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Abstract

Deep graph clustering, which aims to reveal the underlying
graph structure and divide the nodes into different groups,
has attracted intensive attention in recent years. However, we
observe that, in the process of node encoding, existing meth-
ods suffer from representation collapse which tends to map
all data into the same representation. Consequently, the dis-
criminative capability of the node representation is limited,
leading to unsatisfied clustering performance. To address this
issue, we propose a novel self-supervised deep graph clus-
tering method termed Dual Correlation Reduction Network
(DCRN) by reducing information correlation in a dual man-
ner. Specifically, in our method, we first design a siamese
network to encode samples. Then by forcing the cross-view
sample correlation matrix and cross-view feature correlation
matrix to approximate two identity matrices, respectively, we
reduce the information correlation in the dual-level, thus im-
proving the discriminative capability of the resulting features.
Moreover, in order to alleviate representation collapse caused
by over-smoothing in GCN, we introduce a propagation reg-
ularization term to enable the network to gain long-distance
information with the shallow network structure. Extensive
experimental results on six benchmark datasets demonstrate
the effectiveness of the proposed DCRN against the exist-
ing state-of-the-art methods. The code of DCRN is avail-
able at https://github.com/yueliu1999/DCRN and a collec-
tion (papers, codes and, datasets) of deep graph clustering
is shared at https://github.com/yueliu1999/Awesome-Deep-
Graph-Clustering on Github.

Introduction
Deep graph clustering is a fundamental yet challenging task
whose target is to train a neural network for learning rep-
resentations to divide nodes into different groups without
human annotations. Thanks to the powerful graph informa-
tion exploitation capability, graph convolutional networks
(GCN) (Kipf and Welling 2016a) have recently achieved
promising performance in many graph clustering applica-
tions like social networks and recommendation systems.
Consequently, it has attracted considerable attention in this
field and many algorithms are proposed (Wang et al. 2019;
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Figure 1: The heat maps of node similarity matrices in the
latent space of GAE (Kipf and Welling 2016b), MVGRL
(Hassani and Khasahmadi 2020), and our proposed method
on the ACM dataset.

Pan et al. 2019; Tao et al. 2019; Park et al. 2019; Bo et al.
2020; Tu et al. 2020).

Though good performance has been achieved, we found
that the existing GCN-based clustering algorithms usually
suffer from the representation collapse problem and tend to
map nodes from different categories into the similar repre-
sentation in the process of sample encoding. As a result,
the node representation is indiscriminative and the cluster-
ing performance is limited. We illustrate this phenomenon
on ACM dataset in Fig. 1. In this figure, we first extract
the node embedding learned from three representative al-
gorithms, i.e., the Graph Auto-Encoder (GAE) (Kipf and
Welling 2016b), Multi-View Graph Representation Learning
(MVGRL) (Hassani and Khasahmadi 2020), and our pro-
posed algorithm (OURS), and then construct the element-
wise similarity matrices by calculating the cosine similarity,
respectively. Finally, we visualize the similarity matrices of
the three compared algorithms in Fig. 1. Among the com-
pared algorithms, GAE is a classic graph convolutional net-
work, MVGRL is a contrastive strategy enhanced algorithm,
which can to some extent alleviate the representation col-
lapse problem by introducing a positive and negative sample
pair recognition mechanism. From sub-figure (a) and (b), we
observe that, in the latent space learned by both the classic
algorithm and the contrastive learning enhanced algorithm,
the intrinsic three dimensional cluster space is not well re-
vealed. It indicates that representation collapse is still an
open problem which is restricting the performance of GCN-
based clustering algorithms.

To solve this problem, we propose a novel self-supervised
deep graph clustering method termed Dual Correlation Re-
duction Network (DCRN) to avoid representation collapse
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by reducing the information correlation in a dual manner.
To be specific, in our network, a dual information correla-
tion reduction mechanism is introduced to force the cross-
view sample correlation matrix and cross-view feature cor-
relation matrix to approximate two identity matrices, respec-
tively. In this setting, by forcing the cross-view sample-level
correlation matrix to approximate an identical matrix, we
guide the same noise-disturbed samples to have the identi-
cal representation while different samples to have the differ-
ent representation. In this way, the sample representations
would be more discriminative and in the meantime more
robust against noisy information. Similarly, by letting the
cross-view feature-level correlation matrix to approximate
an identical matrix, the discriminative capability of latent
feature is enhanced since different dimensions of the latent
feature are decorrelated. This could be clearly seen in Fig.
1 (c) since the similarity matrix generated by our proposed
method can obviously exploit the hidden cluster structure
among data better than the compared algorithms. As a self-
supervised method, since our algorithm gets rid of the com-
plex and space-consuming negative sample construction op-
erations, it is more space-saving than the other contrastive
learning-based algorithms. For example, in the process of
model training with all samples on DBLP, CITE and ACM
datasets, MVGRL spends 5753M GPU memory on aver-
age while our proposed method only spends 2672M on av-
erage. Moreover, motivated by propagation regularization
(Yang, Ma, and Cheng 2020), in order to alleviate represen-
tation collapse caused by over-smoothing in GCN (Kipf and
Welling 2016a), we improve the long-distance information
capture capability of our model with shallow network struc-
ture by introducing a propagation regularization term. This
further improves the clustering performance of our proposed
algorithm. The key contributions of this paper are listed as
follows.

• We propose a siamese network-based algorithm to solve
the problem of representation collapse in the field of deep
graph clustering.

• A dual correlation reduction strategy is proposed to im-
prove the discriminative capability of the sample rep-
resentation. Thanks to this strategy, our method is free
from the complicated negative sample generation oper-
ation and thus is more space-saving and more flexible
against training batch size.

• Extensive experimental results on six benchmark datasets
demonstrate the superiority of the proposed method
against the existing state-of-the-art deep graph clustering
competitors.

Related Work
Attributed Graph Clustering
Graph Neural Networks (GNNs), which learn the represen-
tation from both node attributes and graph structures, have
emerged as a powerful approach for attributed graph clus-
tering. Specifically, GAE (Kipf and Welling 2016b) embeds
the node attributes with structure information via a graph
encoder and then reconstructs the graph structure by an in-

ner product decoder. Inspired by their success, recent re-
searches, DAEGC (Wang et al. 2019), GALA (Park et al.
2019), ARGA (Pan et al. 2019) and AGAE (Tao et al.
2019) further improve the early works with graph attention
network, Laplacian sharpening, and generative adversarial
learning. Although achieving promising clustering perfor-
mance, the over-smoothing problem has not been effec-
tively tackled in these methods, which affects the cluster-
ing performance. More recently, SDCN (Bo et al. 2020) and
DFCN (Tu et al. 2020) are proposed to jointly learn an Auto-
Encoder (AE) (Yang et al. 2017) and a Graph Auto-Encoder
(GAE) (Kipf and Welling 2016b) in a united framework
to alleviate the over-smoothing problem via an information
transport operation and a structure-attribute fusion module,
respectively. Although both methods have proved that intro-
ducing the attribute features into the latent structure space
can effectively address the over-smoothing issue, SDCN and
DFCN suffer from another non-negligible limitation, i.e., in-
formation correlation, resulting in less discriminative repre-
sentations and sub-optimal clustering performance. In con-
trast, our method improves the existing advanced deep graph
clustering algorithm by introducing a dual information cor-
relation reduction mechanism from the perspective of sam-
ple and feature levels to alleviate representation collapse.

Representation Collapse
Representation collapse, which maps all data into a same
representation, is a common issue in current self-supervised
representation learning methods. Some contrastive learning
methods are proposed to solve this problem. MoCo (He et al.
2020) utilizes a momentum encoder to maintain the consis-
tent representation of negative pairs drawn from a memory
bank. SimCLR (Chen et al. 2020) defines the “positive” and
“negative” sample pairs, and pulls closer the “positive” sam-
ples existing in the current batch while pushing the “neg-
ative” samples away. By replacing the empty cluster with
a perturbated non-empty cluster, DeepCluster (Caron et al.
2018) is able to alleviate the collapsed representation. In ad-
dition, BYOL (Grill et al. 2020) and SimSiam (Chen and
He 2021) have demonstrated that the momentum encoder
and the stop-gradient mechanism are crucial to avoid repre-
sentation collapse without demanding negative samples for
producing prediction targets. More recently, a simple yet
effective algorithm, Barlow Twins (Zbontar et al. 2021) is
proposed to alleviate the collapsed representation by reduc-
ing the redundant information between the representation of
distorted samples. Inspired by its advantages, we naturally
extend the idea of Barlow Twins into deep graph clustering
and further design a dual correlation reduction mechanism to
address representation collapse in deep clustering network.
Compared to other contrastive learning methods, our pro-
posed method learns the discriminative embedding to avoid
collapse without negative sample generation, large batches
or asymmetric mechanisms.

Dual Correlation Reduction Network
We introduce a novel self-supervised deep graph cluster-
ing method termed Dual Correlation Reduction Network
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Figure 2: Illustration of the Dual Correlation Reduction Net-
work (DCRN). In the proposed algorithm, the graph distor-
tion module first generates two distorted graphs by introduc-
ing attribute and graph disturbances. Then, by forcing the
same sample within two distorted graphs to have identical
representations in both feature level and sample level, while
different samples have different representations also in dual
levels, the network is guided to be more discriminative with
less memory consumption.

(DCRN), which aims to avoid representation collapse by re-
ducing information correlation in a dual manner. As illus-
trated in Fig. 2, DCRN mainly consists of two components,
i.e., a graph distortion module and a dual information cor-
relation reduction (DICR) module. Note that the extraction
backbone network of DCRN is similar to that of DFCN (Tu
et al. 2020). In the following sections, We will introduce the
graph distortion module, DICR module, and network objec-
tives in detail.

Notations and Problem Definition
Given an undirected graph G = {V, E} with C categories
of nodes, V = {v1, v2, . . . , vN} and E are the node set and
the edge set, respectively. The graph is characterized by its
attribute matrix X ∈ RN×D and original adjacency ma-
trix A = (aij)N×N , where aij = 1 if (vi, vj) ∈ E , oth-
erwise aij = 0. The corresponding degree matrix is D =
diag(d1, d2, . . . , dN ) ∈ RN×N and di =

∑
(vi,vj)∈E aij .

With D, the original adjacency matrix A can be normal-
ized as Ã ∈ RN×N through calculating D−1(A + I), where
I ∈ RN×N is an identity matrix. In this paper, we aim to
train a siamese graph encoder that embeds all nodes into the
low-dimension latent space in an unsupervised manner. The
resultant latent embedding can then be directly utilized to
perform node clustering by K-means (Hartigan and Wong
1979). The notations are summarized in Table 1.

Graph Distortion Module
Recent efforts in self-supervised graph representation learn-
ing have demonstrated that graph distortion could enable the
network to learn rich representations from different contexts

Notations Meaning

X ∈ RN×D Attribute matrix
A ∈ RN×N Original adjacency matrix
D ∈ RN×N Degree matrix
Ã ∈ RN×N Normalized adjacency matrix
Am ∈ RN×N Edge-masked adjacency matrix
Ad ∈ RN×N Graph diffusion matrix
X̂ ∈ RN×D Rebuilt attribute matrix
Â ∈ RN×N Rebuilt adjacency matrix
Zvk ∈ RN×d Node embedding in k-th view
Z ∈ RN×d Clustering-oriented latent embedding
Z̃

vk ∈ Rd×K Cluster-level embedding in k-th view
SN ∈ RN×N Cross-view sample correlation matrix
SF ∈ Rd×d Cross-view feature correlation matrix
Q ∈ RN×C Soft assignment distribution
P ∈ RN×C Target distribution

Table 1: Notation summary

for nodes (Hassani and Khasahmadi 2020; You et al. 2020).
Inspired by their success, as illustrated in Fig. 2, we consider
two types of distortion on graphs, i.e., feature corruption and
edge perturbation.
Feature Corruption. For the attribute-level distortion, we
first sample a random noise matrix N ∈ RN×D from a Gaus-
sian distribution N (1, 0.1). Then the resulting corrupted at-
tribute matrix X̃ ∈ RN×D can be formulated:

X̃ = X ⊙ N, (1)

where ⊙ denotes the Hadamard product (Horn 1990).
Edge Perturbation. In addition to corrupting node features,
for structure-level distortion, we introduce two strategies for
edge perturbation. One is similarity-based edge removing.
Thus, we first calculate the sample pair-wise cosine simi-
larity in latent space, and then generate a masked matrix
M ∈ RN×N according to the similarity matrix, where the
lowest 10% linkage relation would be manually removed.
Finally, the edge-masked adjacency matrix Am ∈ RN×N

would be normalized and be computed as:

Am = D− 1
2 ((A ⊙ M) + I)D− 1

2 . (2)

The other is the graph diffusion, where we follow MV-
GRL (Hassani and Khasahmadi 2020) to transform the nor-
malized adjacency matrix to a graph diffusion matrix by Per-
sonalized PageRank (PPR) (Page et al. 1999):

Ad = α(I − (1− α)(D− 1
2 (A + I)D− 1

2 ))−1, (3)

where α is the teleport probability that is set to 0.2. Finally,
we denote G1 = (X̃,Am) and G2 = (X̃,Ad) as two views
of the graph, respectively.

Dual Information Correlation Reduction
In this section, we introduce a dual information correla-
tion reduction (DICR) mechanism to filter the redundant in-
formation of the latent embedding in a dual manner, i.e.,
sample-level correlation reduction (SCR) and feature-level
correlation reduction (FCR), which aims to constrain our
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network to learn more discriminative latent features, thus
alleviating representation collapse. SCR and FCR are both
illustrated in Fig. 3 in detail.
Sample-level Correlation Reduction. The learning process
of SCR includes two steps. For given two-view node embed-
dings Zv1 and Zv2 learned by a siamese graph encoder, we
firstly calculate the elements in cross-view sample correla-
tion matrix SN ∈ RN×N by:

SN
ij =

(Zv1
i ) (Zv2

j )T

||Zv1
i ||||Zv2

j ||
, ∀ i, j ∈ [1, N ], (4)

where SN
ij ∈ [−1, 1] denotes the cosine similarity between

i-th node embedding in the first view and j-th node embed-
ding in the second view. After that, we make the cross-view
sample correlation matrix SN to be equal to an identity ma-
trix I ∈ RN×N , formulated as:

LN =
1

N2

∑
(SN − I)2

=
1

N

N∑
i=1

(
SN
ii − 1

)2

+
1

N2 −N

N∑
i=1

∑
j ̸=i

(
SN
ij

)2

,

(5)
where the first term encourages the diagonal elements in SN

equal to 1, which indicates that the embedding of each node
in two different views are enforced to agree with each other.
The second term makes the off-diagonal elements in SN

equal to 0 to minimize the agreement between embeddings
of different nodes across two views. This decorrelation op-
eration could help our network reduce the redundant infor-
mation among nodes in the latent space so that the learned
embedding could be more discriminative.
Feature-level Correlation Reduction. Apart from build-
ing nontrivial embeddings by reducing the sample corre-
lation across two views, we further consider to refine the
information correlation from the aspect of feature dimen-
sion. Specifically, Fig. 3 illustrates our feature-level correla-
tion reduction design, which is implemented in three steps.
First, we project two-view node embeddings Zv1 and Zv2

into cluster-level embeddings Z̃
v1

and Z̃
v2 ∈ Rd×K using a

readout function R(·) : Rd×N → Rd×K , formulated as:

Z̃
vk

= R
(
(Zvk)T) . (6)

Then we again calculate the cosine similarity between Z̃
v1

and Z̃
v2

along with the feature dimension, that’s:

SF
ij =

(Z̃
v1

i )(Z̃
v2

j )T

||Z̃
v1

i ||||Z̃
v2

j ||
, ∀ i, j ∈ [1, d], (7)

where SF
ij denotes the feature similarity between i-th di-

mension feature in one view and j-th dimension in another
view. Thereafter, similar to the objective functions Eq. (5),
we make the cross-view feature correlation matrix SF to be
equal to an identity matrix Ĩ ∈ Rd×d:

LF =
1

d2

∑
(SF − Ĩ)2

=
1

d2

d∑
i=1

(
SF
ii − 1

)2

+
1

d2 − d

d∑
i=1

∑
j ̸=i

(
SF
ij

)2

,
(8)
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Figure 3: Illustration of Dual Information Correlation Re-
duction (DICR) mechanism.

where d is the latent embedding dimension. Both terms in
Eq. (8) mean that the representations of the same dimension
feature in two augmented views are pulled closer while oth-
ers are pushed away, respectively. Finally, we combine the
decorrelated latent embeddings from two views with a linear
combination operation, thus the resultant clustering-oriented
latent embeddings Z ∈ RN×d can then be used to performed
clustering by K-means (Hartigan and Wong 1979):

Z =
1

2
(Zv1 + Zv2). (9)

Technically, the proposed DICR mechanism considers the
correlation reduction in both the perspective of the sample
and feature level. In this way, the redundant features could
be filtered while more discriminative features could be pre-
served in the latent space, thus the network can learn mean-
ingful representations to avoid collapse for clustering per-
formance improvement.
Propagated Regularization. Furthermore, in order to alle-
viate the over-smoothing phenomenon during the network
training, we introduce a propagation regularization formu-
lated as:

LR = JSD(Z, ÃZ), (10)

where JSD(·) refers to the Jensen-Shannon divergence (Fu-
glede and Topsoe 2004). With Eq. (10), the network is able
to capture long-distance information with shallow network
structure to alleviate over-smoothing when the propagated
information goes deeper throughout the framework. In sum-
mary, the objective of DICR module can be computed by:

LDICR = LN + LF + γLR, (11)

where γ is a balanced hyper-parameter.
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Algorithm 1: Dual Correlation Reduction Network

Input: Two-view graphs: G1 = (X̃,Am), G2 = (X̃,Ad); Cluster
number C; Iteration number I; Hyper-parameters γ and λ.
Output: The clustering result R.
1: Pre-train the baseline network to obtain Z;
2: Initialize the cluster centers u with K-means over Z;
3: for i = 1 to I do
4: Utilize the baseline network to encode Zv1 and Zv2 ;
5: Calculate Z̃

v1 and Z̃
v2 by Eq. (6);

6: Calculate SN and SF by Eq. (4) and Eq. (7), respectively;
7: Conduct the sample-level and the feature-level correlation

reduction by Eq. (5) and Eq. (8), respectively;
8: Fuse Zv1 and Zv2 to obtain Z by Eq. (9);
9: Calculate LDICR, LREC , and LKL, respectively.

10: Update the whole network by minimizing L in Eq. (12);
11: end for
12: Obtain R by performing K-means over Z.
13: return R

Objective Function
The overall optimization objective of the proposed method
consists of three parts: the loss of proposed DICR, the re-
construction loss, and the clustering loss:

L = LDICR + LREC + λLKL, (12)

where LREC denotes the joint mean square error (MSE)
reconstruction loss of node attributes and graph struc-
ture adopted in (Tu et al. 2020). LKL denotes the Kull-
back–Leibler divergence (Kullback and Leibler 1951), i.e.,
a widely-used self-supervised clustering loss (Xie, Girshick,
and Farhadi 2016; Guo et al. 2017; Wang et al. 2019; Bo
et al. 2020; Tu et al. 2020), where we generate the soft as-
signment distribution Q ∈ RN×C and the target distribution
P ∈ RN×C over the clustering-oriented node embeddings
Z, and then align both distributions to guide the network
learning. The trade-off parameter λ is set to 10. Here, for
the design of LREC and LKL, more details are described
in the origin paper of DFCN (Tu et al. 2020). The detailed
learning procedure of DCRN is shown in Algorithm 1.

Experiments
Datasets
To evaluate the effectiveness of the proposed method, we
conduct extensive experiments on six widely-used datasets,
including DBLP, CITE, ACM(Bo et al. 2020), AMAP,
PUBMED, and CORAFULL(Shchur et al. 2018).

Experiment Setup
Training Procedure The proposed DCRN is imple-
mented with a NVIDIA 3090 GPU on PyTorch platform.
The training process of our model includes three steps. Fol-
lowing DFCN (Tu et al. 2020), we first pre-train the sub-
networks independently with at least 30 epochs by minimiz-
ing the reconstruction loss LREC . Then both sub-networks
are directly integrated into a united framework to obtain the
initial clustering centers for another 100 epochs. Thereafter,
we train the whole network under the guidance of Eq. (12)
for 400 epochs until convergence. Finally, we perform clus-
tering over Z by K-means (Hartigan and Wong 1979). To

avoid randomness, we run each method for 10 times and re-
port the averages with standard deviations.

Parameters Setting For ARGA (Pan et al. 2019), MV-
GRL (Hassani and Khasahmadi 2020), and DFCN (Tu et al.
2020), we reproduce their source code by following the set-
ting of the original literature and present the average results.
For other compared baselines, we directly report the corre-
sponding values listed in DFCN (Tu et al. 2020). For our
proposed method, we adopt the code and data of DFCN for
data pre-processing and testing. Besides, we adopt DFCN
(Tu et al. 2020) as our backbone network. The network is
trained with the Adam optimizer(Kingma and Ba 2014) in
all experiments. The learning rate is set to 1e-3 for AMAP,
1e-4 for DBLP, 5e-5 for ACM, 1e-5 for CITE, PUBMED,
and CORAFULL, respectively. The hyper-parameters α is
set to 0.1 for PUBMED and 0.2 for other datasets. More-
over, we set λ and γ to 10 and 1e3, respectively. K in Eq. 6
is set to the cluster number C.

Metrics The clustering performance is evaluated by four
public metrics: Accuracy (ACC), Normalized Mutual Infor-
mation (NMI), Average Rand Index (ARI) and macro F1-
score (F1) (Liu et al. 2019a, 2018, 2019b; Zhou et al. 2019,
2020). The best map between cluster ID and class ID is con-
structed by the Kuhn-Munkres (Plummer and Lovász 1986).

Performance Comparison
To demonstrate the superiority of the proposed method, we
adopt 10 baselines for performance comparisons. Specif-
ically, K-means (Hartigan and Wong 1979) is one of the
most classic traditional clustering methods. Three represen-
tative deep generative methods, i.e., AE (Yang et al. 2017),
DEC (Xie, Girshick, and Farhadi 2016), and IDEC (Guo
et al. 2017), train an auto-encoder and then perform a clus-
tering algorithm over the learned latent embedding. GAE
(Kipf and Welling 2016b), DAEGC (Wang et al. 2019), and
ARGA (Pan et al. 2019) are three typical GCN-based frame-
works that learn the representation for clustering by con-
sidering both node attribute and structure information. Fur-
thermore, we report the performance of three state-of-the-
art deep clustering methods, i.e., SDCN (Bo et al. 2020),
DFCN (Tu et al. 2020), and MVGRL (Hassani and Khasah-
madi 2020), which utilize two sub-networks to process aug-
mented graphs independently.

Table 2 reports the clustering performance of all com-
pared methods on six benchmarks. From these results, we
can conclude that 1) DCRN consistently outperforms all
compared methods in terms of four metrics over all datasets.
SDCN (Bo et al. 2020), MVGRL (Hassani and Khasahmadi
2020) and DFCN (Tu et al. 2020) have been considered
as three strongest deep clustering frameworks. Taking the
results on DBLP for example, our DCRN exceeds DFCN
by 3.66% 5.25%, 6.60% 3.58% increments with respect to
ACC, NMI, ARI and F1. This is because both SDCN and
DFCN overly introduce the attribute information learned by
the auto-encoder part into the latent space, so that the node
embedding contains redundant attributes about the sample,
leading to representation collapse. In contrast, by reducing
the information correlation in a dual manner, DCRN can
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Dataset Metric K-Means AE DEC IDEC GAE DAEGC ARGA SDCN MVGRL DFCN OURS

ACC 38.65±0.65 51.43±0.35 58.16±0.56 60.31±0.62 61.21±1.22 62.05±0.48 64.83±0.59 68.05±1.81 42.73±1.02 76.00±0.80 79.66±0.25
NMI 11.45±0.38 25.40±0.16 29.51±0.28 31.17±0.50 30.80±0.91 32.49±0.45 29.42±0.92 39.50±1.34 15.41±0.63 43.70±1.00 48.95±0.44
ARI 6.97±0.39 12.21±0.43 23.92±0.39 25.37±0.60 22.02±1.40 21.03±0.52 27.99±0.91 39.15±2.01 8.22±0.50 47.00±1.50 53.60±0.46DBLP

F1 31.92±0.27 52.53±0.36 59.38±0.51 61.33±0.56 61.41±2.23 61.75±0.67 64.97±0.66 67.71±1.51 40.52±1.51 75.70±0.80 79.28±0.26

ACC 39.32±3.17 57.08±0.13 55.89±0.20 60.49±1.42 61.35±0.80 64.54±1.39 61.07±0.49 65.96±0.31 68.66±0.36 69.50±0.20 70.86±0.18
NMI 16.94±3.22 27.64±0.08 28.34±0.30 27.17±2.40 34.63±0.65 36.41±0.86 34.40±0.71 38.71±0.32 43.66±0.40 43.90±0.20 45.86±0.35
ARI 13.43±3.02 29.31±0.14 28.12±0.36 25.70±2.65 33.55±1.18 37.78±1.24 34.32±0.70 40.17±0.43 44.27±0.73 45.50±0.30 47.64±0.30CITE

F1 36.08±3.53 53.80±0.11 52.62±0.17 61.62±1.39 57.36±0.82 62.20±1.32 58.23±0.31 63.62±0.24 63.71±0.39 64.30±0.20 65.83±0.21

ACC 67.31±0.71 81.83±0.08 84.33±0.76 85.12±0.52 84.52±1.44 86.94±2.83 86.29±0.36 90.45±0.18 86.73±0.76 90.90±0.20 91.93±0.20
NMI 32.44±0.46 49.30±0.16 54.54±1.51 56.61±1.16 55.38±1.92 56.18±4.15 56.21±0.82 68.31±0.25 60.87±1.40 69.40±0.40 71.56±0.61
ARI 30.60±0.69 54.64±0.16 60.64±1.87 62.16±1.50 59.46±3.10 59.35±3.89 63.37±0.86 73.91±0.40 65.07±1.76 74.90±0.40 77.56±0.52ACM

F1 67.57±0.74 82.01±0.08 84.51±0.74 85.11±0.48 84.65±1.33 87.07±2.79 86.31±0.35 90.42±0.19 86.85±0.72 90.80±0.20 91.94±0.20

ACC 27.22±0.76 48.25±0.08 47.22±0.08 47.62±0.08 71.57±2.48 76.44±0.01 69.28±2.30 53.44±0.81 45.19±1.79 76.88±0.80 79.94±0.13
NMI 13.23±1.33 38.76±0.30 37.35±0.05 37.83±0.08 62.13±2.79 65.57±0.03 58.36±2.76 44.85±0.83 36.89±1.31 69.21±1.00 73.70±0.24
ARI 5.50±0.44 20.80±0.47 18.59±0.04 19.24±0.07 48.82±4.57 59.39±0.02 44.18±4.41 31.21±1.23 18.79±0.47 58.98±0.84 63.69±0.20AMAP

F1 23.96±0.51 47.87±0.20 46.71±0.12 47.20±0.11 68.08±1.76 69.97±0.02 64.30±1.95 50.66±1.49 39.65±2.39 71.58±0.31 73.82±0.12

ACC 59.83±0.01 63.07±0.31 60.14±0.09 60.70±0.34 62.09±0.81 68.73±0.03 65.26±0.12 64.20±1.30 67.01±0.52 68.89±0.07 69.87±0.07
NMI 31.05±0.02 26.32±0.57 22.44±0.14 23.67±0.29 23.84±3.54 28.26±0.03 24.80±0.17 22.87±2.04 31.59±1.45 31.43±0.13 32.20±0.08
ARI 28.10±0.01 23.86±0.67 19.55±0.13 20.58±0.39 20.62±1.39 29.84±0.04 24.35±0.17 22.30±2.07 29.42±1.06 30.64±0.11 31.41±0.12PUBMED

F1 58.88±0.01 64.01±0.29 61.49±0.10 62.41±0.32 61.37±0.85 68.23±0.02 65.69±0.13 65.01±1.21 67.07±0.36 68.10±0.07 68.94±0.08

ACC 26.27±1.10 33.12±0.19 31.92±0.45 32.19±0.31 29.60±0.81 34.35±1.00 22.07±0.43 26.67±0.40 31.52±2.95 37.51±0.81 38.80±0.60
NMI 34.68±0.84 41.53±0.25 41.67±0.24 41.64±0.28 45.82±0.75 49.16±0.73 41.28±0.25 37.38±0.39 48.99±3.95 51.30±0.41 51.91±0.35
ARI 9.35±0.57 18.13±0.27 16.98±0.29 17.17±0.22 17.84±0.86 22.60±0.47 12.38±0.24 13.63±0.27 19.11±2.63 24.46±0.48 25.25±0.49CORAFULL

F1 22.57±1.09 28.40±0.30 27.71±0.58 27.72±0.41 25.95±0.75 26.96±1.33 18.85±0.41 22.14±0.43 26.51±2.87 31.22±0.87 31.68±0.76

Table 2: The average clustering performance with mean±std on six benchmarks. The bold and underlined values indicate the
best and the runner-up results, respectively.

Raw Data AE DEC GAE ARGA DFCN OURS

Figure 4: 2D visualization on ACM dataset.

learn more meaningful representation to improve the cluster-
ing performance; 2) it can be observed that the GCN-based
clustering methods GAE (Kipf and Welling 2016b), ARGA
(Pan et al. 2019) and DAEGC (Wang et al. 2019) are not
comparable with ours. This is because these methods do not
consider to handle information correlation redundancy, thus
resulting in the trivial constant representation; 3) our method
improves the auto-encoder-based clustering methods, i.e.,
AE (Yang et al. 2017), DEC (Yang et al. 2017) and IDEC
(Guo et al. 2017), by a large margin, all of which have been
verified strong representation learning capacity for cluster-
ing on non-graph data, while these methods that merely rely
on attribute information can not effectively learn discrim-
inative information on graphs; 4) since K-means (Hartigan
and Wong 1979) is directly performed on raw attributes, thus
achieving unpromising results. Overall, the aforementioned
observations have demonstrated the effectiveness of our pro-
posed method in solving representation collapse issue. In the
following section, we firstly conduct extensive experiments
to verify the effectiveness of the proposed DICR module and
dual level correlation reduction mechanism. Then we ana-
lyze the influence of the hyper-parameter K and visualize
the clustering results intuitively.

Ablation Studies

Effectiveness of DICR Module We conduct an ablation
study to clearly verify the effectiveness of DICR module
and report the results in Table 3. Here we denote the DFCN
(Tu et al. 2020) as the Baseline since it’s the feature ex-
traction backbone of our network. Baseline-P, Baseline-D,
and Baseline-P-D denote that the baseline adopts the propa-
gated regularization, the DICR mechanism, and both. From
the results in Table 3, we can observe that 1) compare
with the baseline, Baseline-P has about 0.5% to 1.0% per-
formance improvement in terms of four metrics on DBLP
dataset. These results demonstrate that introducing a regu-
larization term into the network training could improve the
generalization capacity of the model as well as alleviate the
over-smoothing; 2) Baseline-D consistently achieves better
performance than that of the baseline. Taking the results
on DBLP for example, Baseline-D exceeds the baseline by
3.63%, 5.25%, 6.48%, 3.56% performance increment with
respect to ACC, NMI, ARI and F1. It benefits from that we
conduct a DICR mechanism to enhance the discriminative
capacity of the latent embedding for clustering performance
improvement. We can obtain similar conclusions from the
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Dataset Metric Baseline Baseline-P Baseline-D Baseline-P-D

DBLP

ACC 76.00±0.80 77.00±0.41 79.63±0.27 79.66±0.25
NMI 43.70±1.00 44.98±0.56 48.95±0.48 48.95±0.44
ARI 47.00±1.50 48.51±0.84 53.48±0.51 53.60±0.46
F1 75.70±0.80 76.77±0.38 79.26±0.28 79.28±0.26

CITE

ACC 69.50±0.20 70.07±0.21 70.88±0.19 70.86±0.18
NMI 43.90±0.20 44.75±0.40 45.92±0.35 45.86±0.35
ARI 45.50±0.30 46.52±0.36 47.73±0.29 47.64±0.30
F1 64.30±0.20 65.03±0.23 65.79±0.20 65.83±0.21

ACM

ACC 90.90±0.20 91.57±0.12 91.91±0.21 91.93±0.20
NMI 69.40±0.40 70.82±0.25 71.56±0.61 71.56±0.52
ARI 74.90±0.40 76.68±0.28 77.50±0.53 77.56±0.52
F1 90.80±0.20 91.53±0.12 91.90±0.21 91.94±0.20

AMAP

ACC 76.88±0.80 79.01±0.01 79.95±0.04 79.94±0.13
NMI 69.21±1.00 72.29±0.01 73.69±0.05 73.70±0.24
ARI 58.98±0.84 62.1±0.01 63.70±0.05 63.69±0.20
F1 71.58±0.31 73.09±0.00 73.84±0.03 73.82±0.12

PUBMED

ACC 68.89±0.07 69.43±0.05 69.74±0.06 69.87±0.07
NMI 31.43±0.13 31.98±0.12 32.04±0.06 32.20±0.08
ARI 30.64±0.11 31.35±0.12 31.14±0.11 31.41±0.12
F1 68.10±0.07 68.54±0.06 68.81±0.07 68.94±0.08

CORAFULL

ACC 37.51±0.81 37.04±0.71 38.23±0.59 38.80±0.60
NMI 51.30±0.41 51.90±0.26 50.85±0.36 51.91±0.35
ARI 24.46±0.48 24.13±0.51 24.83±0.37 25.25±0.49
F1 31.22±0.87 30.35±0.87 31.34±0.81 31.68±0.76

Table 3: Ablation comparisons of DICR mechanism and the
propagated regularization on six datasets.

results on other datasets; 3) the results in the last column of
Table 3 further verify the effectiveness of both components.
As seen, Baseline-P-D achieves the best results compared to
other variants.

Effectiveness of Dual Level Correlation Reduction To
further investigate the superiority of the proposed DICR
mechanism, we experimentally compare our method (i.e.,
B-F-S in Fig. 5) with three counterparts. Likewise, we de-
note the DFCN as the baseline (B). B-F and B-S are denoted
that the baseline merely adopts feature-level and sample-
level correlation reduction strategy, respectively. From the
results in Fig. 5, we can see that 1) B-F outperforms base-
line in terms of four matrices on four of six datasets, but ob-
tains unsatisfied performance on DBLP and CORAFULL.
This is because the learned embedding is not robust with-
out considering sample-level correlation redundancy; 2) the
performance of B-S is consistently better than that of base-
line over all datasets. For instance, B-S obtains 3.60% ac-
curacy improvement on DBLP. It shows that the decorrela-
tion operation of samples is effective in filtering redundant
information of two views while preserving more discrimi-
native features for improving the clustering performance; 3)
B-F-S could leverage two types of correlation reduction to
make the learned latent embedding more discriminative for
better clustering. In summary, the above observations well
demonstrate the effectiveness of dual level correlation re-
duction strategy.

Hyper-parameter Analysis of K Furthermore, we inves-
tigate the influence of hyper-parameter K. From Fig. 6, we
observe that 1) the accuracy metric first increases to a high
value and generally maintains it up to slight variation with

DBLP

ACM

PUBMED

CITE

AMAP

CORAFULL

Figure 5: Ablation comparisons of dual information correla-
tion reduction on six datasets.

Figure 6: Clustering accuracy vs. hyper-parameter K.

the increasing value K; 2) the method tends to perform well
when K is equal to the number of clusters C; 3) our DCRN
is insensitive to the variation of the hyper-parameter K.

t-SNE Visualization of Clustering Results In order to
show the superiority of DRCN intuitively, on ACM dataset,
we visualize the distribution of the learned node embedding
Z generated by AE, DEC, GAE, ARGA, DFCN and our
DCRN via t-SNE (Van der Maaten and Hinton 2008). As il-
lustrated in Fig. 4, the visual results demonstrate that DCRN
have a clearer structure, which can better reveal the intrinsic
clustering structure among data.

Conclusion
In this work, we propose a novel self-supervised deep graph
clustering network termed as Dual Correlation Reduction
Network (DCRN). In our model, a carefully-designed dual
information correlation reduction mechanism is introduced
to reduce the information correlation in both sample and fea-
ture level. With this mechanism, the redundant information
of the latent variables from two views can be filtered out
and more discriminative features of both views can be well
preserved. It plays an important role in avoiding represen-
tation collapse for better clustering. Experimental results on
six benchmarks demonstrate the superiority of DCRN.
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