caponnetto and De Vito (2007) and Rudi and Rosasco (2017).
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Random Fourier Features
Despite providing a flexible non-linear approximation frame-
work, kernel methods suffer from the scalability issue. In
particular, kernel supervised learning often requires the store
or the inverse of the kernel Gram matrix K (O(n2) andO(n3)
computations respectively), which is prohibitive. As a result,
many low-rank approximation algorithms have been designed
to resolve this issue (see, e.g., Smola and Schökopf 2000;
Williams and Seeger 2001b; Rahimi and Recht 2007, 2009;
Mahoney and Drineas 2009, and references therein).

Among them, RFFs method is a widely used, simple, and
effective technique for scaling up kernel methods. The idea is
due to Bochner’s theorem (Bochner 1932), which states that
any bounded, continuous, and shift-invariant kernel is the
Fourier transform of a bounded positive measure. Assuming
the spectral measure dτ has a density function p(·), we can
write the corresponding kernel as

k(x, y) =

∫
V
e−2πiv

T (x−y)dτ(v)

=

∫
V

(
e−2πiv

T x
)(
e−2πiv

T y
)∗
p(v)dv ,

where c∗ denotes the complex conjugate of c ∈ C. Typically,
the kernel is real valued and we can ignore the imaginary
part (see e.g., Rahimi and Recht 2007). Bach (2017) and Rudi
and Rosasco (2017) further generalize the idea by considering
the following decomposition of kernel functions

k(x, y) =

∫
V
ψ(v, x)ψ(v, y)p(v)dv , (2)

where ψ : V ×X → R is a continuous and bounded function
with respect to v and x. Hence, we can approximate the kernel
function using its Monte-Carlo estimate

k̃(x, y) =
1

s

s∑
i=1

ψ(vi, x)ψ(vi, y) ,

= φs(x)Tφs(y) . (3)

where {vi}si=1 are sampled independently from the spectral
measure p(v) and

φs(x) =
1√
s

[ψ(v1, x), . . . , ψ(vs, x)]>.

We denote the reproducing kernel Hilbert space spanned by k̃
as H̃ (note that in general H̃ * H). Let K̃ be Gram-matrices
with entries K̃ij = k̃(xi, xj). Then the following equalities
can be derived easily from Eq. (3)

k(x, y) = Ev∼p
[
k̃(x, y)

]
∧ K = Ev∼p[K̃] .

In addition to the kernel Gram-matrix approximation, Bach
(2017) establishes that any f ∈ H can be expressed as 2

f(x) =

∫
V
g(v)ψ(v, x)p(v)dv (∀x ∈ X ) (4)

where g ∈ L2(dτ) is a real-valued function such that
‖g‖2L2(dτ)

<∞ and ‖f‖H = ming ‖g‖L2(dτ), with the min-
imum taken over all possible decompositions of f . Thus, one

2It is not necessarily true that for any g ∈ L2(dτ), there exists a
corresponding f ∈ H.

can take an independent sample {vi}si=1 ∼ p(v) (we refer
to this sampling scheme as plain RFF) and approximate a
function f ∈ H by an element from H̃ as

f̃(·) =
s∑
i=1

αiψ(vi, ·) = φs(·)>α with α ∈ Rs .

As the latter approximation is simply a Monte Carlo esti-
mate, one could also select an importance weighted probabil-
ity density function q(·) and sample features {vi}si=1 from
q (we refer to this sampling scheme as weighted RFF). The
function f can then be approximated by

f̃q(·) =
s∑
i=1

αiψq(vi, ·) = φq,s(·)>α ,

with ψq(vi, ·) =
√
p(vi)/q(vi)ψ(vi, ·) and φq,s(·) =

(1/
√
s)[ψq(v1, ·), · · · , ψq(vs, ·)]>.

For both plain RFF and weighted RFF, the goal is to find f̃
with minimal norm such that the computation error between
f̃ and f is minimized. Similar to Bach (2017), the RFFs
sampling can be formulated as the following optimization
problem

‖f̃ − f‖2L2(Px)
+ λ‖f̃‖2H̃ . (5)

Note that since f̃ /∈ H in general, we use the L2(Px) norm
to measure the computation error.

Integral Operator & Leverage Score Sampling
Kernel methods and RFFs are often studied through the in-
tegral operator L : L2(Px) → L2(Px), which we define
below

(Lf)(·) =

∫
X
k(x, ·)f(x)dPx(x) .

Given the kernel decomposition as Eq. (2), the integral oper-
ator can be expressed as an expectation (Bach 2017)

Lf =

∫
X
k(x, ·)f(x)dPx(x) ,

=

(∫
V
ψ(v, ·)⊗ ψ(v, ·)p(v)dv

)
f , (6)

where f ⊗ g is the L2(Px) outer product operator such that
(f ⊗ g)h = 〈g, h〉L2(Px)f . Finally, if k and ψ are both
bounded and continuous, then L is positive definite, self-
adjoint and trace-class. In particular, if ‖ψ‖ ≤ κ, we have
‖L‖ ≤ κ2.

Similarly, for kernel k̃, we define the integral operator
Ls : L2(Px)→ L2(Px):

Lsf =

∫
X
k̃(x, ·)f(x)dPx(x) ,

=

∫
X

1

s

s∑
i=1

ψ(vi, ·)ψ(vi, x)f(x)dPx ,

=

(
1

s

s∑
i=1

ψ(vi, ·)⊗ ψ(vi, ·)

)
f . (7)
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Hence, Ls can be seen as an empirical estimator of L.
The study of the integral operator is important because it

provides information on how to select the optimal sampling
distribution q(v). A large body of literature shows that find-
ing an optimal sampling distribution q(v) often significantly
reduces the number of features required (Bach 2017; Alaoui
and Mahoney 2015; Avron et al. 2017; Rudi and Rosasco
2017). The reason is that random features sampled according
to p(v) often focus on approximating the leading eigenvalues
of the integral operator L. In contrast, a reweighted sam-
pling distribution q(v) allows the random features to span the
whole eigenspectrum of L.

In light of this, a leverage score based weighted distribution
function is first introduced in Alaoui and Mahoney (2015) in
the context of the Nyström approximation (Nyström 1930;
Smola and Schölkopf 2000; Williams and Seeger 2001b). Uti-
lizing the importance reweighted nature, Alaoui and Mahoney
(2015) establish a sharp convergence rate of the low-rank es-
timator based on the Nyström method.

The success of the leverage score distribution further mo-
tivates the pursuit of a similar notion for RFFs. In particu-
lar, Bach (2017) first proposes the leverage score sampling
based on a leverage score function defined below

τλ(v) = p(v)〈ψ(v, ·), (L+ λI)−1ψ(v, ·)〉L2(Px) . (8)

From our assumption, it follows that there exists a constant κ
such that |ψ(v, x)| ≤ κ (for all v and x). We now have

τλ(v) ≤ p(v)
κ2

λ
.

An important property of function τλ(v) is its relation to the
effective number of parameters:∫

V
τλ(v)dv = Tr

[
L(L+ λI)−1

]
:= d(λ) ,

where d(λ) implicitly determines the number of parameters
in a supervised learning problem and is thus called the num-
ber of effective degrees of freedom (Bach 2013; Hastie 2017).

We can now sample features according to q∗(v) =
τλ(v)/d(λ), since q∗(v) is a probability density func-
tion. Bach (2017) studies the property of q∗(v) and demon-
strates that sampling according to q∗(v) requires fewer
Fourier features compared to the standard spectral measure
sampling. From now on, we refer to q∗(v) as the ridge lever-
age score distribution and refer to this sampling strategy as
leverage weighted RFF.

Main Results
In this section, we provide our theoretical analysis on the
trade-off between the number of random features and the
statistical prediction accuracy. We first discuss the worst
case scenario where the estimator achieves the O(1/

√
n)

learning rate, followed by demonstrating the trade-off in the
fast convergence rate setting.

O(1/
√
n) Learning Rate

We study the scenario where the RFFs estimator obtains the
minimax learning rateO(1/

√
n). As discussed before, kernel

supervised learning can be formulated as Eq. (1). Since we
are investigating the classification setting, we mainly con-
sider the loss function l to be uniformly Lipschitz continuous
functions such as support vector machine and logistic regres-
sion. A fatal problem for kernel supervised learning is the
computational cost since kernel learning problem such as
Eq. (1) often requires the store of the kernel Gram matrix
K or even the inversion of K, which are O(n2) and O(n3)
computations respectively.

In order to overcome the computation issue, the RFFs
provide an efficient way to approximate the kernel func-
tion. Specifically, we sample v1, . . . , vs according to some
importance sampling distribution q(v) to form the random
feature vector φs(·). For a given data (x, y), we then ap-
proximate the label y with the random feature hypothesis
f̃q(x) = φq,s(x)>β. The RFFs learning can be cast as the
following optimization problem

f̃λ := arg min
f̃q∈H̃

1

n

n∑
i=1

l(yi, f̃q(xi)) + λ‖f̃‖2H̃ .

According to Bach (2017) and Li et al. (2019), we have
‖f̃‖2H̃ ≤ ‖β‖

2
2, as a result, the above optimization can be

reformulated as

β̃λ := arg min
β∈Rs

1

n

n∑
i=1

l(yi, φ
>
q,sβ) + λ‖β‖22 . (9)

The RFFs hypothesis with loss function l can be repre-
sented as f̃λ = φ>q,sβ̃

λ. Through the RFFs approxima-
tion, we now only need to store the feature matrix Φq =
[φq,s(x1), . . . , φq,s(xn)]> ∈ Rn×s. The inversion of K can
be approximated as inverting Φ>q Φq ∈ Rs×s. Hence the com-
putation cost is now O(ns) and O(ns2 + s3) respectively.
We can see that if s� n, RFFs method enjoys a huge compu-
tational savings. However, a key question is how the choice
of s affects the prediction accuracy of f̃λ.

In this section, we try to address the above issue. We first
list our assumptions below
A.1 We assume that the kernel has integral expansion as

Eq. (2) such that ψ(v, x) is continuous in both v and x
and |ψ(v, x)| ≤ κ for all x ∈ X and v ∈ V ;

A.2 Assume that the loss function l in Eq. (9) is uniformly
Lipschitz continuous with constant M , i.e.,

|l(y, x1)− l(y, x2)| ≤M‖x1 − x2‖2.

A.3 Recall fH = arg minf∈H E[lf ], we assume that

fH = Lrg, for some r ∈ [1/2, 1] & g ∈ L2(Px);

Assumptions A.1 and A.2 are standard assumptions made in
classification problems. A.3 is a regularity condition that is
commonly used in approximation theory (Smale and Zhou
2003). It describes the decay rate of the coefficients of fH
along the basis given by the integral operator L, which fur-
ther allows controlling the bias of the estimator. While being
overlooked in the classification setting, A.3 is a key prop-
erty used in RFFs regression to obtain a better computation
and accuracy trade-off. Utlizing A.3 enables us to prove the
following refined analysis.
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Theorem 1. Assume A.1, A.2 and A.3 hold. Suppose we have
a measurable function τ̃ : V → R such that τ̃(v) ≥ τλ(v)

almost surely. Denote dτ̃ =
∫
V τ̃(v)dv, and let q(v) = τ̃(v)

dτ̃
.

We sample v1, . . . , vs ∼ q(v) and compute the hypothesis f̃λ
by solving the optimization problem in Eq. (9). Let δ ∈ (0, 1),
if we have

s ≥ 12dτ̃ log
d(λ)

δ
,

with probability over 1− δ,

E(lf̃λ)− E (fH) ≤ 2MRλr +O
(
1/
√
n
)
. (10)

Theorem 1 expresses the trade-off between the computa-
tional cost and statistical efficiency through the regularization
parameter λ, the effective dimension of the problem d(λ),
and the normalization constant dτ̃ of the sampling distribu-
tion. The regularization parameter λ is used as a key quantity
in the analysis of supervised learning setting (Caponnetto
and De Vito 2007; Rudi and Rosasco 2017; Li et al. 2019). In
particular, if we set λ ∝ 1/n2r, we observe that the estima-
tor f̃λ attains the O(1/

√
n) learning rate (Bach 2017). As a

consequence of Theorem 1, we have the following bounds on
the number of required features for the two strategies: plain
RFF (Corollary 1) and leverage weighted RFF (Corollary 2).
Corollary 1. If the probability density function from Theo-
rem 1 is the spectral measure p(v), then the upper bound
on the learning risk from Eq. (10) holds for all s ≥
5κ2/λ log 16d(λ)

δ .

Proof. We set τ̃(v) = p(v)κ2/λ and obtain dτ̃ =∫
V p(v)κ2/λdv = κ2/λ.

Theorem 1 and Corollary 1 have several implications on
the choice of λ and s in the classification setting with plain
RFF. In particular, the usual generalization bound for kernel
estimator f̂λ (i.e., minimizer of Eq. (1)) is O(1/

√
n) (see

e.g., Rahimi and Recht 2009; Shalev-Shwartz and Ben-David
2014; Bach 2017). As such, if we set λ = O(n−1/2r), we can
see that the RFFs estimator f̃λ incurs no loss of prediction
accuracy while offering computational gains.

Specifically, in the benign case where r = 1,
O(
√
n log n)3 features is able to achieve the O(1/

√
n)

learning rate. Comparing with the existing analysis where
O(n log n) features are required (Rahimi and Recht 2009;
Li et al. 2019), our result is a significant improvement. We
also achieve remarkable computational savings: from roughly
O(n3) and O(n2) in time and space for original kernel meth-
ods to O(n2) and O(n

√
n) for the RFFs approximation.

Moreover, when r > 1/2, we also obtain computational
gain as the number of features required now is Ω(n1/2r) with
2r > 1. In the worst scenario where r = 1/2 (equivalent
to assuming fH exists), we recover the results from existing
analysis (Rahimi and Recht 2007; Li et al. 2019).

To our knowledge, this is the first result showing that for
a large class of classification problems (r > 1/2), RFFs
classification can dramatically reduce the computational cost
while preserving the optimal generalization properties.

3We use the fact that d(λ)� n

Corollary 2. If the probability density function from The-
orem 1 is the ridge leverage score distribution q∗(v), the
upper bound on the risk from Eq. (10) holds for all s ≥
5d(λ) log 16d(λ)

δ .

Proof. For this corollary, we set τ̃(v) = τλ(v) and deduce
dl̃ =

∫
V τλ(v)dv = d(λ).

Corollary 2 details the number of features required in the
leverage weighted RFF setting. Similar to the plain RFF
setting, the RFFs estimator obtainsO(1/

√
n) rate once we set

λ = O(n1/2r). However, the choice of s now is determined
by two factors: the regularity condition r and the decay rate
of the eigenspectrum of L.

We first consider the benign scenario where r = 1. Depend-
ing on the eigenspectrum decay rate, we have several different
cases. Denote {µ1, µ2, . . . , } to be the eigenvalue of L, in
the best case where L has finite rank, d(λ) remains constant
as n grows. We therefore conclude that even Ω(1) features
can guarantee the O(1/

√
n) learning rate. Next, if the eigen-

spectrum displays exponential decay, i.e., µi ∝ C0r
i, we

have d(λ) ≤ log(C0
0/λ). We can see that s ≥ log n log log n

is enough to achieve the O(1/
√
n) learning rate. As such,

significant computational savings is obtained: from O(n3)
and O(n2) to O(n log4 n) and O(n log n) respectively. In
the case of a slower decay with µi ∝ C0i

−2γ , we have
d(λ) ≤ (R0/λ)1/(2γ) and s ≥ n1/4γ log n. Hence, substan-
tial computational savings can be achieved even in this case.
Furthermore, in the worst case with µi close to C0i

−1, our
bound implies that s ≥ n1/2 log n features are sufficient.

The analysis for the worst case scenario where r =
1/2 is similar. The required numbers of features are
Ω(1),Ω(log n log log n),Ω(n1/2γ) and Ω(n log n) for the
cases where the eigenspectrum has finite rank, decays ex-
ponentially, proportional to C0i

−2γ and close to C0i
−1, re-

spectively. Our results demonstrate that huge computational
savings are possible as long as the eigenspectrum of L dis-
plays fast decay (faster than i−1).

Comparison with Existing Sharpest Results Under
O(1/

√
n) learning rate setting, Rahimi and Recht (2009),

Bach (2017), and Li et al. (2021) analyze the trade-off be-
tween the number of features and the statistical prediction
accuracy. Table 1 provides a detailed comparison between
this work and that from Li et al. (2021). Our results show that
we obtain at least the same rate as the previous best rate in
the literature when r = 1/2, while significantly improving
the trade-off under benign conditions (r > 1/2).

The first block of rows in Table 1 illustrates the difference
between our work and that from Li et al. (2021) when plain
sampling is used. A key feature in our results is that when r >
1/2, our results state that the RFFs approximation provides
computational gain without trading off for the prediction
accuracy. In comparison, results from Li et al. (2021) state
that there is no computational gain (s = Ω(n)) if we were to
achieve the O(1/

√
n) learning rate. In addition, we recover

the results from Li et al. (2021) when r = 1/2.
We observe a similar pattern when leverage weighted RFF

is used. In particular, our results match those from Li et al.
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SAMPLING SCHEME SPECTRUM THIS WORK LI ET AL. (2021) LEARNING RATE

PLAIN RFF

FINITE RANK s ∈ Ω(n1/2r) s ∈ Ω(n)

O(1/
√
n)EXPONENTIAL DECAY s ∈ Ω(n1/2r · log log n) s ∈ Ω(n · log log n)

POLYNOMIAL DECAY s ∈ Ω(n1/2r · log n) s ∈ Ω(n · log n)

WEIGHTED RFF

FINITE RANK s ∈ Ω(1) s ∈ Ω(1)

O(1/
√
n)

EXPONENTIAL DECAY s ∈ Ω(log n · log log n) s ∈ Ω(log n · log log n)

µi ∝ i−2γ , γ ≥ 1 s ∈ Ω(n1/4γr · log n) s ∈ Ω(n1/2γ · log n)

µi ∝ i−1 s ∈ Ω(n1/2r · log n) s ∈ Ω(n · log n)

Table 1: The comparison of our results to the sharpest learning rates from prior work (Li et al. 2021), where r ∈ [1/2, 1] .

(2021), when the eigenspectrum has finite rank or displays ex-
ponential decay. However, as soon as the eigenspectrum has
polynomial decay, our result is sharper. Specifically, when the
eigenvalue decays polynomially with µi ∝ i−2γ and r = 1,
our results show that Ω(n1/4γ logn) features are enough to
achieve O(1/

√
n) learning rate, comparing with Ω(n1/2γ)

features required from Li et al. (2021). When the eigenvalue
decays close to i−1, our results require Ω(n1/2 log n) fea-
tures while Li et al. (2021) require Ω(n log n) features.

Refined Learning Rate
In the previous section, we study the trade-off between the
number of features and the statistical prediction accuracy in
the O(1/

√
n) minimax learning rate setting. In general, it

is hard for classification problems to obtain learning rates
sharper than O (1/

√
n). However, under some benign con-

ditions, it is possible to obtain O(1/n) convergence rate as
demonstrated by Bartlett, Jordan, and McAuliffe (2006) and
Steinwart and Christmann (2008). As such, with the help of
the following assumption, we derive a sharp learning rate for
RFFs classification problems in this section.
A.4 Recall that fH is the optimal estimator in A.3. We as-

sume that there exists a constant G such that for all
f ∈ H

E[(f − fH)2] ≤ GE[lf − lfH ] .

Assumption A.4 is a widely used condition for classification
problems to obtain faster learning rates. It typically requires
that the loss function l is uniformly convex and the function
spaceH is convex and uniformly bounded. It can be shown
that many loss functions satisfy this assumption, including
squared loss (Bartlett et al. 2005) and hinge loss (Steinwart
and Christmann 2008, Chapter 8.5). Additional examples of
these loss functions are discussed in Bartlett, Jordan, and
McAuliffe (2006) and Mendelson (2002). In addition, since l
is Lipschitz continuous, we can rewrite A.4 as

E[(lf − lfH)2] ≤ L2E[(f − fH)2] ≤ GL2E[lf − lfH ] .

This is the variance condition described in Steinwart and
Christmann (2008, Chapter 7.3), which is also linked to

the Massart’s low noise condition or more generally to the
Tsybakov condition (Sun, Gilbert, and Tewari 2018). Intu-
itively speaking, the condition requires that the bayes clas-
sifier P (Y = 1 | X = x) is not close to 1/2 (see e.g.,
Tsybakov et al. 2004; Koltchinskii 2011, for more details).

Theorem 2. Assume A.1-A.4 hold. In addition, we assume
the condition for τ̃ , dτ̃ and q(v) hold as that in Theorem 1.
Let {µ̃1, µ̃2, . . . } be the eigenvalues of the normalized Gram-
matrix (1/n)K̃, c1, c2, c3 be some universal constant, and
δ ∈ (0, 1), if we have

s ≥ 12dτ̃ log
d(λ)

δ
,

with probability over 1− δ,

E(lf̃λ)− E (fH) ≤ 2MRλr + c1r̂
∗ +

c2
n

log
1

δ
,

where

r̂∗ ≤ c3 min
0≤h≤n

h
n

+

√
1

n

∑
i>h

µ̃i

 .

Theorem 2 covers a wide range of cases and can provide
sharp risk convergence rates. In particular, r̂∗ has an upper
bound of O(1/

√
n) in all cases, which happens when µ̂i de-

cays polynomially as O(n−γ) with γ > 1 and we let h = 0.
On the other hand, if µ̂i decays exponentially, then setting
h = dlog ne implies that r̂∗ ≤ O(log n/n). In the best case,
when (1/n)K has only finite rank dK , then r̂∗ ≤ O(1/n) by
letting h = dK + 1. These different upper bounds provide
insights into various trade-offs between computational com-
plexity and statistical efficiency. We now split the discussion
into two cases: plain RFF and leverage weighted RFF.

Under plain RFF strategy, similar to Corollary 1, we have
dτ̃ ≤ κ2/λ. If the eigenvalues decay polynomially, i.e., µi ∝
i−γ with γ > 1, then the learning rate is upper bounded
by O(1/

√
n). In this case, we need s = Ω(n1/2r log n). On

the other hand, if µi decays exponentially, Ω(n1/r) features
are able to guarantee O(log n/n) learning rate. Finally, if the
eigenspectrum has finite rank, Ω(n1/r) features yieldO(1/n)
fast learning rate. Under the leverage weighted RFF, the
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SAMPLING SCHEME RESULTS SPECTRUM NUMBER OF FEATURES LEARNING RATE

PLAIN RFF

THIS WORK

FINITE RANK s ∈ Ω(n1/r) O(1/n)

EXPONENTIAL DECAY s ∈ Ω(n1/r) O(log n/n)

µi ∝ i−γ s ∈ Ω(n1/2r · log n) O(1/
√
n)

LI ET AL.

(2021)

FINITE RANK s ∈ Ω(n2) O(1/n)

EXPONENTIAL DECAY s ∈ Ω(n2) O(log n/n)

µi ∝ i−γ s ∈ Ω(n · log n) O(1/
√
n)

WEIGHTED RFF

THIS WORK

FINITE RANK s ∈ Ω(1) O(1/n)

EXPONENTIAL DECAY s ∈ Ω(log n · log log n) O(log n/n)

µi ∝ i−γ s ∈ Ω(n1/4γr · log n) O(1/
√
n)

SUN (2018)

FINITE RANK s ∈ Ω(1) O(1/n)

EXPONENTIAL DECAY s ∈ Ω(logd n · log logd n) O(logd+2 n/n)

µi ∝ i−γ s ∈ Ω(n
2

2+γ · log n) O(1/n
γ

2+γ )

Table 2: The comparison of our results to the sharpest results in the literature under fast learning rate setting, where r ∈ [1/2, 1].

required numbers of features and the corresponding learning
rates for the three above cases are: i) s = Ω(n1/4γr log n)
and O(1/

√
n) (polynomial decay µi ∝ i−γ with γ > 1); ii)

s = Ω(log n log log n) and O(log n/n) (exponential decay);
and iii) s = Ω(1) and O(1/n) (finite rank).

Comparison with Existing Sharpest Results For fast
learning rate scenario, Li et al. (2021) and Sun, Gilbert, and
Tewari (2018) both study the trade-off between the number
of features and the prediction accuracy and obtain a similar
bound on the number of features required. Table 2 compare
our results with that in Li et al. (2021) under plain RFF
sampling, and that in Sun, Gilbert, and Tewari (2018) under
leverage weighted RFF sampling. Similar to the analysis in
the O(1/

√
n) scenario, our results strictly dominate previous

optimal results in Li et al. (2021) when r > 1/2 and match
the obtained bound in Li et al. (2021) when r = 1/2, because
of Assumption A.3.

Under weighted RFF, our results match that in Sun, Gilbert,
and Tewari (2018) when the eigenspectrum has finite rank.
However, when the eigenspectrum displays exponential de-
cay, results from Sun, Gilbert, and Tewari (2018) suffer from
the curse of dimension, since both the number of features
required and the learning rate obtained depend on the data
dimension d. In contrast, our analysis does not have this de-
pendency. When the eigenspectrum exhibits a polynomial
decay, our results achieve the O(1/

√
n) learning rate while

Sun, Gilbert, and Tewari (2018) obtain a more flexible rate
that depends on γ. If γ ≤ 2, our results have a better trade-
off as both the number of features and the learning rate are
sharper than those from Sun, Gilbert, and Tewari (2018). For

example, if γ = 2, analysis in Sun, Gilbert, and Tewari (2018)
shows that Ω(n1/2 log n) features can obtainO(n−1/2) learn-
ing rate, whereas our results state that Ω(n1/8r log n) features
yield the same learning rate. When γ > 2, the learning rate
obtained by Sun, Gilbert, and Tewari (2018) is faster than
ours at the cost of increasing the number of features, i.e.,
Ω(n

2
2+t · log n) versus Ω(n

1
4γr · log n). In particular, setting

γ = 4, we can see that Sun, Gilbert, and Tewari (2018) ob-
tain a fast O(n2/3) learning rate, but at the cost of requiring
Ω(n1/3 · log n) random features. For the same setting, on
the other hand, we obtain the minimax optimal O(1/

√
n)

learning rate with only Ω(n1/16r · log n) random features.

Conclusion
In this paper, we thoroughly study the generalization prop-
erties of RFFs classification with Lipschitz continuous loss
such as support vector machine and logistic regression. Our
main results for the first time demonstrate that RFFs clas-
sification can indeed provide computational gains without
hurting the prediction accuracy when plain RFF is used. This
is in contrast with all previous results that suggest that com-
putational savings come at the expense of prediction accuracy.
Furthermore, our analysis shows that a fast O(1/n) learning
rate is possible at the cost of increasing the number of fea-
tures unless the leverage weighted RFF is used. However, a
limitation in our work is that in the worst case where r = 1/2,
we can see that the current analysis on RFFs classification
cannot guarantee a computational gain. Therefore, how to ob-
tain a sharper result in the worst case is an interesting future
direction.
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