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Abstract

Real world tasks are hierarchical and compositional. Tasks can
be composed of multiple subtasks (or sub-goals) that are de-
pendent on each other. These subtasks are defined in terms of
entities (e.g., apple, pear) that can be recombined to form
new subtasks (e.g., pickup apple, and pickup pear).
To solve these tasks efficiently, an agent must infer subtask
dependencies (e.g. an agent must execute pickup apple
before place apple in pot), and generalize the in-
ferred dependencies to new subtasks (e.g. place apple
in pot is similar to place apple in pan). Moreover,
an agent may also need to solve unseen tasks, which can in-
volve unseen entities. To this end, we formulate parameterized
subtask graph inference (PSGI), a method for modeling sub-
task dependencies using first-order logic with subtask entities.
To facilitate this, we learn entity attributes in a zero-shot man-
ner, which are used as quantifiers (e.g. is pickable(X))
for the parameterized subtask graph. We show this approach
accurately learns the latent structure on hierarchical and com-
positional tasks more efficiently than prior work, and show
PSGI can generalize by modelling structure on subtasks un-
seen during adaptation.

1 Introduction
Real world tasks are hierarchical. Hierarchical tasks are com-
posed of multiple sub-goals that must be completed in certain
order. For example, the cooking task shown in Figure 1 re-
quires an agent to boil some food object (e.g. Cooked egg).
An agent must place the food object x in a cookware object
y, place the cookware object on the stove, before boiling
this food object x. Parts of this task can be decomposed into
sub-goals, or subtasks (e.g. Pickup egg, Put egg on
pot). Solving these tasks requires long horizon planning
and reasoning ability (Erol 1996; Xu et al. 2018; Ghazanfari
and Taylor 2017; Sohn, Oh, and Lee 2018). This problem is
made more difficult of rewards are sparse, if only few of the
subtasks in the environment provide reward to the agent.

Real world tasks are also compositional (Carvalho et al.
2020; Loula, Baroni, and Lake 2018; Andreas, Klein, and
Levine 2017; Oh et al. 2017). Compositional tasks are of-
ten made of different “components” that can recombined to
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form new tasks. These components can be numerous, lead-
ing to a combinatorial number of subtasks. For example, the
cooking task shown in Figure 1 contains subtasks that fol-
low a verb-objects structure. The verb Pickup admits many
subtasks, where any object x composes into a new subtask
(e.g. Pickup egg, Pickup pot). Solving compositional
tasks also requires reasoning (Andreas, Klein, and Levine
2017; Oh et al. 2017). Without reasoning on the relations
between components between tasks, exploring the space of a
combinatorial number of subtasks is extremely inefficient.

In this work, we propose to tackle the problem of hierarchi-
cal and compositional tasks. Prior work has tackled learning
hierarchical task structures by modelling dependencies be-
tween subtasks in a graph structure (Sohn, Oh, and Lee 2018;
Sohn et al. 2020; Xu et al. 2018; Huang et al. 2019). In these
settings, during training, the agent tries to efficiently adapt
to a task by inferring the latent graph structure, then uses the
inferred graph to maximize reward during test. However, this
approach does not scale for compositional tasks. Prior work
tries to infer the structure of subtasks individiually – they do
not consider the relations between compositional tasks.

We propose the parameterized subtask graph inference
(PSGI) approach for tackling hierarchical and compositional
tasks. We present an overview of our approach in Figure 1.
This approach extends the problem introduced by (Sohn et al.
2020). Similar to (Sohn et al. 2020), we assume options (Sut-
ton, Precup, and Singh 1999) (low level policies) for com-
pleting subtasks have been trained or are given as subroutines
for the agent. These options are imperfect, and require cer-
tain conditions on the state to be meet before they can be
successfully executed. We model the problem as a transfer
RL problem. During training, an exploration policy gathers
trajectories. These trajectories are then used to infer the latent
parameterized subtask graph, Ĝ. Ĝ models the hierarchies
between compositional tasks and options in symbolic graph
structure (shown in 1). In PSGI, we infer the preconditions
of options, subtasks that must be completed before an op-
tion can be successfully executed, and the effects of options,
subtasks that are completed after they are executed. The pa-
rameterized subtask graph is then used to maximize reward in
the test environment by using GRProp, a method introduced
by (Sohn, Oh, and Lee 2018) which propagates a gradient
through Ĝ to learn the test policy.

In PSGI, we use parameterized options and subtasks. This
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Figure 1: We present an overview of parameterized subtask graph inference (PSGI) in a toy cooking environment. In various
tasks, the agent must cook various foods to receive reward. Left: The adaptation policy πadapt

θ initially explores the cooking
source task (training), generating a trajectories τ1, . . . , τK . Middle: Using τ1, . . . , τK , the agent infers a parameterized subtask
graph Ĝ of the environment, which describes the preconditions and effects between parameterized options and subtasks using
(x and y) over entities (objects in the environment). The agent learns a set of parameter attributes (Âatt = fpickupable . . . ) in a
zero-shot manner and uses these attributes to construct Ĝ. Right: The agent initializes a separate test policy πtest

Ĝ
that maximizes

reward by following the inferred parameterized subtask graph Ĝ. In this target environment (test) there exist unseen parameters
(cabbage and meat). Preconditions and effects for these parameters are accurately inferred by substituting for entities (x and y).

allows PSGI to infer the latent task structure in a first-order
logic manner. For example, in the cooking task in Figure 1 we
represent all Pickup-object options using a parameratized
option, Pickup x. Representing options and subtasks in
parameterized form serves two roles: 1. The resulting graph is
more compact. There is less redundancy when representing
compositional tasks that share common structure. Hence a
parameterized subtask graph requires less samples to infer
(e.g. relations for Pickup apple, Pickup pan, etc. are
inferred at once with Pickup x). 2. The resulting graph
can generalize to unseen subtasks, where unseen subtasks
may share similar structure but are not encountered during
adaptation (e.g. Pickup cabbage in Figure 1).

To enable parameterized representation, we also learn the
attributes of the components in compositional tasks. These
attributes are used to differentiate structures of parameter-
ized options and subtasks. For example, in the cooking task
Figure 1, not every object can be picked up with Pickup,
so the inferred attribute f̂pickupable(x) is a precondition to
Pickup(x). Similarly, in a more complex cooking task,
some object x may need to be sliced, before it can be boiled
(e.g. cabbage), but some do not (e.g. egg). We model these
structures using parameter attributes, Âatt (in the cooking
task case objects are parameters). In this work we present a
simple scheme to infer attributes in a zero-shot manner. These
attributes are then used to generalize to other parameters (or
entities), that may be unseen during adaptation.

We summarize our work as follows:

• We propose the approach of parameterized subtask graph
inference (PSGI) to efficiently infer the subtask structure
of hierarchical and compositional tasks in a first order

logic manner.
• We propose a simple zero-shot learning scheme to infer

entity attributes, which are used to relate the structures of
compositional subtasks.

• We demonstrate PSGI on a symbolic cooking environ-
ment that has complex hierarchical and compositional
task structure. We show PSGI can accurately infer this
structure more efficiently than prior work and generalize
this structure to unseen tasks.

2 Problem Definition
Background: Transfer Reinforcement Learning
A task is characterized by an MDPMG = 〈A,S, TG,RG〉,
which is parameterized by a task-specific G, with an action
space A, state space S, transition dynamics TG, and reward
function RG. In the transfer RL formulation (Duan et al.
2016; Finn, Abbeel, and Levine 2017), an agent is given a
fixed distribution of training tasks Mtrain, and must learn
to efficiently solve a distribution of unseen test tasksMtest.
Although these distributions are disjoint, we assume there
is some similarity between tasks such that some learned
behavior in training tasks may be useful for learning test tasks.
In each task, the agent is given k timesteps to interact with the
environment (the adaptation phase), in order to adapt to the
given task. After, the agent is evaluated on its adaptation (the
test phase). The agent’s performance is measured in terms of
the expected return:

RMG
= Eπk,MG

[
H∑
t=1

rt

]
(1)
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where πK is the policy after k timesteps of the adaptation
phase, H is the horizon in the test phase, and rt is the reward
at time t of the test phase.

Background: The Subtask Graph Problem
The subtask graph inference problem is a transfer RL prob-
lem where tasks are parameterized by hierarchies of sub-
tasks (Sohn et al. 2020), Φ. A task is composed ofN subtasks,
{φ1, . . . , φN} ⊂ Φ, where each subtask φ ∈ Φ is parameter-
ized by the tuple 〈Scomp, Gr〉, a completion set Scomp ⊂ S,
and a subtask reward Gr : S → R. The completion set Scomp
denotes whether the subtask φ is complete, and the subtask
reward Gr is the reward given to the agent when it completes
the subtask.

Following (Sohn et al. 2020), we assume the agent learns
a set of options O = {O1,O2, . . . } that completes the corre-
sponding subtasks (Sutton, Precup, and Singh 1999). These
options can be learned by conditioning on subtask goal reach-
ing reward: rt = I(st ∈ Sicomp). Each option O ∈ O is pa-
rameterized by the tuple 〈π,Gprec, Geffect〉. There is a trained
policy π corresponding to each O. These options may be
eligible at different precondition states Gprec ⊂ S, where
the agent must be in certain states when executing the op-
tion, or the policy π fails to execute (also the initial set of
O following (Sutton, Precup, and Singh 1999)). However,
unlike (Sohn et al. 2020), these options may complete an
unknown number of subtasks (and even remove subtask com-
pletion). This is parameterized by Geffect ⊂ S (also the termi-
nation set ofO following (Sutton, Precup, and Singh 1999)).

Environment: We assume that the subtask completion
and option eligibility is known to the agent. (But the pre-
condition, effect, and reward is hidden and must be in-
ferred). In each timestep t the agent is the state st =
{xt, et, stept, stepphase,t, obst}.

• Completion: xt ∈ {0, 1}N denotes which subtasks are
complete.

• Eligibility: et ∈ {0, 1}M denotes which options are eli-
gible.

• Time Budget: stept ∈ Z>0 is the number steps remaining
in the episode.

• Adaptation Budget: stepphase,t ∈ Z>0 is the number
steps remaining in the adaptation phase.

• Observation: obst ∈ Rd is a low level observation of the
environment at time t.

The Parameterized Subtask Graph Problem
Subtasks and Option Entities In the real world, composi-
tional subtasks can be described in terms of a set of entities, E .
(e.g. pickup, apple, pear, · · · ∈ E) that can be recom-
bined to form new subtasks (e.g. (pickup, apple), and
(pickup, pear)). We assume that these entities are given
to the agent. Similarly, the learned options that execute these
subtasks can also be parameterized by the same entities (e.g.
[pickup, apple], and [pickup, pear]).

In real world tasks, we expect options with entities that
share “attributes” to have similar policy, precondition, and

effect. For example, options [cook, egg, pot] and [cook,
cabbage, pot] share similar preconditions (the target ingre-
dient must be placed in the pot), but also different (cabbage
must be sliced, but the egg does not). In this example, egg
and cabbage are both boilable, but egg is not sliceable.

To model these similarities, we assume in each task, there
exist boolean latent attribute functions which indicate shared
attributes in entities. E.g. fpickupable : E → {0, 1}, where
fpickupable(apple) = 1. We will later try to infer the values
of these latent entities, so we additionally assume there exist
some weak supervision, where a low-level embedding of
entities is provided to the agent, fentityembed : E → RD.

The Parameterized Subtask Graph Our goal is to infer
the underlying task structure between subtasks and options
so that the agent may complete subtasks in an optimal order.
As defined in the previous sections, this task structure can be
completely determined by the option preconditions, option
effects, and subtask rewards. We define the parameterized
subtask graph to be the tuple of the parameterized precondi-
tions, effects, and rewards for all subtasks and options:

G = 〈Gprec,Geff,Gr〉 (2)

where Gprec : EN × S → {0, 1},Geff : EN × S → S, and
Gr : EN × S → R. The parameterized precondition, Gprec,
is a function from an option with N entities and a subtask
completion set to {0, 1}, which specifies whether the option
is eligible under a completion set. E.g. If Gprec([X1, X2], s) =
1, then the option [X1, X2] is eligible if the agent is in state
s. The parameterized effect, Geff, is a function from an option
with N entities and subtask completion set to a different
completion set. Finally, the parameterized reward, Gr, is a
function from a subtask with N entities to the reward given
to the agent from executing that subtask.

Our previous assumption that options with similar enti-
ties and attributes share preconditions and effects manifests
in Gprec and Geff where these functions tend to be smooth.
Similar inputs to the function (similar option entities) tend
to yield similar output (similar eligibility and effect values).
This smoothness gives two benefits. 1. We can share experi-
ence between similar options for inferring preconditions and
effect. 2. This enables generalization to preconditions and
effects of unseen entities. Note that this smoothness does not
apply to the reward Gr. We assume reward given for subtask
completion is independent across tasks.

3 Method
We propose the Parameterized Subtask Graph Inference
(PSGI) method to efficiently infer the latent parameter-
ized subtask graph G = 〈Gprec,Geff,Gr〉. Figure 2 gives an
overview of our approach1. At a high level, we use the adap-
tation phase to gather adaptation trajectories from the en-
vironment using an adaptation policy πadapt

θ . Then, we use
the adaptation trajectories to infer the latent subtask graph
Ĝ. In the test phase, a test policy πtest

Ĝ
is conditioned on the

1An implementation of PSGI and experiments is available at
https://github.com/anthliu/PSGI
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Figure 2: An overview of our approach for estimating the parameterized precondition of the subtask graph Ĝprec in a simple
environment with subtasks A,B and options C,D,E. Each subtask and option has a parameter 0 or 1. Note by inferring the
parameterized precondition and effects, we can infer the behavior unseen subtasks and options such as D2. We run precondition
inference for every option and show DX as an example. 1. The first table is built from the agent’s trajectory (x is the subtask
completion, e the option eligibility). 2. We build the second table, the “augmented” trajectory by substituting X into all possible
subtask completions, AX , BX , and inferred attributes f, g. 3. We train a decision tree over the table, to infer the relation
xaug → Dx (predicting when Dx is eligible given the completion xaug). 4. We translate the decision tree into an equivalent
predicate boolean expression, which is one part of the inferred parameratized subtask graph Ĝ.

inferred subtask graph Ĝ and maximizes the reward. As the
performance of the test policy is dependent on the inferred
subtask graph Ĝ, it is important to accurately infer this graph.
Note that the test task may contain subtasks that are unseen
in the training task. We learn a predicate subtask graph Ĝ that
can generalize to these unseen subtasks and options.

Zero-shot Learning Entity Attributes
In the Parameterized Subtask Graph Problem definition, we
assume there exist latent attributes that indicate shared struc-
ture between options and subtasks with the same attributes.
E.g. One attribute may be fpickupable : E → {0, 1}, where
fpickupable(apple) = 1, etc. Our goal is to infer a set of
candidate attribute functions, Âatt = {f̂1, f̂2, . . . }, such that
options with the same attributes indicates the same precon-
ditions. As there is no supervision involved, we formulate
this inference as a zero shot learning problem (Palatucci et al.
2009). Note the inferred attributes that are preconditions for
options should also construct an accurate predicate subtask
graph for options unseen in the adaptation phase.

During the adaptation phase, the agent will encounter a
set of seen entities E ⊂ E . We construct candidate attributes
from E using our smoothness assumption, where similar en-
tities result in similar preconditions. We generate candidate
attributes based on similarity using the given entity embed-
ding, fentityembed : E → RD.

Let C = {C1, C2, . . . } be an exhaustive set of clusters
generated from E using fentityembed. Then, we define a candi-
date attribute function from each cluster: f̂i(X) := I[X ∈
Ci] To infer the attribute of an unseen entity X 6∈ E, we use
a 1-Nearest Neighbor classifier that uses the attributes of the
nearest seen entity (Fix 1985). f̂i(X) = I[X∗ ∈ Ci] where
X∗ = argminX′∈E dist(fentityembed(X), fentityembed(X ′)).

Parameterized Subtask Graph Inference
Let τH = {s1, o1, r1, d1, . . . , sH} be the adaptation trajec-
tory of the adaptation policy πadapt

θ after H time steps. Our
goal is to infer the maximum likelihood parameterized sub-

task graph G given this trajectory τH .

ĜMLE = argmax
Gprec,Geff,Gr

p(τH |Gprec,Geff,Gr) (3)

By expanding this likelihood term, we show that to maxi-
mize Ĝ, it suffices to maximize Ĝprec, Ĝeff, and Ĝr individually.

ĜMLE =
(
ĜMLE

prec , ĜMLE
eff , ĜMLE

r

)
(4)

=

(
argmax
Gprec

H∏
t=1

p(et|xt,Gprec), (5)

argmax
Geff

H∏
t=1

p(xt+1|xt, ot,Geff), (6)

argmax
Gr

H∏
t=1

p(rt|ot, ot+1,Gr)
)

(7)

We show details of this derivation in the appendix. Next, we
explain how to compute Ĝprec, Ĝeff, and Ĝr.
Parameterized Precondition Inference via Predicate
Logic Induction We give an overview of how we infer
the option preconditions Ĝprec in Figure 2. Note from the
definition, we can view the precondition Gprec as a deter-
ministic function, fGprec : (E, x) 7→ {0, 1}, where E is the
option entities, and x is the completion set vector. Hence, the
probability term in Eq.(6) can be written as p(et|xt,Gprec) =∏N
i=1 I[e

(i)
t = fGprec(E

(i), xt)] where I is the indicator func-
tion, and E(i) is the entity set of the ith option in the given
task. Thus, we have

ĜMLE
prec = argmax

Gprec

H∏
t=1

N∏
i=1

I[e(i)t = fGprec(E
(i), xt)] (8)

Following (Sohn et al. 2020), this can be maximized by
finding a boolean function f̂Gprec over only subtask comple-
tions xt that satisfies all the indicator functions in Eq.(8).
However this yields multiple possible solutions — particu-
larly the preconditions of unseen option entities in the trajec-
tory τH . If we infer a f̂Gprec separately over all seen options

7537



(without considering the option parameters), this solution is
identical to the solution proposed by (Sohn et al. 2020). We
want to additionally generalize our solution over multiple
unseen subtasks and options using the entities, E.

We leverage our smoothness assumption — that f̂Gprec is
smooth with respect to the input entities and attributes. E.g.
If the inferred precondition for the option [pickup, X] is
the candidate attribute f̂(X), any entity X where f̂(X) = 1
has the same precondition. I.e. For some unseen entity set
E∗ we want the following property to hold:

f̂i(E) = f̂i(E
∗) for some i ⇒ f̂Gprec(E, xt) = f̂Gprec(E

∗, xt)
(9)

To do this, we infer a boolean function f̂Gprec over both
subtask completions xt and entity variables X ∈ E. We
use (previously inferred) candidate attributes over entities,
f̂i(X)∀X ∈ E in the boolean function to serve as quanti-
fiers. Inferring in this manner insures that the precondition
function f̂Gprec is smooth with respect to the input entities and
attributes. Note that some but not all attributes may be shared
in entities. E.g. [cook, cabbage] has similar but not the
same preconditions as [cook, egg]. So, we cannot directly
reuse the same preconditions for similar entities. We want to
generalize between different combinations of attributes.

We translate this problem as an inductive logic program-
ming (ILP) problem (Muggleton and De Raedt 1994). We
infer the eligibility (boolean output) of some option O with
some entities(s) E = {X1, X2, . . . }, from boolean input
formed by all possible completion values {xit}Ht=1, and all
attribute values {f̂i(X)}i=1...

X∈E . We use the classification and
regression tree (CART) with Gini impurity to infer the the
precondition functions f̂Gprec for each parameter E (Breiman
et al. 1984). Finally, the inferred decision tree is converted
into an equivalent symbolic logic expression and used to
build the parameterized subtask graph.

Parameterized Effect Inference We include an visualiza-
tion of how we infer the option effects Ĝeff in the appendix in
the interest of space. From the definitions of the parameter-
ized subtask graph problem, we can write the predicate option
effect Geff as a deterministic function fGeff : (E, xt) 7→ xt+1,
where if there is subtask completion xt, executing option O
(with entities E) successfully results in subtask completion
xt+1. Similar to precondition inference, we have

ĜMLE
eff = argmax

Geff

H∏
t=1

N∏
i=1

I[xt+1 = fGeff(E
(i), xt)] (10)

As this is deterministic, we can calculate the element-wise
difference between xt (before option) and xt+1 (after option)
to infer fGeff .

f̂Geff(E
(i), x) = x+ Et=1...H [xt+1 − xt|ot = O(i)] (11)

Similar to precondition inference, we also want to infer
the effect of options with unseen parameters. We leverage the
same smoothness assumption:

f̂i(E) = f̂i(E
∗) for some i ⇒ f̂Geff(E, xt) = f̂Geff(E

∗, xt)
(12)

Unlike preconditions, we expect the effect function to be
relatively constant across attributes, i.e., the effect of exe-
cuting option [cook, X] is always completing the subtask
(cooked, X), no matter the attributes of X . So we directly
set the effect of unseen entities, f̂Geff(E

∗, xt), by similarity
according to Equation 12.

Reward Inference We model the subtask reward as a Gaus-
sian distribution Gr(E) ∼ N (µ̂E , σ̂E). The MLE estimate
of the subtask reward becomes the empirical mean of the
rewards received during the adaptation phase when subtask
with parameter T becomes complete. For the ith subtask in
the task with entities Ei,

Ĝr(Ei) = µ̂Ei = Et=1...N [rt|xit+1 − xit = 1] (13)

Note we do not use the smoothness assumption for Ĝr(E), as
we assume reward is independently distributed across tasks.
We initialize Ĝr(E∗) = 0 for unseen subtasks with entities
E∗ and update these estimates with further observation.

Task Transfer and Adaptation
In the test phase, we instantiate a test policy πtest

Ĝprior
using the

parameterized subtask graph Ĝprior, inferred from the training
task samples. The goal of the test policy is to maximize
reward in the test environment using Ĝprior. As we assume the
reward is independent across tasks, we re-estimate the reward
of the test task according to Equation 13, without task transfer.
With the reward inferred, this yields the same problem setting
given in (Sohn, Oh, and Lee 2018). (Sohn, Oh, and Lee 2018)
tackle this problem using GRProp, which models the subtask
graph as differentiable function over reward, so that the test
policy has a dense signal on which options to execute are
likely to maximally increase the reward.

However, the inferred parameterized subtask graph may be
imperfect, the inferred precondition and effects may not trans-
fer to the test task. To adapt to possibly new preconditions
and effects, we use samples gathered in the adaptation phase
of the test task to infer a new parameterized subtask graph
Ĝtest, which we use to similarly instantiate another test policy
πtest
Ĝtest

using GRProp. We expect Ĝtest to eventually be more
accurate than Ĝprior as more timesteps are gathered in the
test environment. To maximize performance on test, we thus
choose to instantiate a posterior test policy πtest

posterior, which is
an ensemble policy over πtest

Ĝprior
and πtest

Ĝtest
. We heuristically set

the weights of πtest
posterior to favor πtest

Ĝprior
early in the test phase,

and πtest
Ĝtest

later in the test phase.

4 Related Work
Subtask Graph Inference. The subtask graph inference
(SGI) framework (Sohn, Oh, and Lee 2018; Sohn et al. 2020)
assumes that a task can be solved by completing a set of
subtasks in the right order. SGI can efficiently solve these
complex tasks by explicitly inferring the precondition rela-
tionship between subtasks in the form of a graph using an
inductive logic programming (ILP) method. An execution
policy (GrProp) uses the inferred graph to predict the optimal
sequence of subtasks to be completed to solve the given task.
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However, the proposed SGI framework is limited to a
single task; the knowledge learned in one task cannot be
transferred to another. This limits the SGI framework such
that does not scale well to compositional tasks, and cannot
generalize to unseen tasks. We extend the SGI framework by
modeling parameterized subtasks and options, which encode
relations between tasks to allow efficient and general learning.
In addition, we generalize the SGI framework by learning an
effect model – In the SGI framework it was assumed that for
each subtask there is a corresponding option, that completes
that subtask (and does not effect any other subtask).

Compositional Task Generalization. Prior work has also
tackled compositional generalization in a symbolic man-
ner (Loula, Baroni, and Lake 2018; Andreas, Klein, and
Levine 2017; Oh et al. 2017). Loula, Baroni, and Lake (2018)
test compositional generalization of natural language sen-
tences in recurrent neural networks. Andreas, Klein, and
Levine (2017); Oh et al. (2017) tackle compositional task
generalization in an instruction following context, where an
agent is given a natural language instruction describing the
task the agent must complete (e.g. “pickup apple”). These
works use analogy making to learn policies that can execute
instructions by analogy (e.g. “pickup X”). However, these
works construct policies on the option level – they construct
policies that can execute “pickup X” on different X values.
They also do not consider hierarchical structure for the order
which options should be executed (as the option order is given
in instruction). Our work aims to learn these analogy-like
relations at a between-options level, where certain subtasks
must be completed before another option can be executed.

Classical Planning. At a high level, a parameterized sub-
task graph G is similar to a STRIPS planning domain (Fikes
and Nilsson 1971). Prior work in classical planning has pro-
posed to learn STRIPS domain specifications through given
trajectories (action traces) (Suárez-Hernández et al. 2020;
Mehta, Tadepalli, and Fern 2011; Walsh and Littman 2008;
Zhuo et al. 2010). Our work differs from these in 3 major
ways: 1. PSGI learns an attribute model, crucial to gener-
alizing compositional tasks. 2. We evaluate PSGI on more
hierarchical domains, where prior work has evaluated on
classical planning problems, which admit flat structure. 3.
We evaluate PSGI on generalization, where there may exist
subtasks and options that are not seen during adaptation.

5 Experiments
We aim to answer the following questions:
1. Can PSGI generalize to unseen evaluation tasks in zero-

shot manner by transferring the inferred task structure?
2. Does PSGI efficiently infers the latent task structure com-

pared to prior work (MSGI (Sohn et al. 2020))?

Environments
We evaluate PSGI in novel symbolic environments, AI2Thor,
Cooking, and Mining. AI2Thor is a symbolic environment
based on (Kolve et al. 2017), a simulated realistic indoor en-
vironment. In our AI2Thor environment, the agent is given a
set of pre-trained options and must cook various food objects
in different kitchen layouts, each containing possibly unseen

objects. Cooking is a simplified cooking environment with
similar but simpler dynamics to AI2Thor.The Mining do-
main is modelled after the open world video game Minecraft
and the domain introduced by Sohn, Oh, and Lee (2018).

Tasks. In AI2Thor, there are 30 different tasks based
on the 30 kitchen floorplans in (Kolve et al. 2017). In
each task, 14 entities from the floorplan are sampled at
random. Then, the subtasks and options are populated by
replacing the parameters in parameterized subtasks and
options by the sampled entities; e.g., we replace X and
Y in the parameterized subtask (pickup, X, Y) by
{apple, cabbage, table} to populate nine subtasks.
This results in 1764 options and 526 subtasks. The ground-
truth attributes are taken from (Kolve et al. 2017) but are not
available to the agent. Cooking is defined similarly and has
a pool of 22 entities and 10 entities are chosen at random
for each task. This results in 324 options and 108 subtasks.
Similarly for Mining, we randomly sample 12 entities from a
pool of 18 entities and populate 180 subtasks and 180 options
for each task. In each environment, the reward is assigned at
random to one of the subtasks that have the largest critical
path length, where the critical path length is the minimum
number of options to be executed to complete each subtask.
See the appendix for more details on the tasks.

Observations. At each time step, the agent observes the
completion and eligibility vectors (see section 2 for defini-
tions) and the corresponding embeddings. The subtask and
option embeddings are the concatenated vector of the embed-
dings of its entities; e.g., for pickup, apple the embed-
ding is [f(pickup), f(apple))] where f(·) can be an im-
age or language embeddings. In our experiments, we used 50
dimensional GloVE word embeddings (Pennington, Socher,
and Manning 2014) as the embedding function f(·).

Baselines
• MSGI+ is the MSGI (Sohn et al. 2020) agent modified to

be capable of solving our Cooking and Mining tasks. We
augmented MSGI with an effect model, separate subtasks
and options in the ILP algorithm, and replaced the GR-
Prop with cyclic GRProp, a modified version of GRProp
that can run with cycles in the subtask graph.

• HRL (Andreas, Klein, and Levine 2017) is the option-
based hierarchical reinforcement learning agent. It is an
actor-critic model over the pre-learned options.

• Random agent randomly executes any eligible option.

We meta-train PSGI on training tasks and meta-eval on evalu-
ation tasks to test its adaptation efficiency and generalization
ability. We train HRL on evaluation tasks to test its adapta-
tion (i.e., learning) efficiency. We evaluate Random baseline
on evaluation tasks to get a reference performance. We use the
same recurrent neural network with self-attention-mechanism
so that the agent can handle varying number of (unseen) pa-
rameterized subtasks and options depending on the tasks. See
the appendix for more details on the baselines.

Zero-shot Transfer Learning Performance
Figure 4 compares the zero-shot and few-shot transfer learn-
ing performance on Cooking, AI2Thor, and Mining do-
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Figure 3: The inferred graph by PSGI after 2000 timesteps in the Cooking domain. Options are represented in rectangular nodes.
Subtask completions and attributes are in oval nodes. A solid line represents a positive precondition / effect, dashed for negative.
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Figure 4: The adaptation curves in the Cooking, AI2Thor, and Mining domains.

mains. PSGI achieves over 50 and 20% success rate on Cook-
ing and Mining domain without observing any samples in un-
seen evaluation tasks, which indicates PSGI generalizes well
to unseen entities in zero-shot manner. Note that MSGI+,
HRL, and Random baselines have no ability to transfer its
policy from training tasks to unseen evaluation tasks. PSGI
achieves over 5% zero shot success rate on AI2Thor, still
performing better than baselines, but relatively low compared
to PSGI on Cooking and Mining, which indicates the high
difficulty of transfer in AI2Thor.

Few-shot Transfer Learning Performance
In Figure 4, PSGI achieves high success rate after only 1000
steps of adaptation, while baselines do not learn any mean-
ingful policy except MSGI+ in Cooking and AI2Thor. This
demonstrates the transfer learning abilities of PSGI— PSGI
can share the experience of similar subtasks and options (e.g.,
pickup X on Y for all possible pairs of X and Y ).

Comparison on Task Structure Inference
We ran PSGI and MSGI+ in Cooking, AI2Thor, and Min-
ing, inferring the latent subtask graphs for 2000 timesteps.
The visualized inferred graphs at 2000 timesteps are shown
in Figure 3. In the interest of space, we have shown the

graph by MSGI+ in the appendix. PSGI infers the param-
eterized graph using first-order logic, and thus it is more
compact. However, MSGI+ infers the subtask graph with-
out parameterizing out the shared structure, resulting in a
non-compact graph with hundreds of subtasks and options.
Moreover, graph inferred by PSGI has 0% error in precon-
dition and effect model inference. The graph inferred by
MSGI+ has 38% error in the preconditions (the six options
that MSGI+ completely failed to infer any precondition are
not shown in the figure for readability).

6 Conclusion
In this work we presented parameterized subtask graph in-
ference (PSGI), a method for efficiently inferring the latent
structure of hierarchical and compositional tasks. PSGI also
facilitates inference of unseen subtasks during adaptation,
by inferring relations using predicates. PSGI additionally
learns parameter attributes in a zero-shot manner, which dif-
ferentiate the structures of different predicate subtasks. Our
experimental results showed that PSGI is more efficient and
more general than prior work. In future work, we aim to
to tackle noisy settings, where options and subtasks exhibit
possible failures, and settings where the option policies must
also be learned.
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Alenyà, G. 2020. Strips action discovery. arXiv preprint
arXiv:2001.11457.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2): 181–
211.
Walsh, T. J.; and Littman, M. L. 2008. Efficient learning
of action schemas and web-service descriptions. In AAAI,
volume 8, 714–719.
Xu, D.; Nair, S.; Zhu, Y.; Gao, J.; Garg, A.; Fei-Fei, L.; and
Savarese, S. 2018. Neural task programming: Learning to
generalize across hierarchical tasks. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
3795–3802. IEEE.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540–1569.

7541


