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Abstract

Multi-agent reinforcement learning (MARL) provides an ef-
ficient way for simultaneously learning policies for multiple
agents interacting with each other. However, in scenarios re-
quiring complex interactions, existing algorithms can suffer
from an inability to accurately anticipate the influence of self-
actions on other agents. Incorporating an ability to reason
about other agents’ potential responses can allow an agent to
formulate more effective strategies. This paper adopts a recur-
sive reasoning model in a centralized-training-decentralized-
execution framework to help learning agents better cooperate
with or compete against others. The proposed algorithm, re-
ferred to as the Recursive Reasoning Graph (R2G), shows
state-of-the-art performance on multiple multi-agent particle
and robotics games.

Introduction
Recent advances in deep reinforcement learning have
shown impressive success in single-agent scenarios includ-
ing games (Hessel et al. 2018) and robotics (Johannink et al.
2019). However, many real-world problems involve interac-
tions between multiple agents with limited information ex-
change, where multi-agent reinforcement learning (MARL)
is needed (Vinyals et al. 2019; Wen et al. 2020; Yang et al.
2019). The simplest approach to MARL is independent rein-
forcement learning (Tan 1993), which trains each agent in-
dependently by treating the other learning agents as part of
the environment. Unfortunately, these methods often have
stability issues since the environment dynamics from the
perspective of each learning agent is non-stationary due to
the learning of other agents (Mohseni-Kabir, Isele, and Fu-
jimura 2019). To account for this, we can build behavior
models of other agents and thus separate this unstable com-
ponent out of the environment dynamics. Many decentral-
ized MARL algorithms follow this idea (He et al. 2016; Wen
et al. 2018; Shen and How 2021).

However, modeling other agents’ could be difficult as
they are continuously learning (Albrecht and Stone 2018).
In the centralized-training-decentralized-execution (CTDE)
framework, such problems are avoided by allowing the
learning algorithm to have direct access to all agents’ in-
ternal information (policy, value network, etc.) at training
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time. Algorithms adopting this setting often demonstrate
better interactive strategies (Sunehag et al. 2018; Rashid
et al. 2018; Gupta, Egorov, and Kochenderfer 2017). How-
ever, most existing algorithms are limited due to their lack
of ability at explicitly considering the reasoning process of
other agents (Lowe et al. 2017; Yang et al. 2019; Wei et al.
2018). They therefore cannot develop plans that account for
the influence of their behavior changes on opponents’ re-
sponse (Wen et al. 2018).

Reasoning about others’ reasoning, referred to as recur-
sive reasoning, is important for humans interacting with
each other. Von Der Osten, Kirley, and Miller (2017) use re-
cursive nested beliefs to predict the actions of other agents,
but their method is limited to few state variables and dis-
crete action spaces. The PR2 method (Wen et al. 2018) ap-
plies recursive reasoning by explicitly modeling the other
agent’s response to the ego agent’s action. However, as PR2
adopts decentralized-training, each learning agent uses a sin-
gle model to learn the response of all the opponents by as-
suming that the other agents share the same reward as it-
self, which limits its application to fully-cooperative games.
Li et al. (2019) augment the multi-agent deep deterministic
policy gradient (MADDPG) (Lowe et al. 2017) using ad-
versarial training with linear approximations to model the
minimax optimization, which is limited to zero-sum games.

In this paper, we propose to augment the existing CTDE
framework with auxiliary central actors to learn the opti-
mal response of each agent given opponents’ actions. Based
on this, we build a graph structure to model the recur-
sive reasoning procedure between interacting agents. This
graph structure allows us to model the relationships be-
tween agents and explicitly consider the their responses.
The recursive actions of each agent are efficiently sam-
pled and shared through message passing in the graph. The
proposed method, which we call the Recursive Reasoning
Graph (R2G), works in both competitive and cooperative
games. Our contributions are as follows:
• We propose R2G, a multi-agent reinforcement learning

framework that explicitly models the recursive reasoning
process of the agents in general-sum games.

• We augment the existing centralized-training-
decentralized-execution algorithms with centralized
actors and graph-like message passing to efficiently train
the learning agents under R2G framework.
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• We demonstrate state-of-the-art performance on multiple
Particle World (Lowe et al. 2017) and RoboSumo (Al-
Shedivat et al. 2018) environments with complex reward
structure and non-trivial equilibrium.

Background
Markov Game
A Markov Game (MG) is commonly used to model multi-
agent reinforcement learning problems (Littman 1994). A
MG is specified by (S, {Ai}ni=1, T, {ri}ni=1, γ, s0), where n
is the number of agents; S is the state space containing the
state for all agents; Ai represents the action space for agent
i; T : S ×

∏n
i=1 A

i → S represents the (stochastic) tran-
sition model conditioned on the current state as well as the
actions of all agents; ri : S ×

∏n
i=1 A

i × S → R represents
the reward for agent i; and s0 represents the initial state dis-
tribution of all agents.

The learning objective in MGs is to get a set of polices
{πi}ni=1, where for each agent i, πi : S → Ai maps the
state to its action. However, unlike the clear optimization
goal in the single-agent reinforcement learning, the concept
of optimality in MARL is more complex. In fully coopera-
tive games where all the agents share the same reward func-
tion, the optimization goal is to maximize the joint return for
all agents. When agents have conflict of interests, the con-
cept of equilibrium is introduced. A common objective is to
find the Nash Equilibrium (NE), where all agents act in best
response to each others’ current strategy. However, a Nash
Equilibrium might be difficult to compute and can diverge
from human behavior (Wright and Leyton-Brown 2010).

Multi-Agent Actor-Critic
The actor-critic framework is a common training struc-
ture in single-agent reinforcement learning. In this frame-
work, a critic, Qθ(s, a), is trained to estimate the re-
turn value of the state-action pair (s, a) with the loss
JQθ = Es,a∼D[(Qθ(s, a) − Q̂)2], where D is the re-
play buffer storing the exploration experiences and Q̂ is
an empirical estimate of the return value. An actor, πϕ(s),
is trained to maximize the return value with the loss
Jπϕ = Es∼D,a∼πϕ(s)[−Qθ(s, a)]. Additional terms like
the policy entropy could also be added to Jπϕ to im-
prove the training (Haarnoja et al. 2018). The actor-critic
framework could be naturally generalized to the multi-
agent setting with centralized training. A central critic,
Qi
θ(s, a

i, a−i), for each agent i, where a−i indicates the
actions of agents except agent i, is trained to estimate the
return value of agent i given the state and the joint-action;
i.e., JQiθ = Es,ai,a−i∼D[(Qθ(s, a

i, a−i) − Q̂)2]. Each ac-
tor, πiϕ(s), is then trained to minimize the loss Jπiϕ =

Es∼D,ai∼πiϕ(s)[−Qθ(s, a
i, a−i)].

There are multiple choices for sampling a−i during the
training of actors. For example, in MADDPG (Lowe et al.
2017), a−i is from the stored experiences in the replay
buffer. The stored actions are sampled from the policies ear-
lier in the training or from an exploration strategy. In this
case, the actor is actually learning the best response with

respect to the action distribution stored in the replay buffer,
whose performance largely depends on the exploration strat-
egy.

An alternative is to sample a−i directly from the other
agents’ current policies. Unfortunately, this can lead to the
problem of relative overgeneralization (Wei and Luke 2016).
During training and exploration, a suboptimal Nash Equilib-
rium (NE) could be preferred over the optimal NE, when
each agent’s action in the suboptimal NE is estimated with
a higher return against the current action distributions from
the other agents. Wei et al. (2018) address this problem by
having each agent learn the optimal joint action of all agents.
However, this assumes that all agents are optimizing the
same reward function and thus is limited to fully coopera-
tive games.

Sampling from the other agents’ current policy could also
lead to oscillatory learning as all agents learn concurrently,
and the best response at this iteration might be suboptimal
in the next iteration. For example, in the ROCK-PAPER-
SCISSORS game, if we know the opponent’s current policy
is playing ROCK with probability 1, then our best response
is to play PAPER. However, when the opponent finds out our
new policy at the next iteration, they would change to play
SCISSOR. As one player changes its policy completely at
each iteration, the equilibrium where each player plays the
three options uniformly randomly could never be reached.

Methods
We propose to use a recursive reasoning model to sample the
opponents’ response during policy training in multi-agent
actor-critic.

Logit Level-K Reasoning
The recursive reasoning refers to the process of reasoning
about the other agent’s reasoning process during decision
making. It allows the ego agent to consider the potential
change in strategy of other agents instead of treating them
as fixed. A classic model of recursive reasoning is the logit
level-k model: At level 0, all agents choose their actions
based on some base policies, π(0). At each level k, each
agent chooses the best policy by assuming the others fol-
low their level k − 1 policies. In multi-agent RL, a natural
level-0 policy is the agent’s current policy, i.e. πi,(0) = πi.
Given the actions of other agents at level k − 1: a−i,(k−1),
the best level-k action for agent i should be

ai,(k) = argmax
ai

Qi(s, ai, a−i,(k−1)) (1)

where Qi is the estimated return of agent i. This formulation
holds for general-sum games.

Solving the optimization in eq. (1) is not trivial in con-
tinuous action spaces. Thus, we introduce a central ac-
tor πic(s, a

−i) which learns the best response for agent i
given state s and the other agents’ actions a−i. We train
πic,ψ(s, a

−i) to approximate argmaxai Q
i
θ(s, a

i, a−i) by
minimizing the loss:

Jπic,ψ = Es,a−i∼D,ai∼πic,ψ(s,a−i)[−Q
i
θ(s, a

i, a−i)] (2)
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Recursive Reasoning Graph
With the help of πic, we can calculate a−i,(k) using a mes-
sage passing process in a recursive reasoning graph (R2G):
G = (V , E). The node set V = {π1

c , ..., π
n
c } contains the

central actor node for each agent, and the edge set E contains
edges between all interacting agents. We use an undirected,
fully-connected graph by assuming all agents are interacting
with each other. A more sparse graph could be used if we
have prior knowledge on the interacting structure between
agents. The messages in the edges are the sampled actions
ai,(k) from the central actors.

Figure 1 gives an illustration of the recursive reasoning
graph in a 3-agent game. The initial level-0 actions are sam-
pled from the individual policies:

ai,(0) ∼ πi(s) (3)

At each level k ≥ 1, we have:

ai,(k) ∼ πic(s, AGGj∈N (i)a
j,(k−1)) (4)

where AGG is the aggregation function and N is the node
neighborhood function. In practice, we use concatenation for
AGG. Thus, AGGj∈N (i)a

j,(k−1) is interchangeable with a−i

in fully-connected graphs. The generalization from fully-
connected graph to sparse graph is straightforward by limit-
ing the message passing between central actors. An attention
mechanism (Veličković et al. 2018) could also be used to dy-
namically learn the interaction structures.

At level k, each central actor node takes the input message
of a−i,(k−1) and outputs its best response ai,(k). Thus, one
complete message passing through the graph gives one-level
up in the recursion. Hypothetically, the level of recursion
could go to infinity. In the following discussion, we focus on
the level-1 recursion. The comparison of different recursion
levels are provided in the appendix1.

The output level k actions are then fed to the central critics
to calculate the estimated Q-values of the policy actions. The
policy loss, Jπiϕ , is then formulated as the KL-divergence of
the policy action distribution to the energy-based distribu-
tion represented by Qi

θ:

Jπiϕ = Eai,(0)∼πiϕ,a−i,(k)∼G,s∼D[α
i log(πiϕ(a

i,(0)|s))

−Qi
θ(s, a

i,(0), a−i,(k))]
(5)

where αi is the temperature variable trained similarly as in
SAC (Haarnoja et al. 2018).

For the training of the central critic Qi
θ, we adopt the soft

Bellman residual (Haarnoja et al. 2018):

JQiθ = ED[(Q
i
θ(s, a

i, a−i)− (ri(s, ai, a−i) + γV̂ (s′)))2]

(6)
where the next state value V̂ (s′) is estimated by

V̂ (s′) = Ea′i,(0)∼πiϕ,a′−i,(k)∼G [Q
i
θ̂
(s′, a′i,(0), a′−i,(k))

−αi log πiϕ(a′i,(0)|s′)]
(7)

1Please refer to http://arxiv.org/abs/2203.02844

Algorithm 1: Recursive Reasoning Graph (R2G)

Result: Policy πiϕ, ∀i ∈ 1, .., n

Initialize πiϕ, Qi
θ, Qi

θ̂
, and πic,ψ ∀i ∈ 1, .., n;

D ← empty reply buffer;
for each epoch do

Collect exploration experiences using πi=1:n
ϕ ;

Add tuples (s, ai=1:n, ri=1:n, s′) to D;
for each training iteration do

Sample {(sj , ai=1:n
j , ri=1:n

j , s′j)}Bj=1 from D
with batch-size B;

Calculate {ai=1:n,(k)
j }Bj=1 at {sj}Bj=1 and

{a′j
i=1:n,(k)}Bj=1 at {s′j}Bj=1 from eq. (4);

for each agent i do
Update πiϕ with Jπiϕ in eq. (5);
Update πic,ψ with Jπic,ψ in eq. (2);
Update Qi

θ with JQiθ in eq. (6);
Update target Q network as
θ̂ ← τθ + (1− τ)θ̂ with factor τ ;

end
end

end

where Qi
θ̂

is the delayed updated version of the critic net-
work for agent i.

The central actor πic,ψ is trained by the loss given in
eq. (2). We can omit the entropy term in Jπic,ψ since the ex-
ploration does not rely on πic,ψ , and there always exists a
deterministic optimal response given the strategies of other
agents.

The training process is outlined in algorithm 1. The con-
vergence of the algorithm are discussed in the appendix.

The relative over-generalization problem in R2G is miti-
gated as learning the conditional best response in πic(s, a

−i)
is much easier than learning the marginal best response in
πi(s), which makes the recursive actions a better approxi-
mation to the opponents’ optimal response. Let πi,(0) denote
the policy trained with opponents’ current strategies, where
Jπi,(0) = E

s∼D,a−i∼π−i,(0)
ϕ (s),ai∼πiϕ(s)

[−Qθ(s, a
i, a−i)].

We first notice that Jπi,(0) has a much larger variance than
Jπic in eq. (2) due to the additional variance introduced by
a−i ∼ π−i,(0)(s), where π−i,(0) could be both stochastic
and learning. Without loss of generality, let us consider the
influence of using a2,(1) in the training of π1. In a two-player
game, from the above argument, a2,(1) ∼ π2

c (s, a
1) is a bet-

ter approximation to the optimal response of player 2 to a1

than a2,(0) ∼ π2,(0)(s). In games with more than 2 players,
the above argument is not as clear, since a2,(1) ∼ π2

c (s, a
−i)

is best responding not only a1 but also other players. How-
ever, in most games, the importance of different players
is mutual, i.e., if the strategy of player 2 is important to
player 1, then so is player 1 to player 2. Thus, if a2,(1)
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Figure 1: Recursive Reasoning Graph: The forward computation graph for Q values in the policy loss in a 3-agent game.

is important for the training of π1, then π2
c (s, a

−i) should
also consider a1 more than other players’ actions. Thus,
Qi
θ(s, a

i,(0), a−i,(1)) gives a generally closer approximation
than Qi

θ(s, a
i,(0), a−i,(0)) on the return of the ego agent’s

action when opponents response optimally.
The oscillatory learning problem is also avoided by train-

ing πi with a−i,(1). The change of other agents’ actions due
to the ego agent’s action change is accounted in the policy
loss using recursive actions.

A critical concern for an MARL algorithm is its scalabil-
ity with respect to the number of agents, n. The computation
complexity of typical centralized-training-decentralized-
execution approaches scales quadratically with the number
of agents. While R2G adds an additional central actor for
each agent, the recursive actions are only calculated once at
each recursion level and shared by n − 1 opponents by the
message passing mechanism. Thus, the overall training still
scales quadratically with n and linearly with the recursion
level, k.

Experiments
We compare R2G with several baselines spanning central-
ized and decentralized learning, as well as on-policy and off-
policy algorithms applicable in the continuous action apace
context:
• PPO: The proximal policy optimization (PPO) (Schul-

man et al. 2017) is one of the most successful on-policy
policy optimization algorithm for single-agent continu-
ous control. In the experiments, PPO is applied to multi-
agent problems through independent learning.

• COMA: The counterfactual multi-agent policy gradients
(COMA) (Foerster et al. 2018) is developed for multi-
agent on-policy learning in discrete action spaces. To ap-
ply it in continuous control problems, we use a surrogate
loss with likelihood ratio clipping as in PPO, and a Monte
Carlo estimation for the counterfactual baseline.

• SAC: Soft actor-critic (Haarnoja et al. 2018) is a single-
agent off-policy learning algorithm. An independent

learning scheme is applied for multi-agent problems.
• MADDPG: The multi-agent deep deterministic policy

gradient (MADDPG) (Lowe et al. 2017) is a generaliza-
tion from DDPG (Lillicrap et al. 2015) by introducing
the central critic. In MADDPG, the a−i is sampled from
the replay buffer.

• MASAC: MASAC is a similar generalization from SAC
as MADDPG. During the training, the a−i is sampled
from the current policies of opponents. Thus, MASAC
could be regarded as R2G without recursive reasoning.

• PR2: Probabilistic recursive reasoning (PR2) (Wen et al.
2018) is a decentralized off-policy learning algorithm
which also uses recursive reasoning in its training. The
derivation of PR2 is based on the fully-cooperative
assumption, but it also shows decent performance on
general-sum games.

Differential Games
We first demonstrate the advantage of R2G analytically by
focusing on two-player single-state Differential Games: the
Zero Sum and the Max of Two (as in Wen et al. (2018)). The
reward landscapes of the two games are shown in figs. 2a
and 2b. More details of the environment as well as the ex-
periments are given in the appendix.
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(a) Zero Sum (r1 = −r2)
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0
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50
40
30
20
10

0
10

(b) Max of Two (r1 = r2)

Figure 2: Differential Game: Reward landscapes

For Zero Sum, the best action for agent 1 given a2 is
a1,∗ = 1 · sign(a2), and the best action for agent 2 given
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Figure 3: Zero Sum: Trajectories of most likely actions for
different algorithms over 1000 iterations.

a1 is a2,∗ = −1 · sign(a1). Thus, if both agents only con-
sider their opponent’s current strategy, they will have an os-
cillatory learning by alternating between 1 and−1. Such be-
havior indeed appears in the training of PPO, COMA, and
MASAC as shown in figs. 3a, 3b and 3e. However, if the
agent is aware of the potential response of the opponent to its
own action change, their actions should converge to the (0,0)
point, as any action deviates from 0 would get a lower re-
ward when the opponent takes response. The central actor in
R2G successfully captures this potential response as shown
in fig. 5a. As a result, the R2G agents successfully converge
to (0,0) after a short exploration as shown in fig. 3g. The ac-
tion trajectory of SAC, MADDPG, and PR2 is quite chaotic
due to changing opponent’s behavior, the non-optimal op-
ponent’s action distribution in buffer, and the violation of
cooperative assumption.
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(a) PPO
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Figure 4: Max of Two: Trajectories of most likely actions for
different algorithms over 1000 iterations.

For Max of Two, as a cooperative game, there is a local
optimum at (−0.5,−0.5) and a global optimum at (0.5, 0.5).
Due to the shape of the reward landscape, as the initial ac-
tion distributions of agents are in the vicinity of (0, 0), even
with sufficient exploration, each agent’s reward estimation
at −0.5 would be higher than that at 0.5 given the distribu-
tion of its opponent’s action. Thus, the learning agents are
easily attracted into the local optimum. As shown in figs. 4a
to 4e, all methods except for PR2 and R2G suffers from such

1 0 1
a2

1

0

1
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1

1 0 1
a1

1

0

1

ca
2

(a) Zero Sum

1 0 1
a2

1

0

1

ca
1

1 0 1
a1

1

0

1

ca
2

(b) Max of Two

Figure 5: Differential Game: Central actors of R2G. Left:
Most likely output of π1

c with respect to a2; Right: Most
likely output of π2

c with respect to a1. The central actors
successfully learn the optimal response in all scenarios.

relative over-generalization problem. However, if the agent
could predict the cooperative response of the opponent, e.g.,
when the agent acts at the global optimum, the opponent
would also act at the global optimum, its value estimation
of the global optimum action would be higher than the lo-
cal optimum action. Thus, both agents would converge to
the global optimum. The central actor in R2G successfully
captures this potential response as shown in fig. 5b, and the
R2G agents successfully converge to (0.5, 0.5) as shown in
fig. 4g. Similar behavior could also be observed in the train-
ing of PR2 as shown in fig. 4f.

(a) Cooperative
Navigation

(b) Physical
Deception

(c) Keep
Away

(d) Predator
Prey

Figure 6: Particle World: Illustration of scenarios. The blue
and red dots are good agents and adversaries. The green dots
indicate the landmarks. In Physical Deception, a shadow
green dot indicates the fake landmark. The black dots are
static obstacles. Arrows indicate the desired agent motions.
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Figure 7: Cooperative Navigation: Normalized evaluation
return of different algorithms.

Particle World
We further compare R2G against other baselines on several
multi-player multi-state Particle World environments (Lowe
et al. 2017) including:

• Cooperative Navigation: A cooperative game with 3
agents and 3 landmarks. Agents are rewarded to spread
and cover all landmarks and penalized by collisions.
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Figure 8: Particle World: Pairwise comparison of agent and adversary returns playing against the same opponents.

• Physical Deception: A competitive game with 1 adver-
sary, 2 good agents, and 2 landmarks. All agents observe
the positions of other agents and landmarks. There is only
one true target landmark which is only known to good
agents. The good agents are rewarded on how close any
one of them is to the target landmark and penalized if the
adversary is close to the target landmark. The adversary
is rewarded on how close it is to the target landmark.

• Keep Away: A competitive game with 1 adversary, 1
good agent, and 1 landmark. The good agent is rewarded
on how close it is to the landmark. The adversary is re-
warded if it is close to the landmark, and if the agent is
pushed away from the landmark.

• Predator-Prey: A competitive game with 3 adversaries
(predators), 1 good agent (prey), and several obstacles.
The good agent is faster and is rewarded to run away from
the three adversaries. The adversaries are slower and are
rewarded to catch the good agent.

We first compare the performance of different approaches
on the Cooperative Navigation environment by evaluating
the test time returns of agents trained together. The returns
are averaged over 5 random seeds each with 1000 trajecto-
ries, and are reported using Min-Max normalization (Patro
and Sahu 2015). As shown in fig. 7, R2G and PR2 achieve
the best performance among all tested approaches. In this

game, a positive return needs each agent cover one of the
landmarks. Thus, an agent is only motivated to approach one
landmark when it expects the other agents also approaching
other landmarks. The recursive reasoning in PR2 and R2G
successfully capture this. The off-policy actor-critic meth-
ods (MADDPG, MASAC, PR2, R2G) are generally better
than on-policy methods (PPO and COMA), this is likely due
to the better data efficiency of actor-critic methods. The in-
dependent SAC performs much worse than the others, since
the experience stored in the buffer is highly biased due to the
learning of other agents.

To compare the performance of R2G on competitive
games, we plot the pair-wise returns of different approaches
playing against the same opponents. The results are shown
in fig. 8. In each pair, we first evaluate the returns of differ-
ent good agents playing against the same adversary trained
from the baseline (fig. 8a) or from R2G (fig. 8b). Then we
evaluate the returns of different adversaries playing against
the same good agent trained (fig. 8c, fig. 8d).

In Physical Deception, the R2G agents behave better in
most comparisons and only slightly worse in some of the ad-
versary comparisons. For Physical Deception, training good
agents’ behavior is harder than training adversaries as two
good agents need to cooperate to confuse the adversary,
where the best response for the adversary is to randomly ap-
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Figure 9: RoboSumo: Pairwise comparison of R2G and the baseline against the same opponent.

Figure 10: RoboSumo: Illustration of the different types of
robots (top) and the game environment (bottom).

proach one of the landmarks. Thus, the advantage of R2G on
the strategic reasoning is more meaningful on good agents.

In Keep Away and Predator-Prey, the R2G agents also
show better performance in most comparisons. As there is no
clear optimal equilibrium strategies in these games, a domi-
nate strategy is hard to achieve. While there are some com-
parisons where R2G is slightly worse, the overall winning
rate of R2G is still higher than any other baselines.

RoboSumo
To verify the performance of R2G on larger state and action
spaces, we compare R2G and other baselines on the Robo-
Sumo (Al-Shedivat et al. 2018) simulator, which has much
larger state and action spaces with state dimensions ranging
from 120 to 208, and action dimensions ranging from 8 to
16. RoboSumo contains a set of two-player, competitive en-
vironments where two robots are competing for pushing the
opponent out of a square platform. In our experiments, three
types of robots, Ant, Bug, and Spider, are trained and tested
by playing against the same type of the opponent robot.

The tested robots as well as the competing platform is
shown in fig. 10. Since the game is symmetric, we choose
the agent which performs the best among the two agents
trained under the same method, and use it to compare with
the best agent of other methods. The results are shown in
fig. 9. The pairwise comparison results indicate that the R2G
agent performs better than all other baselines on the Ant and
Bug robots, and most of the baselines except MADDPG and
PR2 on the Spider robot. The performance degeneration in
Spider is likely due to a larger state and action space, where
learning the basic robot motions is itself difficult given lim-
ited samples, and the advantage of strategic reasoning for
R2G may not contribute as much.

Conclusion
In this paper, we proposed Recursive Reasoning Graph
(R2G), a multi-agent reinforcement learning (MARL)
framework that explicitly incorporates the recursive reason-
ing into the training process. Based on existing multi-agent
actor-critic algorithms, we augment each learning agent with
a central actor to model its conditional response given the
strategies of its opponents. We demonstrated how to effi-
ciently train the central actors using experiences stored in the
replay buffer. Treating these central actors as nodes and their
responses as messages, a recursive reasoning graph was built
to efficiently calculate the optimal response of each agent
given opponents actions. Thus, the outputs of the graph pro-
vided higher level recursion actions which is used for train-
ing the individual policies. In our experiments, R2G was
able to converge to the ideal performance while other base-
lines could not in two Differential Games, which demon-
strated how R2G addresses relative overgeneralization and
oscillatory learning problems. The performance of R2G on
multi-player multi-state Particle World and RoboSumo en-
vironments was also significantly better than baselines.

Adopting a graph structure for interactions between
agents also brings the possibility of using graph neural
networks (Hamilton, Ying, and Leskovec 2017; Veličković
et al. 2018) for dynamic interaction structure inferring, and
efficient parameter sharing between agents.
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