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Abstract

The right to erasure requires removal of a user’s information
from data held by organizations, with rigorous interpretations
extending to downstream products such as learned models.
Retraining from scratch with the particular user’s data omit-
ted fully removes its influence on the resulting model, but
comes with a high computational cost. Machine “unlearning”
mitigates the cost incurred by full retraining: instead, mod-
els are updated incrementally, possibly only requiring retrain-
ing when approximation errors accumulate. Rapid progress
has been made towards privacy guarantees on the indistin-
guishability of unlearned and retrained models, but current
formalisms do not place practical bounds on computation. In
this paper we demonstrate how an attacker can exploit this
oversight, highlighting a novel attack surface introduced by
machine unlearning. We consider an attacker aiming to in-
crease the computational cost of data removal. We derive and
empirically investigate a poisoning attack on certified ma-
chine unlearning where strategically designed training data
triggers complete retraining when removed.

1 Introduction
Much of modern machine learning has been advanced by the
availability of large volumes of data. However, organizations
that collect user data must comply with data protection reg-
ulations and often prioritize privacy to mitigate risk of civil
litigation and reputational damage. Prominent regulations—
i.e., GDPR (Council of the EU 2016) and CCPA (Califor-
nia State Legislature 2018)—encode a right to erasure—
organizations must “erase personal data without undue de-
lay” when requested. When tested, such regulations have
been found to extend to products derived from personal data,
including trained models (Federal Trade Commission 2021).
Veale, Binns, and Edwards (2018) argue that models could
be legally classified as personal data, which agrees with the
draft guidance from the UK Information Commissioner’s
Office (2020) that “erasure of the data... may not be pos-
sible without retraining the model... or deleting the model
altogether”. Such concerns are justified by a legitimate pri-
vacy risk: training data can be practically reconstructed from
models (Fredrikson, Jha, and Ristenpart 2015; Shokri et al.
2017; Veale, Binns, and Edwards 2018).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Naı̈vely erasing data from a model by full retraining can
be computationally costly. This has motivated the recent
study of machine unlearning: how to efficiently undo the
impact of data on a model. Guo et al. (2020) develop an ap-
proximate update which is 3 orders of magnitude faster than
retraining, or supporting up to 10,000 approximate updates
before retraining is required, with only a small drop in accu-
racy. Ginart et al. (2019) find a 100× improvement in dele-
tion efficiency with comparable clustering quality. Theoreti-
cal investigations has led to guarantees on privacy (indistin-
guishability of unlearned models with retrained models), but
have largely ignored computation cost.

In an adversarial setting where risks to privacy motivate
unlearning, we advocate that computation should also be
viewed under an adversarial lens. While the aforementioned
empirical results paint an optimistic picture for machine un-
learning, such work assumes passive users who are trusted:
they work within provided APIs, but also don’t attempt to
harm system performance in any way. In this paper we con-
sider an active adversary as is more typical in the adversarial
learning field (Huang et al. 2011). Users in this work can is-
sue strategically chosen data for learning, and then request
their data be unlearned. We adopt a typical threat model
where users may apply a bounded perturbation to their (nat-
ural) data. Boundedness is motivated by a desire to remain
undetected. Under this threat model we identify a new vul-
nerability: poisoning attacks that effectively slow down
unlearning.

We highlight several perspectives on our results. They call
into question the extent to which unlearning improves per-
formance over full retraining which achieves complete indis-
tinguishability. Our work highlights the risk of deploying ap-
proximate unlearning algorithms with data-dependent run-
ning times. And more broadly we show that data poisoning
can harm computation beyond only accuracy—analogous to
conventional denial-of-service attacks.

Contributions. We identify a new vulnerability of ma-
chine learning systems. Our suite of experiments considers:
the attack’s effect in a wide range of parameter settings; both
white-box and grey-box attacks; a range of perturbation ge-
ometries and bounds; trade-offs between optimality of the
attacker’s objective and time to compute the attack; and the
feasibility of running the attack long term.
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2 Preliminaries
This section sets the scene for our attack. We introduce the
target of our attack in Sec. 2.1—learning systems that sup-
port data erasure requests via machine unlearning. We then
review a certified machine unlearning method that we use
to demonstrate our attack. Sec. 2.3 closes with a discussion
of the vulnerability and our assumed threat model. Table 1
summarizes notation used throughout the paper.

2.1 Machine Learning on User Data
Consider an organization that trains machine learning mod-
els using data from consenting users. In line with privacy
regulations, the organization allows users to revoke consent
at any time and submit an erasure request for some (or all) of
their data. When fulfilling an erasure request, the organiza-
tion takes a cautious approach to user privacy—erasing the
user’s raw data and removing the data’s influence on trained
models. We assume erasing raw data (e.g., from a database)
is straightforward and focus here on the task of removing
data from a trained model.

Formally, let Z∗ be the space of training datasets con-
sisting of samples from an example space Z . Given a train-
ing dataset D ∈ Z∗, the organization deploys a learning
algorithm that returns a model A(D) in hypothesis space
H.1 To support erasure requests, the organization also de-
ploys an unlearning algorithm M which, given a training
dataset D ∈ Z∗, a subset D′ ⊂ D to erase and a model
h ∼ A(D), returns a sanitized model M(D,D′, h) ∈ H
that is approximately (to be made mathematically precise
below) A(D \ D′). We allow A and M to be randomized
algorithms—each can be interpreted as specifying a distri-
bution overH conditioned on their inputs.

To ensure no trace of the erased data is left behind, we
assume A and M satisfy a rigorous definition of unlearn-
ing. Specifically, we assume the distribution of unlearned
models M(D,D′, A(D)) is statistically indistinguishable
from the distribution of models retrained on the remaining
data A(D \ D′). This is known as approximate unlearning
and there are variations depending on how statistical indis-
tinguishability is defined. For concreteness, we adopt the
unlearning definition and algorithms of Guo et al. (2020),
which we review in the next section.

2.2 Certified Removal
This section reviews learning/unlearning algorithms for lin-
ear models proposed by Guo et al. (2020). The algorithms
satisfy a definition of approximate unlearning called certi-
fied removal, where indistinguishability is defined in a simi-
lar manner as (ε, δ)-differential privacy (Dwork et al. 2006).

Definition 1. Given ε, δ > 0 a removal mechanism M per-
forms (ε, δ)-certified removal for learning algorithm A if
∀T ⊆ H, D ∈ Z∗, z ∈ D:

P (M(D, {z}, A(D)) ∈ T ) ≤ eεP (A(D \ {z}) ∈ T ) + δ

1In practice, a “model” may contain parameters used at infer-
ence time, as well as metadata used to speed up unlearning. For
notational brevity, we absorb the metadata into the definition of H.

Notation Explanation

A Learning algorithm
M Unlearning algorithm
D, Dpsn, Dcln Dataset (generic, poisoned, clean)
X, Xpsn, Xcln Feature matrix (generic, poisoned, clean)
H Hypothesis space for model
θ Model parameters
R, Rb Learning objective (unperturbed, perturbed)
b Objective perturbation coefficients
σ Standard deviation of b
λ Regularization strength
` Loss function
γ Lipschitz constant of `′′

ε, δ Indistinguishability parameters
β Bound on gradient norm of Rb

C Attacker’s estimate of unlearning cost
{gj} Attacker’s inequality constraints

Table 1: Summary of notation.

and

P (A(D \ {z}) ∈ T ) ≤ eεP (M(D, {z}, A(D)) ∈ T ) + δ.

The learning/unlearning algorithms we consider support
linear models that minimize a regularized empirical risk of
the form:

R(θ;D) =
∑

(x,y)∈D

{
`(θ>x, y) +

λ

2
‖θ‖22

}
(1)

where θ ∈ Rd is a vector of learned weights, ` : R×R→ R
is a convex loss that is differentiable everywhere, and λ > 0
is a regularization hyperparameter. Note that we are assum-
ing the instance space Z is the product of a feature space
X ⊆ Rd and a label space Y ⊆ R. Thus supervised regres-
sion and classification are supported.

Learning Algorithm. Since unlearning is inexact (see be-
low), random noise is injected during learning to ensure in-
distinguishability. Concretely, the original minimization ob-
jective R(θ;D) is replaced by a perturbed objective

Rb(θ;D) = R(θ;D) + b>θ, (2)

where b ∈ Rd is a vector of coefficients drawn i.i.d. from
a standard normal distribution with standard deviation σ.
The resulting perturbed learning problem can be solved us-
ing standard convex optimization methods. This procedure
is summarized in pseudocode below.

Algorithm 1: Learning algorithm for certified removal
1: procedure A(D)
2: b ∼ Normal(0, σId)
3: θ? ← arg minθ Rb(θ;D)
4: β ← 0 . initial gradient residual norm is zero
5: return θ?, β
6: end procedure
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Unlearning Algorithm. Approximate unlearning is done
by perturbing the model parameters θ towards the optimizer
of the new objectiveRb(θ;D\D′). The perturbation is com-
puted as

∆θ = −I(D′;D,θ)

where D is the initial training data, D′ ⊂ D is the data to
erase, θ are the initial model parameters and

I(D′;D,θ) = − [HθRb(θ;D)]
−1∇θR(θ;D′) (3)

is the influence function (Cook and Weisberg 1980; Koh
and Liang 2017). The influence function approximates the
change in θ when D is augmented by D′.2 The first factor
in (3) is the inverse Hessian of the objective evaluated on D
and the second factor is the gradient of the objective evalu-
ated on D′.

Since the update θ ← θ + ∆θ is approximate, it is not
guaranteed to minimize the new objective exactly. This be-
comes a problem for indistinguishability if the error in θ
is so large that it is not masked by the noise added during
learning. To ensure indistinguishability, the unlearning al-
gorithm maintains an upper bound on the gradient residual
norm (GRN) ‖∇Rb(θ + ∆θ;D \ D′)‖2 and resorts to re-
training from scratch if a trigger value is exceeded. Given an
initial upper bound on the GRN of β (before D′ is removed
and θ is updated), the upper bound is updated as

β ← β + γ‖X‖2‖∆θ‖2‖X∆θ‖2 (4)

where γ is the Lipschitz constant of `′′, X is the feature ma-
trix associated with D \ D′ and the feature vectors are as-
sumed to satisfy ‖x‖2 ≤ 1 for all (x, y) ∈ D. Whenever β
exceeds the trigger value

βtrigger = σε/
√

2 log 3/2δ (5)

the algorithm resorts to retraining from scratch to ensure cer-
tified removal, as proved by Guo et al. (2020).

The entire procedure is summarized in pseudocode below.

Algorithm 2: Unlearning algorithm for certified removal
1: procedure M (D,D′, h)
2: θ, β ← h
3: ∆θ ← −I(D′;D,θ)
4: D ← D \D′
5: X← feature matrix of D
6: β ← β + γ‖X‖2‖∆θ‖2‖X∆θ‖2
7: if β > βtrigger then
8: θ, β ← A(D) . Retrain from scratch (slow)
9: else

10: θ ← θ + ∆θ . Approximate update (fast)
11: end if
12: return θ, β
13: end procedure

2The influence function is derived assuming θ is the optimizer
θ? = argminθ Rb(θ;D). We include θ as an argument since de-
viations from θ? may occur during unlearning. Note that the nega-
tive influence function captures the scenario whereD′ is subtracted
from D.

2.3 Vulnerability and Threat Model
One critique of the unlearning algorithm introduced in the
previous section is that it does not guarantee a reduction in
computation cost compared to full retraining. In the worst
case, the error of the approximate unlearning update exceeds
the allowed threshold (β > βtrigger) and the algorithm re-
sorts to full retraining (line 8 in Alg. 2). We exploit this vul-
nerability in this paper to design an attack that triggers re-
training more frequently, thereby diminishing (or even nul-
lifying) the promised efficiency gains of unlearning.

Capabilities of the Attacker. We assume the attacker con-
trols one or more users, who are able to modify (within lim-
its) their training data and initiate erasure requests. In practi-
cal settings, the attacker could increase the number of users
under their control by creating fake user accounts. Follow-
ing standard threat models in the data poisoning literature
(Biggio, Nelson, and Laskov 2012; Muñoz González et al.
2017; Shafahi et al. 2018; Shen, Zhu, and Ma 2019; Huang
et al. 2020) we consider attackers with white-box and grey-
box access. In our white-box setting, the attacker can ac-
cess training data of benign users, the architecture of the de-
ployed model and the model state (excluding the coefficients
b of the random perturbation term). While this is a perhaps
overly pessimistic view, it allows for a worst-case evalua-
tion of the attack. In our grey-box setting, the attacker still
has knowledge of the model architecture, but can no longer
access training data of benign users nor the model state. In
place of real training data, the grey-box attacker acquires
surrogate data from the same or a similar distribution.

Capabilities of the Defender. For the majority of this pa-
per, we assume the organization (the defender) is unaware
that unlearning is vulnerable to slow-down attacks and does
not mount any specific defenses. However, we do assume
the organization conducts basic data validity checks (e.g.,
ensuring image pixel values are within valid ranges) and oc-
casional manual auditing of data. To evade detection dur-
ing manual auditing, we assume the attacker makes (small)
bounded modifications to clean data which are unlikely to
arouse suspicion.

3 Slow-Down Attack
In this section, we present an attack on unlearning algo-
rithms with data-dependent running times. We begin by for-
mulating our attack as a generalized data poisoning problem
in Sec. 3.1. Then in Sec. 3.2, we describe a practical solution
based on projected gradient descent under some simplifying
assumptions. Finally, in Sec. 3.3 we propose concrete ob-
jectives for the attacker and suggest further relaxations to
speed-up the attack.

3.1 Formulation as a Data Poisoning Problem
LetD be data used by the organization (the defender) to train
(with learning algorithm A) an initial model ĥ = A(D).
Suppose the attacker is able to poison a subset Dpsn of in-
stances in D, and denote the remaining clean instances by
Dcln = D \Dpsn. We introduce a function C : H,Z∗ → R
which measures the computational cost C(ĥ, D′) of erasing
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a subset of data D′ ⊂ D from trained model ĥ ∈ H using
unlearning algorithm M .

The attacker’s aim is to craft Dpsn to maximize
C(ĥ, Dpsn). Assuming the attacker enforces constraints on
Dpsn to pass the defender’s checks/auditing, we express the
attacker’s problem formally as follows:

max
Dpsn

C(ĥ, Dpsn) (6a)

subject to ĥ = E[A(Dcln ∪Dpsn)] (6b)
gj(Dpsn) ≤ 0 ∀j ∈ {1, . . . , J} (6c)

This is a bilevel optimization problem (Mei and Zhu 2015)
if the learning algorithm A solves a deterministic optimiza-
tion problem. Although solving (6a)–(6c) exactly is infeasi-
ble in general, we can find locally-optimal solutions using
gradient-based methods, which we discuss next.

3.2 PGD-Based Crafting Strategy
We now outline an approximate solution to (6a)–(6c) based
on projected gradient descent (PGD). Our solution makes
the following assumptions:
1. The learning/unlearning algorithms adopted by the orga-

nization (defender) are those presented in Sec. 2.2 for
regularized linear models (Algs. 1 and 2).

2. The attacker crafts the poisoned data Dpsn using clean
reference data Dref as a basis. In addition, we as-
sume the attacker only modifies features in the refer-
ence data, leaving labels unchanged. Mathematically, if
we write Dpsn = (Xpsn,ypsn) and Dref = (Xref ,yref)

where Xpsn,Xref ∈ Rm×d are feature matrices and
ypsn,yref ∈ Rm are label vectors, then the attacker opti-
mizes Xpsn and fixes ypsn = yref .

3. The inequality constraints in (6c) are of the form

gj(Dpsn) = sup
x∈rows(Xpsn−Vj)

‖x‖pj − rj (7)

where x ∈ R1×d, Vj ∈ Rm×d, rj > 0 and pj ∈ Z>0.
This ensures each row of Xpsn is confined to an `pj -ball
of radius rj centered on the corresponding row in Vj .

In addition to these assumptions, we approximate the ex-
pectation in (6b) since it cannot be computed exactly. Ap-
plying a zero-th order expansion of the arg max function,
we make the replacement:

E[A(D)]→ arg max
θ

E[Rb(θ;D)] = arg max
θ

R(θ;D).

The equality follows from the definition of the perturbed ob-
jective in (2) and the fact that the expectation of the pertur-
bation is zero.

Putting everything together, we recast (6a)–(6c) as a
single-level constrained optimization problem:

min
Xpsn∈Rm×d

f(Xpsn) (8a)

gj(Dpsn) ≤ 0 ∀j ∈ {1, . . . , J} (8b)

where we define

f(Xpsn) = −C(θ̂(D), Dpsn) and θ̂(D) = arg min
θ
R(θ;D).

(9)

This problem can be solved using projected gradient descent
(PGD) as detailed in Appendix A of our extended paper
(Marchant, Rubinstein, and Alfeld 2021).

3.3 Measuring the Computational Cost
Recall that the attacker’s goal is to maximize the computa-
tional cost C(θ̂, Dpsn) of erasing poisoned data Dpsn from
the model θ̂ trained onD = Dpsn∪Dcln. In this section, we
discuss practical choices for C assuming the organization
implements the learning/unlearning algorithms in Sec. 2.2.

We begin with the observation that the computational cost
of erasing data in a call toM (Alg. 2) varies considerably de-
pending on whether full retraining is triggered or not. Guo
et al. (2020) report that full retraining is three orders of mag-
nitude slower than an approximate update, making it the
dominant contribution when averaged over a series of calls
to M . Complete retraining is triggered when the gradient
residual norm bound β exceeds a threshold, and therefore
we model the attacker as aiming to maximize β.

Using the expression for β in (4), we therefore set

C(θ̂, Dpsn) = ‖X‖2‖∆θ‖2‖X∆θ‖2 (10)

where X is the feature matrix associated with D \Dpsn and
∆θ = −I(Dpsn;D, θ̂).3 We note that this cost function as-
sumes Dpsn is erased in a single call to M . However our
experiments in Sec. 4 indicate that using (10) is effective
even if Dpsn is erased in a sequence of calls to M .

Faster Cost Surrogates. While (10) governs whether re-
training is triggered, it may be expensive for the attacker
to evaluate, particularly due to the presence of X which re-
quires operations that scale linearly in n−m (the size of the
remaining training data). We therefore consider simpler sur-
rogates for the computational cost, based on alternate upper
bounds for the gradient residual norm (GRN). We study the
effect of these surrogates empirically in Sec. 4.

The first surrogate is based on a data-independent upper
bound of the GRN from (Guo et al. 2020, Theorem 1):

C(θ̂, Dpsn) = ‖I(Dpsn;D, θ̂)‖2. (11)

Since this is a looser bound on the GRN than (10), we expect
it will produce less effective attacks.

The second surrogate upper bounds (11). Observing that

‖I(Dpsn;D, θ̂)‖2 ≤ ‖HθRb(θ̂;D)‖2‖∇θR(θ̂;Dpsn)‖2

≤ 1

λ(|D| − 1)
‖∇θR(θ̂;Dpsn)‖2

we propose

C(θ̂, Dpsn) = ‖∇θR(θ̂;Dpsn)‖2. (12)

This doesn’t depend on the Hessian (given θ̂) and is there-
fore significantly cheaper for the attacker to compute.

3For readability, we omit factors that are independent of D
when defining cost functions.
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Ignoring Model Dependence. Another way of reducing
the attacker’s computational effort is to assume the model
trained on D = Dpsn ∪ Dcln is approximately indepen-
dent of Dpsn. Specifically, we make the replacement θ̂ =

arg maxθ R(θ;Dcln) in (9) so that θ̂ is constant with re-
spect to Dpsn. This means evaluating the objective (or its
gradient) no longer requires retraining and simplifies gradi-
ent computations (see Appendix A of our extended paper
Marchant, Rubinstein, and Alfeld 2021). Although this ap-
proximation is based on a dubious assumption—the model
must be somewhat sensitive to Dpsn—we find it performs
well empirically (see Table 4).

4 Experiments
We investigate the impact of our attack on the computa-
tional cost of unlearning in a variety of simulated settings.
We study the effect of the organization’s parameters—the
regularization strength λ and the magnitude of the objec-
tive perturbation σ—as well as the attacker’s parameters—
the cost function C, and the type of norm and radius r used
to bound the perturbations. We further evaluate the effec-
tiveness of our attack over time, as additional poisoned era-
sure requests are processed. Finally, we investigate a transfer
setting where the attacker uses a surrogate model (trained
from surrogate data) in lieu of the defender’s true model.
Code is available at https://github.com/ngmarchant/attack-
unlearning.

4.1 Datasets and Setup
We consider MNIST (LeCun et al. 1998) and Fashion-
MNIST (Xiao, Rasul, and Vollgraf 2017), both of which
contain d = 28×28 single-channel images from ten classes.
We also generate a smaller binary classification dataset from
MNIST we call Binary-MNIST which contains classes 3 and
8. Beyond the image domain, we consider human activity
recognition (HAR) data (Anguita et al. 2013). It contains
windows of processed sensor signals (d = 561) correspond-
ing to 6 activity classes.

All datasets come with predefined train/test splits. The
way the splits are used varies for each attack setting (defined
in Sec. 2.3). In the white-box setting, the attacker accesses
the train split and replaces instances under their control4
with poisoned instances. The test split is used to estimate
model accuracy. In the grey-box setting, the train split is in-
accessible to the attacker. Instead the attacker uses the test
split as surrogate data to craft poisoned instances, which are
then added to the initial train split. We do not report model
accuracy for this setting. In both settings, the resulting train-
ing data D is used by the organization to learn a logistic
regression model, after which the attacker submits erasure
requests for the poisoned instances Dpsn ⊂ D one-by-one.

The main quantity of interest is the retrain interval—the
number of erasure requests handled via fast approximate up-
dates before full retraining is triggered. A more effective at-
tack achieves a smaller retrain interval. Further details about

4The instances under the attackers control are randomly-
selected in each trial.

σ λ Accuracy Retrain interval

Benign Attack Benign Attack % ↓

1

10−5 0.962 0.962 3.58 0.07 98.0
10−4 0.968 0.968 5.80 0 100
10−3 0.958 0.959 16.4 0.22 98.7
10−2 0.926 0.926 188 48.4 74.3

10

10−5 0.919 0.919 0 0 –
10−4 0.932 0.931 9.32 0.27 97.1
10−3 0.954 0.955 132 8.15 93.8
10−2 0.926 0.920 1640 512 68.8

Table 2: Attack effectiveness on Binary-MNIST as a func-
tion of the regularization strength λ and magnitude of the
objective perturbation σ. The accuracy is reported for the
initial model, prior to processing erasure requests.

the experiments, including hardware, parameter settings poi-
soning ratios, and the number of trials in each experiment are
provided in Appendix B of our extended paper (Marchant,
Rubinstein, and Alfeld 2021).

4.2 Results
Varying Model Sensitivity. Table 2 shows that our at-
tack can reduce the retrain interval by 70–100% over a
range of settings for λ and σ. The defender can adjust the
model’s sensitivity to training data by varying the regular-
ization strength λ and the magnitude of the objective pertur-
bation σ. Our attack is most effective in an absolute sense
for smaller values of λ and σ, where the retrain interval is
reduced to zero. This means retraining is triggered imme-
diately upon processing a poisoned erasure request. Table 2
also illustrates a trade-off between model accuracy and un-
learning efficiency: larger values of λ and σ generally allow
for more efficient unlearning (larger retrain interval) at the
expense of model accuracy.

Varying the Peturbation Constraint. Table 3 shows how
the effectiveness of our attack varies depending on the
choice of `p-norm and radius r. As expected, the attack
is most effective when there is no perturbation constraint
(p = ∞ and r = 1 or p = 1 and r = d), however the
poisoned images are no longer recognizable as digits. The
`1-norm constraint appears more effective, as it can better
exploit sensitivities in the weights of individual pixels.

Varying the Cost Function. We study whether the attack
remains effective when: (i) faster surrogate cost functions
are used and (ii) the model dependence on the poisoned data
Dpsn is ignored (see Sec. 3.3). Table 4 shows the attack
can be executed with a similar effectiveness (retrain inter-
val) using the influence norm cost function (11) in place of
the GRNB cost function (10), while reducing the attacker’s
computation. The gradient norm cost function (12) is the
least computationally demanding for the attacker, but less
effective. We see that it is reasonable to ignore the model
dependence on Dpsn, as there is no marked difference in ef-
fectiveness and a significant reduction in the attacker’s com-
putation. We expect this is due to the relatively small size of
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Constraint Retrain interval Poisoned examples

Norm r

`1

0 131

d/200 72.3

d/20 8.15

d/2 3.42

d 3.54

`∞

0.000 131

0.050 82.2

0.100 48.9

0.500 5.63

1.000 3.54

Table 3: Attack effectiveness on Binary-MNIST as a func-
tion of the perturbation constraint.

Cost function Ignore
model dep.

Retrain
interval

Attack
time (s)

GRNB (10) No 6.96 39.2
Yes 7.08 24.4

Influence norm (11) No 7.98 29.0
Yes 8.15 8.72

Gradient norm (12) No 16.34 23.1
Yes 19.21 3.54

Table 4: Attack effectiveness and computation time for dif-
ferent choices of the cost function.

Dpsn (reflecting realistic capabilities of an attacker) which
limits the impact of poisoning on the model.

Long-Term Effectiveness. We are interested in whether
the attack effectiveness varies over time—as poisoned era-
sure requests are processed. Figure 1 shows a moderate in-
crease in effectiveness, indicated by the increasing rate of
retraining. The is likely due to the fact that the defender’s
model is initially far from the model used by the attacker
(the former is trained on D, the latter on Dcln). However
as poisoned instances are erased, the defender’s model ap-
proaches the attacker’s model, and the poisoned instances
become more effective. Additional results on long-term ef-
fectiveness are included in Appendix C of our extended pa-
per (Marchant, Rubinstein, and Alfeld 2021).

Transferability. We investigate whether the attack trans-
fers if surrogate data is used to craft the attack in place of
the defender’s training data. This corresponds to the grey-
box setting described in Sec. 2.3. Table 5 shows that the

Figure 1: Number of times retraining is triggered as a func-
tion of the number of poisoned erasure requests processed.
After processing 500 requests, all poisoned instances are
erased and only clean data remains.

Dataset Retrain interval

Surrogate data
(Grey-box)

Training data
(White-box)

MNIST 19.0 18.5
Binary-MNIST 7.88 8.15

Table 5: Effectiveness of the attack in white-box versus grey-
box settings.

attack transfers well—there is very little difference in the
retrain interval in the grey- versus white-box settings.

Varying Datasets. Most of the results reported above are
for Binary-MNIST. Table 6 reports results for other datasets
described in Sec. 4.1. While the results are qualitatively
similar across datasets, we note some variance in attack
effectiveness—depending on the dataset we observe a re-
duction in the retrain interval of 67–94%. The size of each
dataset is likely a factor, since a model trained on more data
is less sensitive to individual instances and more difficult
to attack. We also expect the `1-bounded perturbations are
likely to have a different impact depending on the character-
istics of the data. For instance, Fashion-MNIST has a wider
variation of intensities across all pixels compared to MNIST,
which may make `1-bounded perturbations less effective.

5 Related Work
Machine Unlearning. Recent interest in efficient data era-
sure for learned models was spawned by Cao and Yang
(2015), who were motivated by privacy and security appli-
cations. They coined the term “machine unlearning” and
proposed a strict definition—requiring that an unlearning
algorithm return a model identical to one retrained from
scratch on the remaining data. Efficient unlearning algo-
rithms are known for some canonical models under this defi-
nition, including linear regression (Chambers 1971; Hansen
and Larsen 1996), naive Bayes and non-parametric models
such as k-nearest neighbors (Schelter 2020). These algo-
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Dataset Accuracy Retrain interval

Benign Attack Benign Attack % ↓
MNIST 0.867 0.867 71.6 18.5 74.1
Binary-MNIST 0.954 0.954 132 8.15 93.8
Fashion-MNIST 0.756 0.756 119 38.9 67.5
HAR 0.838 0.836 42.2 8.95 78.8

Table 6: Effectiveness of the attack for various datasets.

rithms are immune to our attack since they compute updates
in closed form with data-independent running times.

A strict definition of unlearning has proven difficult to sat-
isfy for general models. One solution has been to design new
models or adapt existing ones with unlearning efficiency in
mind. Examples of such models include ensembles of ran-
domized decision trees (Schelter, Grafberger, and Dunning
2021), variants of k-means clustering (Ginart et al. 2019),
and a modeling framework called SISA that takes advantage
of data sharding and caching (Bourtoule et al. 2021).

Others have expanded the scope of unlearning by adopt-
ing more relaxed (but still rigorous) definitions. Ginart et al.
(2019) were first to introduce an approximate definition of
unlearning—requiring that it be statistically indistinguish-
able from retraining. They identified a connection to dif-
ferential privacy (Dwork et al. 2006) and suggested adver-
sarial robustness as a direction for future work. Subsequent
work (Guo et al. 2020; Neel, Roth, and Sharifi-Malvajerdi
2021; Sekhari et al. 2021) has adopted similar approximate
definitions to provide certified unlearning guarantees for
strongly-convex learning problems. Neel, Roth, and Sharifi-
Malvajerdi (2021) and Sekhari et al. (2021) study asymp-
totic time complexity, however they do not test their methods
empirically and they rely on data-independent bounds which
are too loose in practice according to Guo et al. (2020). Since
the approach by Guo et al. is empirically validated, we use
it for our proof-of-concept exploit in this paper.

Certified unlearning for non-convex models such as deep
neural networks (DNNs) remains elusive. Golatkar, Achille,
and Soatto (2020a,b) have made some progress in this
area based on a notion of approximate unlearning. How-
ever, their methods do not guarantee approximate unlearn-
ing is satisfied and they require further approximations to
scale to DNNs. Since their methods run for a predetermined
number of iterations, the running time is data-independent,
making them immune to slow-down attacks. However, our
slow-down attack may cause damage in a different way—
preventing proper data erasure or leaving the unlearned
model in an unpredictable state.

While our focus in this paper is on attacking unlearn-
ing efficiency, others have considered privacy vulnerabili-
ties. Chen et al. (2020) demonstrated that a series of pub-
lished unlearned models are vulnerable to differencing at-
tacks if not appropriately treated. Gupta et al. (2021) con-
sidered an adaptive unlearning setting, where erasure re-
quests may depend on previously published models. They
also demonstrated an attack on the SISA algorithm (Bour-
toule et al. 2021). Sommer et al. (2020) considered verifi-

cation of unlearning—an important privacy feature for users
who cannot trust organizations to erase their data.

Adversarial Machine Learning. Our work builds on
standard methods for data poisoning—a class of attacks
that manipulate learned models by modifying or augment-
ing training data (see survey Schwarzschild et al. 2021). Two
commonly studied variants of data poisoning are availability
attacks, which aim to degrade model test performance (e.g.,
Biggio, Nelson, and Laskov 2012; Muñoz González et al.
2017; Koh and Liang 2017; Shafahi et al. 2018; Zhu et al.
2019; Huang et al. 2020), and backdoor attacks, which aim
to cause misclassification of test-time samples that contain a
trigger (e.g., Chen et al. 2017; Dai, Chen, and Li 2019; Saha,
Subramanya, and Pirsiavash 2020). Unlike these attacks, our
attack does not aim to harm test performance—rather the
aim is to cause trouble at the unlearning stage. This adds an-
other layer of complexity, as we must account for learning
and unlearning to craft an effective attack.

Most work on data poisoning assumes learning is done of-
fline, as we do in this paper. However one could imagine an
online scenario, where an organization continually updates
a model as new data arrives and old data is erased. There
has been some work on data poisoning for online learning
(Wang and Chaudhuri 2018; Zhang, Zhu, and Lessard 2020),
however existing work does not account for the ability of an
attacker to request that their data be erased.

Our attack also borrows ideas from the adversarial ex-
amples literature. The `p-norm constraints that we impose
on the attacker’s perturbations are commonly used to gen-
erate adversarial examples (Szegedy et al. 2014; Goodfel-
low, Shlens, and Szegedy 2015). While `p-norm constraints
are easy to work with, they have been criticized for failing
to capture perceptual distortion (Sharif, Bauer, and Reiter
2018), which has lead to work on more effective perturba-
tion constraints (Zhao, Liu, and Larson 2020; Ballet et al.
2019). These could be leveraged to enhance our attack.

While adversarial examples are predominantly used for
evasion attacks, they have also been deployed for other pur-
poses. Hong et al. (2021) showed that techniques for gen-
erating adversarial examples can be modified to slow down
inference of multi-exit DNNs by a factor of 1.5–5×. This
attack is qualitatively similar to ours, in that it targets com-
putation cost, however the formulation is different. While
our attack operates at training-time and unlearning-time, the
attack by Hong et al. operates at test-time. Other novel appli-
cations of adversarial examples include data poisoning (Tao
et al. 2021) and protecting data from being used to train
models (Huang et al. 2021).

6 Discussion
We have demonstrated a broad range of settings where a
poisoning attack can be successfully launched against state-
of-the-art machine unlearning to significantly undo the ad-
vantages of unlearning over full retraining. Our results sug-
gest that theory should incorporate a trade-off between indis-
tinguishability, computational cost, and accuracy. Indeed in
parallel work to our own, Neel, Roth, and Sharifi-Malvajerdi
(2021) define “strong” unlearning algorithms as those for
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which accuracy bounds are independent of the number of
unlearning requests t, with a computation cost that grows at
most logarithmically in t. They explore trade-offs for an un-
learning algorithm called perturbed gradient descent. How-
ever this approach hasn’t been evaluated empirically to our
knowledge, and a number of open problems remain.

Future work could apply or extend our methods to at-
tack other unlearning algorithms, beyond those by Guo
et al. (2020), which were the focus of this paper. We ex-
pect this would be easiest for algorithms based on a sim-
ilar design—e.g., algorithms by Neel, Roth, and Sharifi-
Malvajerdi (2021) and Sekhari et al. (2021) also perturb the
original model to find an approximate solution to a strongly-
convex learning objective post-erasure. Other unlearning al-
gorithms, such as Ginart et al.’s algorithm for k-means clus-
tering, are also vulnerable to slow-down attacks, however
crafting poisons to trigger retraining would be more difficult
due to non-differentiability of the cost function. If certified
unlearning algorithms are developed for deep models in the
future, then assessing the impact of slow-down attacks in
that setting—where data and models are typically at a much
larger scale—would also be of immense interest.

Another direction suggested by our work is counter mea-
sures against slow-down attacks on unlearning. One might
adopt an unlearning algorithm that never resorts to retrain-
ing from scratch (Golatkar, Achille, and Soatto 2020a). Such
an algorithm might still require more computational effort to
remove poisoned examples than benign examples, exposing
a similar attack surface. It is also unclear whether such an
algorithm could maintain a form of indistinguishability in-
definitely.

One might seek to filter out poisoned examples so they
never need to be unlearned. This might involve off-the-shelf
anomaly detection methods, however poisoned examples are
notoriously difficult to detect when they are crafted as small
perturbations to clean examples. Metzen et al. (2017) for in-
stance, have explored detection of adversarial perturbations.
Alternatively, one could filter out examples with a large in-
fluence (which the attacker is trying to artificially inflate in
our attack), however some clean examples have a naturally
large influence.

Another approach would be a robust model that is less
sensitive to individual examples. Directions for achieving
this include: increasing the degree of regularization, intro-
ducing noise, adversarial training, and using more training
data. However, like their analogues in existing adversarial
learning research, these mitigations tend to harm accuracy.
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