
An Evaluative Measure of Clustering Methods
Incorporating Hyperparameter Sensitivity

Siddhartha Mishra1, Nicholas Monath†,1, Michael Boratko1,
Ari Kobren2, Andrew McCallum1

1Manning College of Information and Computer Sciences, University of Massachusetts Amherst
2Oracle Labs

{siddharthami,nmonath,mboratko,mccallum}@cs.umass.edu
ari.kobren@oracle.com

Abstract

Clustering algorithms are often evaluated using metrics which
compare with ground-truth cluster assignments, such as Rand
index and NMI. Algorithm performance may vary widely for
different hyperparameters, however, and thus model selection
based on optimal performance for these metrics is discordant
with how these algorithms are applied in practice, where labels
are unavailable and tuning is often more art than science. It is
therefore desirable to compare clustering algorithms not only
on their optimally tuned performance, but also some notion of
how realistic it would be to obtain this performance in practice.
We propose an evaluation of clustering methods capturing this
ease-of-tuning by modeling the expected best clustering score
under a given computation budget. To encourage the adoption
of the proposed metric alongside classic clustering evalua-
tions, we provide an extensible benchmarking framework. We
perform an extensive empirical evaluation of our proposed
metric on popular clustering algorithms over a large collection
of datasets from different domains, and observe that our new
metric leads to several noteworthy observations.

Introduction
Whether the application is in biology (Stassen et al. 2020)
or personalization (Zaheer et al. 2019), jet physics (Green-
berg et al. 2021) or automatic knowledge-base completion
(Vashishth, Jain, and Talukdar 2018), clustering is a widely
used tool. It is used for data analysis (Dubes and Jain 1980),
visualization (Rasmussen and Karypis 2004), and to directly
solve tasks such as entity resolution (Steorts, Hall, and Fien-
berg 2016), community detection (Riedy et al. 2011) and im-
age segmentation (Chuang et al. 2006). In many such settings,
there is not an explicit ground-truth clustering, and praction-
ers may try a variety of different clustering algorithms and
hyperparameter settings for those algorithms until they are
able to find meaningful patterns in their data. Developing
evaluations of models in alignment with their real-world per-
formance can be challenging. This is particularly difficult
for clustering, where the fundamental goal is to discover the
underlying clusters and, thus, having access to such cluster
assignments for purposes of evaluation renders the entire
enterprise irrelevant.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

† Now at Google.

When new clustering algorithms are introduced, evaluation
is often done with respect to clustering benchmark datasets
with ground truth labeled clusters (Campello, Moulavi, and
Sander 2013; Bateni et al. 2017; Kobren et al. 2017, inter
alia). The quality of the predicted clustering is measured in
comparison to the ground truth using metrics like adjusted
Rand index (Rand 1971) or normalized mutual information
(Lancichinetti, Fortunato, and Kertész 2009). While these
metrics can effectively describe the accuracy and representa-
tional capacity of clustering methods, the fact that there are
other criteria on which a clustering method can be evaluated.
While these metrics are quite important, they only give a lim-
ited sense of how practical a given algorithm is in real-world
settings.

In the aforementioned applications, a practitioner needs to
experiment with different settings of an algorithm. Ideally,
an algorithm would give high-quality results without much
work, tuning of hyperparameters would be straightforward or
even automated so that the algorithm is usable by someone
who does not deeply understand the algorithm’s details or
even clustering in detail. However, to the best of our knowl-
edge, no such metric for clustering incorporates this aspect
of usability.

In this paper, we evaluate the extent to which clustering
methods empirically benefit from extensive hyperparameter
tuning. To this end, we present a metric that captures the
usability of a given algorithm. We model the selection of
hyperparameters as a stochastic process, and consider the
expected value of a clustering objective (e.g., adjusted Rand
index) for the best clustering produced after t steps of hyper-
parameter selection. We consider both an uninformed setting,
where the practitioner selects hyperparameters uniformly ran-
domly from a reasonable range, as well as informed, where
the stochastic process is guided by Bayesian optimization as a
proxy for how hyperparameters might be tuned by researchers
when reporting optimal performance. In both settings, the
extent to which this metric changes as t increases is a good
indication of the ease-of-tuning.

In order to evaluate the quality of our metric, we compare
5 commonly used clustering algorithms: mini-batch k-means,
BIRCH, DBSCAN, HDBSCAN, and HAC. We conduct ex-
tensive experiments on over 50 datasets, and find that

• The performance of algorithms often changes significantly
with more substantial tuning.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7788



• The ranking of algorithms can change, depending on
whether Bayesian hyperameter tuning was used.

• Most algorithms have a single hyperparameter which is
predominantly responsible for this variation in perfor-
mance, which we identify.

Evaluating on such a large scale establishes that this metric
is reliably informative across a wide range of datasets. In
order to make this level of rigorous analysis accessible to
researchers proposing novel clustering methods, we designed
and provide an extensible evaluation framework and a curated
selection of datasets on which to evaluate.

Background
Given a dataset X of n points, clustering is the task of parti-
tioning X into disjoint subsets C which cover X , i.e.

∀Ci, Cj ∈ C, Ci ∩ Cj = ∅ and
⋃
C∈C

C = X.

The partition C is also called a clustering. A clustering
method, A, takes as input a dataset X as well as method
specific hyperparameters φ and outputs a partition C. For
example, the popular clustering method mini-batch k-means
(Sculley 2010) has hyperparameters such as the batch size
and convergence tolerance.

Evaluation Metrics used in Clustering

An evaluation metric, M(. . . ), measures the quality of a
predicted clustering C either in terms of a target partition,
C?, or properties of the dataset X . Metrics defined against a
target partitionM(C, C?) include Rand index (Rand 1971),
pairwise F1 (Barnes 2015), and normalized mutual informa-
tion (Lancichinetti, Fortunato, and Kertész 2009), among oth-
ers. Such metrics are known as external metrics, as they make
use of external information (in this case, cluster labels). This
is in contrast with internal metrics, such as k-means cost,
DP-means (Jiang, Kulis, and Jordan 2012), or correlation
clustering cost (Ailon, Charikar, and Newman 2008), which
are defined on a clustering and the dataset, i.e.M(C,X).

Internal evaluations provide some measure of comparison
between clustering algorithms, however they implicitly make
assumptions about the structure of the data to be clustered
and can be biased towards algorithms which make a similar
assumption (Estivill-Castro 2002). External metrics are often
preferred to internal, as they can be more representative of
actual task performance, particularly for use cases such as in-
formation retrieval (Schütze, Manning, and Raghavan 2008).
However, since external metrics require ground truth labels,
they allow methods to be excessively tuned in ways that are
not possible in practice.

Our work will measure the performance of a clustering al-
gorithm,A, with respect to a metricM(. . . ) taking difficulty
of tuning into account. In our empirical analysis (Experi-
ments Section), we present results where the metricM(. . . )
is adjusted Rand index, however our approach is general
enough to support any metric (external or internal).

Hyperparameters in Clustering Methods
Hyperparameters of clustering methods, φ, are those inputs
to an algorithm, A, that define how a method is performed. It
is distinguished from a model parameter in that the latter is
learned from the data, whereas hyperparameters are often se-
lected by the practitioner. For example, the cluster centroids
of a method like k-means would be considered model param-
eters, whereas the learning rate would be a hyperparameter.
As we show in the Experiments Section, the performance of
clustering methods can be greatly impacted by the specific
choice of hyperparameters.

Bayesian Optimization
Bayesian optimization is a method for finding the global opti-
mum of noisy black-box functions, and is particularly applica-
ble to situations where evaluating the function at many points
is relatively expensive. The fundamental idea of Bayesian op-
timization is to model the objective function f(x) (for which
the form may be unknown) as a random function using a prior
with properties amenable to optimization. Most often, this
prior is a Gaussian process, which can be fit to a given set of
observations Ok = {(x1, f(x1)), . . . , (xk, f(xk))}, and for
which the posterior enables efficient informed sampling of po-
tential points to evaluate according to a specified acquisition
function, most commonly expected improvement,

EI(x) = E[max(f(x)− f(x+), 0)],

where x+ is such that f(x+) is the largest value observed thus
far. Bayesian optimization can be adapted to handle ordinal
variables (by rounding) and categorical variables (by one-
hot encoding). In our setting, we use Bayesian optimization
for hyperparameter tuning, maximizing the function f(φ) =
M(A(X;φ), C∗).

Functional ANOVA
While Bayesian optimization can effectively be used as a
black-box optimization procedure, this is not entirely satisfy-
ing, as it leaves one without any understanding about how the
hyperparameters impact the performance. Often, it is the case
that a few hyperparameters are much more important than
others (Bergstra and Bengio 2012), for example, and it would
be beneficial for practitioners to be aware of this. Functional
analysis of variance (fANOVA) decomposes the variance V
of a function f into additive components VU for each subset
U of it’s inputs (Sobol 1993) . It is not possible to perform
this decomposition analytically for an arbitrary function f ,
however Hutter, Hoos, and Leyton-Brown (2014) demon-
strate that such a decomposition of the variance is possible if
the function is modeled by a random forest. We use their ap-
proach to analyze the relative importance of hyperparameters
for each clustering method (see Table 2).

Proposed Evaluation
In this section we explicitly define our proposed method of
evaluating clustering algorithms in accordance with the way
they would be used in practice. We define a class of metrics
for this evaluation, explain the motivation for their definitions,
and the technical details involved in implementing them. First,

7789



however, we motivate the need for yet another metric for
comparing clustering algorithms.

Clustering algorithms are typically compared using their
optimal performance when their hyperparameters are tuned
on an external metric. This may yield significantly differ-
ent results than that which would be achievable in practice
without access to ground-truth labels (see the Experiments
Section). Ideally, therefore, it would be beneficial to have an
evaluation metric which allows for the use of ground-truth
labels, so as to avoid the issues related to internal metrics,
while also penalizing excessive tuning using these ground-
truth labels, since this would not be feasible for practitioners
seeking to apply these methods in real-world applications.
Available computational resources also play a role, as infinite
compute would allow one to simply try all possible settings
of hyperparameters, and thus it would be of further benefit
if this metric provided some notion of the extent of tuning
required. With these guiding principles in mind, we now turn
to the definition of our proposed metric.

The first thing one may reasonably consider when
presented with the objective of evaluating the quality
of algorithms irrespective of their hyperparameter set-
tings is simply to take their expected performance, i.e.
EΦ[M(A(X; Φ), C∗)], under some reasonable prior on Φ,
and indeed without some selection criteria or even heuris-
tic for comparing two proposed clusterings this is the best
estimate one could hope for.

Practitioners are often able to assess the relative quality
of two different proposed clusterings, however, by manually
inspecting their output, and thus the quantity of interest is
actually the maximum performance one can typically achieve
with a fixed amount of effort. Thus, given a compute budget
of t, we can model the selection of t settings of hyperparam-
eters as a stochastic process {Φi}i∈{1,...,t}, and consider the
expectation of maximum performance, i.e.

EoM(t) = E{Φi}

[
max

i∈{1,...,t}
M(A(X,Φi), C∗)

]
. (1)

Since we are taking the max over a larger and larger set of
random variables, EoM is monotonically increasing with
respect to t, regardless of the exact nature of the stochastic
process {Φi}.

Random Search
In the simplest case, a practitioner may simply pick hyperpa-
rameters uniformly randomly from an acceptable range, in
which case the {Φi} are i.i.d. random variables. We denote
this setting as EoMR, and note that EoMR increases from
average to maximum achievable performance, i.e. 1

EoMR(1) = EΦ[M(A(X; Φ), C∗)],
lim
t→∞

EoMR(t) = ess sup
φ
M(A(X;φ), C∗)

In practice, this expectation can be estimated in via Monte
Carlo sampling. Since we would like to estimate EoMR(t)

1ess sup is the essential supremum, i.e. the least upper bound
ignoring sets of measure zero.

for different values of t, however, we simply sample a large
number of Φ, and then repeatedly subsample t evaluations,
averaging the max of these t values over T trials.

This approach can handle both discrete and continuous hy-
perparameters, however in the event that a method has fewer
hyperparameter settings than t (eg. HAC, which has 8 values
for the hyperparameter) it is no longer a reasonable assump-
tion that the practitioner would continually evaluate settings
of hyperparameters they have already tried. In this setting,
we consider the {Φi} to not be i.i.d. but rather sampled from
the set of valid hyperparameters without replacement.2

Taking the expectation of maximum performance with
respect to an external evaluation avoids the issues present
when relying on internal evaluations, while also preventing
any excessive hyperparameter tuning based on this external
evaluation, and thus is more in alignment with how models
may perform in practice. Inspecting the output of EoMR for
different values of t also provides a characterization of the
extent to which additional computational resources would
provide performance benefits.

Bayesian Optimization Search
On the opposite end of the spectrum, we could consider the
selection of hyperparameters by a researcher who has a much
deeper understanding of how they impact the model and
also the capability to hand-tune such hyperparameters on the
external evaluation. This setting more accurately captures the
optimal performance which is conventionally reported.

To this end, we tune the models using Bayesian hyper-
parameter optimization, as described in the Bayesian Opti-
mization Background Section. We seed the Gaussian pro-
cess using 10 random evaluations. While imperfect, this
prior can be viewed as incorporating a researcher’s greater
understanding of the model’s hyperparameters and charac-
teristics of the dataset. We then sample a hyperparameter
Φ1 = φ1 via the expected improvement acquisition function.
We re-fit the Gaussian process, including the new observation
(φ1,A(X, φ1)), and sample again. This defines a stochastic
process {Φi} which is no longer comprised of i.i.d. random
variables. We denote the expectation of maximum with re-
spect to this stochastic process EoMB.

While intended as a proxy for comparison with the way in
which researchers would typically report algorithm perfor-
mance, we note that considering the value of this metric for
different values of t also provides a useful measure of how
easy various algorithms would be to tune using a heuristic
which is reasonably correlated withM, eg. calculatingM
on some hand-labeled subset of the data.

Experiments
The purpose of this experiment section is to demonstrate
how our proposed metric can be used to evaluate clustering
algorithms. We show that it can be used to deduce interesting
properties of the hyperparameters of clustering algorithms as

2Practitioners would also obviously avoid evaluating the exact
same values of hyperparameters in general, however as long as there
is at least one continuous random variable (the case for all methods
other than HAC) we have for any i 6= j, P (Φi = Φj) = 0.

7790



well as directly compare the algorithms themselves. We also
perform fANOVA analysis to assess importance of hyperpa-
rameters for natural language datasets. We begin by providing
a description of our provided benchmarking framework 3. We
then show its application to evaluating well known clustering
algorithms under our proposed metric.

Datasets
We use classification datasets in our experiments since our
proposed metric requires the use of external clustering mea-
sures. We have selected datasets in each domain with a di-
verse number of clusters, features and instances. We zero-
norm the features and perform Z-score normalization (stan-
dardization). We find that unit normed features outperform
non-unit normed features, and thus preprocess all datasets in
this manner.

Generic We use a subset of 56 datasets suitable for clus-
tering from OpenML CC-18 (Bischl et al. 2021; Vanschoren
et al. 2013), a benchmark of classification datasets. We use
the python library (Feurer et al. 2019) (as recommended) to
load the datasets. Each dataset has predefined features as well
as classification labels. We use the class labels as the cluster
labels for the computation of our metric. Examples of the
datasets included in this subset are wdbc (Street, Wolberg,
and Mangasarian 1993), a dataset for Breast Cancer diagnosis
and first-order-theorem-proving(Bridge, Holden, and Paulson
2014), a dataset for predicting which five heuristics give the
fastest proof for a theorem when used by a first-order prover.

Natural Language Processing We select three popular
NLP document text classification datasets, AGNews (Zhang,
Zhao, and LeCun 2016), DBpedia (Auer et al. 2007), and
YahooAnswers (Dror et al. 2011). We use SentenceBERT
(Reimers and Gurevych 2019) to get sentence-level embed-
dings. We consider three different pretrained encoder models
to represent the documents: Average of Glove embeddings
(Pennington, Socher, and Manning 2014), DistilRoBERTa -
which is a distilled version of RoBERTa (Liu et al. 2019) and
MPNet (Song et al. 2020).

Clustering Methods
Recall that the purpose of this experiment is to demonstrate
the value of our proposed metric for evaluating clustering
algorithms. With this goal in mind, we select six classic and
frequently used clustering algorithms. These are algorithms
that many practitioners would select and that would likely be
familiar to readers, who could match their own understanding
of these methods to the conclusions drawn with our metric.
Our hope is that analysis similar to the analysis done here
would be adopted by researchers proposing new clustering
methods. We experiment with the following algorithms:

• Mini-batch K-Means (MBKM) (Sculley 2010) A scal-
able optimization of the k-means objective using a mini-
batch alternative to Lloyd’s algorithm (Lloyd 1982). Hy-
perparameters include the mini-batch size, the number
of iterations, the tolerance to stopping condition, number

3https://github.com/mishra-sid/clustering_hyperparameters

of random k-means++ initializations (Arthur and Vassil-
vitskii 2006), amount of dataset to use when initializing,
center re-assignment criteria, stopping criteria and number
of clusters.

• DBSCAN (Ester et al. 1996). A seminal density-based
method which has two hyperparameters: a radius, epsilon,
and a min number of points criteria. Clusters are built by
first labeling points as “core points” if they have more
than the minimum number of points within epsilon. Edges
are then added between core points within epsilon of one
another, and all points within epsilon of core points which
are connected via these edges are considered to be in the
same cluster.

• HDBSCAN (Campello, Moulavi, and Sander 2013). A
hierarchical density-based algorithm that transforms point-
wise distances based on core point designations in a way
similar to robust single linkage (Chaudhuri and Dasgupta
2010), builds a single-linkage style clustering and con-
denses based on a density based criteria.

• BIRCH (Zhang, Ramakrishnan, and Livny 1996) works
by first building a cluster tree of parametric branching
factor in an incremental manner using a threshold to de-
termine when two points can sit at the same tree node
and when the tree needs to grow to separate the points
as siblings. After the tree is built, a ‘rebuilding’ phase
re-clusters into a set of flat predicted clusters.

• HAC (Sneath, Sokal et al. 1973; Murtagh 1983, inter
alia). The classic bottom-up greedy algorithm which se-
quentially merges the nearest two clusters according to
the specific linkage function.

We summarize the algorithms and hyperparameters, in-
cluding the corresponding bounded search spaces used in
our experiments, and descriptions in Table 1. From SciKit-
Learn (Pedregosa et al. 2011), we use MBKM, BIRCH, DB-
SCAN. From scipy (Virtanen and Gommers 2020), we use
HAC. We use the HDBSCAN implementation4.

Framework Details
We use Ax (Bakshy et al. 2018) for experiment management.
The metadata for the experiments such as optimization param-
eters, list of datasets, models and range of hyperparameters
can be configured using a YAML configuration file based on
Hydra (Yadan 2019) , which provides an easy to use CLI. The
framework can easily be extended to include new models,
it allows the definition of custom evaluation metrics as well
as the utilities to plot the visualizations shown in the paper.
For distributed hyperparameter optimization, we use Ray
Tune (Liaw et al. 2018). The framework supports any custom
BOTORCH (Balandat et al. 2020) based model, which is
a PyTorch (Paszke et al. 2019) based library for Bayesian
Optimization.

Results
We provide the following results for the experiments we
performed:

4https://github.com/scikit-learn-contrib/hdbscan

7791



Algorithm Hyperparameter Range/Choices Description
MBKM batchSize {1, . . . , 1024} Batch size.

maxIter {1, . . . , 1000} Max number of iterations.
tol [0.0, 1.0] Tolerance
nInit {1, . . . , 100} Number of initializations
initSize {num_clusters, . . . , num_instances} Size of initialization
reassign [0.0, 1.0] Number of re-assignments
maxNoImprv {2, . . . , 100} Number of iters allowed

without improvement
numClusters {2, sqrt(num_instances)} Number of clusters

HAC linkFunc [’single’, ’complete’, ’average’, ’centroid’, Linkage function
’median’, ’ward’, ’weighted’]

numClusters {2, sqrt(num_instances)} Number of clusters
BIRCH threshold [0.001, 0.999] Threshold

branch {5, . . . , 100} Branching factor.
numClusters {2, sqrt(num_instances)} Number of clusters

DBSCAN eps [0.001, 0.999] Max distance for neighboring pts.
minPts {2, . . . , 100} Min. neighbors for a core point.

HDBSCAN eps [0.001, 0.999] Max distance for neighboring pts.
minPts {2, . . . , 100} Min. points in a cluster.
minClusterSize {2, . . . , 100} Min. cluster size.

Table 1: Algorithms considered for experiments, their hyperparameters, and the range of values searched over

In Figure 1, we plot our proposed metrics EoMR and
EoMB aggregated over all generic / natural language
datasets.

In Figure 2, we plot specific examples of a few specific
datasets each in the Generic and Natural Language domains
to demonstrate certain properties of the clustering algorithms
observed while tuning them.

In Figure 3, we plot our proposed metrics for AGNews
dataset with Glove embeddings for the models with number
of clusters as a tunable hyperparameter or using the gold
number of clusters.

In Table 2, we tabulate the hyperparameter importances
using fANOVA analysis on evaluations for all algorithms
mentioned in the Experiments Section. (Note that HAC only
has a single hyperparameter, and thus was omitted from this
analysis.)

Discussion
Ranking of Metrics In Figure 1(a) for generic datasets,
we observe that the relative performance of the algorithms
changes. HDBSCAN, in particular, seems to benefit from
hyperparameter tuning, and with sufficient tuning BIRCH
actually outperforms HAC. The aggregate results for natural
language datasets depicted in Figure 1(b) do not show as
significant a shift between EoMR and EoMB, however we
do observe some differences depending on the text encoders
in the next paragraph. We also note that the ranking of meth-
ods may change significantly between datasets which are of
different levels of clustering difficulty. In Figure 2(a), we
see that most algorithms are able to do quite well on this
dataset, and the ranking is predominantly in agreement with
our aggregate results. In Figure 2(b), however, all models
yield EoM(t) < 0.1, and we see the relative performance
differs with, MBKM performing worse than HDBSCAN.

Effect of Encoders in NLP Datasets In Figure 2 (c) and
(d), we observe that the performance of clustering algorithms
on natural language datasets is dependent on the encoding
model used. In particular, GloVe embeddings are easier to
cluster than using a BERT based models as the pre-trained
encoder. We believe this is because GloVe provides a better
sentence-level representation more appropriate to be used
by distance functions used to capture similarity between be-
tween data points in clustering methods. Particularly in the
case of DBSCAN, which uses a cosine distance function,
performance is improved significantly after selecting effec-
tive hyperparameters in both uninformed and informed cases.

Density-based Methods In Figure 1 (a) and (b), we ob-
serve that HDBSCAN performs better than DBSCAN on
generic datasets, whereas in case of natrual language datasets
DBSCAN performs better. We believe this is because the
advantage of DBSCAN supporting cosine distance, which is
better than Euclidean distance for distance measures between
word embeddings. This fundamental difference seems to out-
weigh the algorithmic improvements offered in HDBSCAN
without the support for cosine distance measure. Among all
algorithms, DBSCAN benefits the most from having access
to labels, i.e. tuned by an expert practitioner.

fANOVA Analysis In the analysis summarized in Table 2,
we observe that algorithms like DBSCAN and BIRCH have
their eps and threshold as the hyperparameter of high-
est importance across all datasets respectively. Both of these
hyperparameters are used as a criteria for providing an upper-
bound of distance for datapoints to be considered part of or
merged into a single cluster. For MBKM, the combination of
nInit and initSize has the highest importance, which
implies that the performance of the resulting clusters are rela-
tively more dependent on initialization. It is crucial to tune

7792



0 10 20 30 40 50
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Aggregated over Generic Datasets - EoMR

Model
BIRCH
DBSCAN
HAC
HDBSCAN
MBKM

0 10 20 30 40 50
t

Aggregated over Generic Datasets - EoMB

0 10 20 30 40 50
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Aggregated over Generic Datasets - EoMR

Model

BIRCH
BIRCH (K*)
HAC
HAC (K*)
MBKM
MBKM (K*)

0 10 20 30 40 50
t

Aggregated over Generic Datasets - EoMB

(a) Aggregated over Generic Datasets

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

Aggregated over NLP Datasets - EoMR

Model
BIRCH
DBSCAN
HAC
HDBSCAN
MBKM

0 10 20 30 40 50
t

Aggregated over NLP Datasets - EoMB

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

Aggregated over NLP Datasets - EoMR

Model

BIRCH
BIRCH (K*)
HAC
HAC (K*)
MBKM
MBKM (K*)

0 10 20 30 40 50
t

Aggregated over NLP Datasets - EoMB

(b) Aggregated over NLP Datasets

Figure 1: Evaluation via EoM for aggregated datasets. Clustering methods are distinguished by color. 50% confidence intervals
are also depicted.

0 10 20 30 40 50
t

0.0

0.2

0.4

0.6

0.8

Dataset: wdbc - EoMR

Model
BIRCH
DBSCAN
HAC
HDBSCAN
MBKM

0 10 20 30 40 50
t

Dataset: wdbc - EoMB

0 10 20 30 40 50
t

0.0

0.2

0.4

0.6

0.8

Dataset: wdbc - EoMR

Model
BIRCH (K*)
BIRCH
HAC (K*)
HAC
MBKM (K*)
MBKM

0 10 20 30 40 50
t

Dataset: wdbc - EoMB(a) Generic: wdbc Dataset

0 10 20 30 40 50
t

0.00

0.02

0.04

0.06

0.08

Dataset: first-order-theorem-proving - EoMR

Model
BIRCH
DBSCAN
HAC
HDBSCAN
MBKM

0 10 20 30 40 50
t

Dataset: first-order-theorem-proving - EoMB

0 10 20 30 40 50
t

0.00

0.02

0.04

0.06

0.08

Dataset: first-order-theorem-proving - EoMR

Model
BIRCH (K*)
BIRCH
HAC (K*)
HAC
MBKM (K*)
MBKM

0 10 20 30 40 50
t

Dataset: first-order-theorem-proving - EoMB(b) Generic: First-order-theorem Dataset

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dataset: AGNews-glove - EoMR

Model
BIRCH
DBSCAN
HAC
HDBSCAN
MBKM

0 10 20 30 40 50
t

Dataset: AGNews-glove - EoMB

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dataset: AGNews-glove - EoMR

Model
BIRCH (K*)
BIRCH
HAC (K*)
HAC
MBKM (K*)
MBKM

0 10 20 30 40 50
t

Dataset: AGNews-glove - EoMB(c) NLP : AGNews Dataset with Glove Embeddings

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dataset: AGNews-paraphrase-mpnet - EoMR

Model
BIRCH
DBSCAN
HAC
HDBSCAN
MBKM

0 10 20 30 40 50
t

Dataset: AGNews-paraphrase-mpnet - EoMB

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dataset: AGNews-paraphrase-mpnet - EoMR

Model
BIRCH (K*)
BIRCH
HAC (K*)
HAC
MBKM (K*)
MBKM

0 10 20 30 40 50
t

Dataset: AGNews-paraphrase-mpnet - EoMB(d) NLP : AGNews Dataset with MPNet Embeddings

Figure 2: Evaluation via EoM for few chosen datasets. Methods are distinguished by color. 95% CI are also depicted.

parameters such as these since it causes a large variance in
performance across evaluations. In the case of HDBSCAN,
there is no fixed observable pattern of relative importance of
hyperparameters across datasets. Thus, HDBSCAN would
be relatively difficult to tune, as it is important for the prac-
titioner to select effective hyperparameters for all of eps,
minClusterSize and minPts.

Ease of Tuning As mentioned previously, inspecting the
rate at which EoM increases for various t provides a rea-
sonable assessment of the overall ease of tuning for a given
method. This is most obvious when observing the graph of
HAC with gold number of clusters in figure 3 - since there
are only 8 choices for the linkage function, we see that HAC
rapidly obtains its optimal performance, at which point it
plateaus. Note that ease of tuning is distinct from overall
performance - in the wdbc dataset presented in Figure 2(a)
we see that, while ranking last, HDBSCAN is arguably quite
easy to tune, as it achieves this performance by t = 10.

While one would not want to focus exclusively on ease of
tuning, therefore, inspecting the plots of EoMR would allow
researchers to choose an algorithm which reliably obtains
a reasonable level of performance within their budget. In-
specting the plots of EoMB would allow more experienced
practitioners a sense of how hard various methods would be
to tune even with more familiarity with the method. Compar-
ing the relative performance between these two metrics may
suggest that, for certain datasets and use-cases, it is worth
hand-labeling some subset of the data to allow for explicit
tuning on a surrogate heuristic metric.

Related Work
Benchmarks for Clustering There have been a number of
benchmarks proposed for clustering such as for synthetic data
for K-means (Fränti and Sieranoja 2018), graph-data (Em-
mons et al. 2016), univariate data (El Abbassi et al. 2021), and
document clustering (Sinka and Corne 2002). Van Meche-

7793



Hyperparam.
Dataset AGNews DBpedia YahooAnswers

Algorithm MPNet RoBERTa Glove MPNet RoBERTa Glove MPNet RoBERTa Glove

MBKM batchSize 2.226 4.175 0.788 1.832 0.859 0.730 8.598 3.830 1.934
initSize 4.647 8.633 3.931 17.681 26.400 4.014 2.515 3.403 4.934
maxIter 4.326 1.284 8.645 3.201 3.618 4.043 3.678 2.201 3.201
maxNoImprv 1.533 1.833 3.138 1.535 2.404 2.116 2.428 4.602 5.258
nInit 21.323 10.128 26.487 11.391 11.566 17.841 11.947 14.456 9.834
reassign 2.265 5.281 2.295 3.136 3.421 3.576 3.161 2.930 2.156
tol 1.501 5.123 2.733 6.288 1.077 3.040 3.346 3.861 3.080

BIRCH branch 5.721 12.066 5.877 14.576 8.881 22.611 14.131 15.005 12.741
threshold 76.903 53.878 65.075 43.376 53.086 47.236 59.315 57.779 46.800

DBSCAN eps 37.569 37.324 50.991 58.152 78.664 65.721 53.201 53.459 63.155
minPts 6.478 8.604 11.112 10.377 2.717 9.358 5.998 16.365 4.416

HDBSCAN eps 0.263 1.577 9.126 2.520 50.794 67.428 3.462 2.098 0.482
minClusterSize 4.928 12.548 10.097 18.541 2.263 2.135 13.577 26.155 72.431
minPts 79.091 51.026 52.467 32.549 6.540 4.480 32.570 23.911 10.668

Table 2: Importances of hyperparameters (in percent) of Clustering Algorithms in NLP Datasets

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dataset: AGNews-glove - EoMR

Model
BIRCH
DBSCAN
HAC
HDBSCAN
MBKM

0 10 20 30 40 50
t

Dataset: AGNews-glove - EoMB

0 10 20 30 40 50
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dataset: AGNews-glove - EoMR

Model
BIRCH (K*)
BIRCH
HAC (K*)
HAC
MBKM (K*)
MBKM

0 10 20 30 40 50
t

Dataset: AGNews-glove - EoMB

Figure 3: Evaluation via EoM for AGNews dataset with
Glove embeddings with number of clusters as a tunable hy-
perparameter vs gold number of clusters. Clustering methods
are distinguished by color. 95% confidence intervals are also
depicted.

len et al. (2018) carefully outlines criteria for building such
a benchmark. Beyond clustering there are many efforts for
building large collections of datasets in machine learning
(Vanschoren et al. 2013; Dua and Graff 2017; Lhoest et al.
2021, inter alia).

Bridging Theory & Practice in Clustering Work has con-
sidered ways to understand how theoretical complexity re-
sults relate to the kinds of clustering problems faced by prac-
tioners. (Ben-David 2015, 2018). Other work has advocated
focusing the evaluation of clustering based on the use case
along side discussing a plethora of important open-ended
questions (Von Luxburg, Williamson, and Guyon 2012).

Hyperparameters in Clustering Tuning hyperparameters
in clustering has been considered by (Shalamov et al. 2018;
Blumenberg and Ruggles 2020, inter alia) . However these
works are not focused on designing a metric which incorpo-
rates the difficulty of tuning, as in this work.

Clustering Metrics Many external metrics have been pro-
posed for clustering (Rand 1971; Maulik and Bandyopadhyay
2002; He et al. 2004, inter alia) . Specific metrics for tasks
like coreference resolution (Bagga and Baldwin 1998; Re-

casens and Hovy 2011) have also been proposed. Designing
internal metrics (e.g., clustering costs) has a long history and
is widely studied. Often such costs are designed to automat-
ically discover the number of clusters (Pelleg, Moore et al.
2000; Jiang, Kulis, and Jordan 2012) or for other kinds of
clustering (e.g., hierarchical) (Dasgupta 2016).

Conclusion
In this paper we conducted a thorough evaluation of the hyper-
parameter sensitivity of 5 commonly used clustering methods.
In doing so, we also presented a new metric for evaluating
clustering methods. Our metric captures the difficulty of find-
ing suitably effective hyperparameters in a given compute
budget by measuring the expected best performance achieved
after t evaluations. We analyze the proposed metric by using
it to investigate the performance of several frequently-used
clustering algorithms on a collection of over 50 datasets. Un-
der this evaluation, we discover that the order of the optimal
method may change depending on the level of sophistication
used for tuning. In particular, with sufficient tuning, MBKM
may outperform HAC, which is far easier to tune. Future work
could consider how to use the distributions over hyperparam-
eters that are built using this work to suggest hyperparameters
for unseen datasets.

Acknowledgments
This work supported in part by the Center for Data Science
and in part the Center for Intelligent Information Retrieval
and in part by the National Science Foundation under Grants
No. 1763618, and University of Southern California subcon-
tract no. 123875727 under Office of Naval Research prime
contract no. N660011924032. Some of the work reported here
was performed using high performance computing equipment
obtained under a grant from the Collaborative R&D Fund
managed by the Massachusetts Technology Collaborative.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect those of the sponsor.

7794



References
Ailon, N.; Charikar, M.; and Newman, A. 2008. Aggregating
inconsistent information: ranking and clustering. JACM.
Arthur, D.; and Vassilvitskii, S. 2006. k-means++: The ad-
vantages of careful seeding. Technical report, Stanford.
Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak,
R.; and Ives, Z. 2007. DBpedia: A Nucleus for a Web of
Open Data. In Aberer, K.; Choi, K.-S.; Noy, N.; Allemang,
D.; Lee, K.-I.; Nixon, L.; Golbeck, J.; Mika, P.; Maynard, D.;
Mizoguchi, R.; Schreiber, G.; and Cudré-Mauroux, P., eds.,
The Semantic Web, 722–735. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Bagga, A.; and Baldwin, B. 1998. Algorithms for scoring
coreference chains. In LREC.
Bakshy, E.; Dworkin, L.; Karrer, B.; Kashin, K.; Letham, B.;
Murthy, A.; and Singh, S. 2018. AE: A domain-agnostic
platform for adaptive experimentation. In NeurIPS.
Balandat, M.; Karrer, B.; Jiang, D. R.; Daulton, S.; Letham,
B.; Wilson, A. G.; and Bakshy, E. 2020. BoTorch: A Frame-
work for Efficient Monte-Carlo Bayesian Optimization. In
NeurIPS.
Barnes, M. 2015. A Practioner’s Guide to Evaluating Entity
Resolution Results. arXiv preprint arXiv:1509.04238.
Bateni, M. H.; Behnezhad, S.; Derakhshan, M.; Hajiaghayi,
M. T.; Kiveris, R.; Lattanzi, S.; and Mirrokni, V. 2017. Affin-
ity clustering: Hierarchical clustering at scale. In NeurIPS.
Ben-David, S. 2015. Clustering is easy when.... What?
arXiv:1510.05336.
Ben-David, S. 2018. Clustering-what both theoreticians and
practitioners are doing wrong. In Proceedings of the AAAI
Conference on Artificial Intelligence.
Bergstra, J.; and Bengio, Y. 2012. Random search for hyper-
parameter optimization. JMLR.
Bischl, B.; Casalicchio, G.; Feurer, M.; Hutter, F.; Lang,
M.; Mantovani, R. G.; van Rijn, J. N.; and Vanschoren, J.
2021. OpenML Benchmarking Suites. Proceedings of the
Neural Information Processing Systems Track on Datasets
and Benchmarks.
Blumenberg, L.; and Ruggles, K. V. 2020. Hypercluster:
a flexible tool for parallelized unsupervised clustering opti-
mization. BMC bioinformatics.
Bridge, J. P.; Holden, S. B.; and Paulson, L. C. 2014. Ma-
chine Learning for First-Order Theorem Proving. Journal of
Automated Reasoning.
Campello, R. J.; Moulavi, D.; and Sander, J. 2013. Density-
based clustering based on hierarchical density estimates. In
Pacific-Asia conference on knowledge discovery and data
mining.
Chaudhuri, K.; and Dasgupta, S. 2010. Rates of convergence
for the cluster tree. In NeurIPS.
Chuang, K.-S.; Tzeng, H.-L.; Chen, S.; Wu, J.; and Chen,
T.-J. 2006. Fuzzy c-means clustering with spatial information
for image segmentation. computerized medical imaging and
graphics.

Dasgupta, S. 2016. A cost function for similarity-based
hierarchical clustering. In STOC.
Dror, G.; Koren, Y.; Maarek, Y.; and Szpektor, I. 2011. I
Want to Answer; Who Has a Question? Yahoo! Answers
Recommender System. In KDD.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Reposi-
tory. http://archive.ics.uci.edu/ml. Accessed: 2021-08-01.
Dubes, R.; and Jain, A. K. 1980. Clustering methodologies
in exploratory data analysis. Advances in computers.
El Abbassi, M.; Overbeck, J.; Braun, O.; Calame, M.; van der
Zant, H. S.; and Perrin, M. L. 2021. Benchmark and applica-
tion of unsupervised classification approaches for univariate
data. Communications Physics.
Emmons, S.; Kobourov, S.; Gallant, M.; and Borner, K. 2016.
Analysis of Network Clustering Algorithms and Cluster Qual-
ity Metrics at Scale. PLOS ONE.
Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.; et al. 1996.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD.
Estivill-Castro, V. 2002. Why so many clustering algorithms:
a position paper. ACM SIGKDD explorations newsletter.
Feurer, M.; van Rijn, J. N.; Kadra, A.; Gijsbers, P.; Mallik,
N.; Ravi, S.; Mueller, A.; Vanschoren, J.; and Hutter, F. 2019.
OpenML-Python: an extensible Python API for OpenML.
JMLR.
Fränti, P.; and Sieranoja, S. 2018. K-Means Properties on
Six Clustering Benchmark Datasets. Applied Intelligence,
48(12): 4743–4759.
Greenberg, C. S.; Macaluso, S.; Monath, N.; Dubey, A.; Fla-
herty, P.; Zaheer, M.; Ahmed, A.; Cranmer, K.; and McCal-
lum, A. 2021. Exact and Approximate Hierarchical Cluster-
ing Using A*. UAI.
He, J.; Tan, A.-H.; Tan, C.-L.; and Sung, S.-Y. 2004. On
quantitative evaluation of clustering systems. In Clustering
and information retrieval, 105–133. Springer.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2014. An efficient
approach for assessing hyperparameter importance. In ICML.
Jiang, K.; Kulis, B.; and Jordan, M. 2012. Small-variance
asymptotics for exponential family Dirichlet process mixture
models. NeurIPS.
Kobren, A.; Monath, N.; Krishnamurthy, A.; and McCallum,
A. 2017. A hierarchical algorithm for extreme clustering. In
KDD.
Lancichinetti, A.; Fortunato, S.; and Kertész, J. 2009. Detect-
ing the overlapping and hierarchical community structure in
complex networks. New journal of physics.
Lhoest, Q.; Villanova del Moral, A.; Jernite, Y.; Thakur, A.;
von Platen, P.; Patil, S.; Chaumond, J.; Drame, M.; Plu, J.;
Tunstall, L.; Davison, J.; Šaško, M.; Chhablani, G.; Malik,
B.; Brandeis, S.; Le Scao, T.; Sanh, V.; Xu, C.; Patry, N.;
McMillan-Major, A.; Schmid, P.; Gugger, S.; Delangue, C.;
Matussière, T.; Debut, L.; Bekman, S.; Cistac, P.; Goehringer,
T.; Mustar, V.; Lagunas, F.; Rush, A.; and Wolf, T. 2021.
Datasets: A Community Library for Natural Language Pro-
cessing. In Proceedings of the 2021 Conference on Empirical

7795



Methods in Natural Language Processing: System Demon-
strations, 175–184. Online and Punta Cana, Dominican Re-
public: Association for Computational Linguistics.
Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez, J. E.;
and Stoica, I. 2018. Tune: A Research Platform for Dis-
tributed Model Selection and Training. ICML AutoML work-
shop.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. arXiv:1907.11692.
Lloyd, S. 1982. Least squares quantization in PCM. IEEE
transactions on information theory.
Maulik, U.; and Bandyopadhyay, S. 2002. Performance eval-
uation of some clustering algorithms and validity indices.
TPAMI.
Murtagh, F. 1983. A survey of recent advances in hierarchical
clustering algorithms. The computer journal.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. JMLR.
Pelleg, D.; Moore, A. W.; et al. 2000. X-means: Extending
k-means with efficient estimation of the number of clusters.
In ICML.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. GloVe:
Global Vectors for Word Representation. In EMNLP.
Rand, W. M. 1971. Objective criteria for the evaluation of
clustering methods. JASA.
Rasmussen, M.; and Karypis, G. 2004. gCLUTO–An Inter-
active Clustering, Visualization, and Analysis System.
Recasens, M.; and Hovy, E. 2011. BLANC: Implementing
the Rand index for coreference evaluation. Natural Language
Engineering.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT:
Sentence Embeddings using Siamese BERT-Networks.
arXiv:1908.10084.
Riedy, E. J.; Meyerhenke, H.; Ediger, D.; and Bader, D. A.
2011. Parallel community detection for massive graphs. In
International Conference on Parallel Processing and Applied
Mathematics.
Schütze, H.; Manning, C. D.; and Raghavan, P. 2008. Intro-
duction to information retrieval.
Sculley, D. 2010. Web-scale k-means clustering. In WWW.
Shalamov, V.; Efimova, V.; Muravyov, S.; and Filchenkov, A.
2018. Reinforcement-based method for simultaneous cluster-
ing algorithm selection and its hyperparameters optimization.
Procedia Computer Science.

Sinka, M. P.; and Corne, D. W. 2002. A large benchmark
dataset for web document clustering. Soft computing systems:
design, management and applications.
Sneath, P. H.; Sokal, R. R.; et al. 1973. Numerical taxonomy.
The principles and practice of numerical classification.
Sobol, I. 1993. Sensitivity estimates for nonlinear mathemat-
ical models. Math. Model. Comput. Exp.
Song, K.; Tan, X.; Qin, T.; Lu, J.; and Liu, T.-Y. 2020. MPNet:
Masked and Permuted Pre-training for Language Understand-
ing. arXiv:2004.09297.
Stassen, S. V.; Siu, D. M.; Lee, K. C.; Ho, J. W.; So, H. K.;
and Tsia, K. K. 2020. PARC: ultrafast and accurate clustering
of phenotypic data of millions of single cells. Bioinformatics.
Steorts, R. C.; Hall, R.; and Fienberg, S. E. 2016. A
Bayesian approach to graphical record linkage and dedu-
plication. JASA.
Street, W. N.; Wolberg, W. H.; and Mangasarian, O. L. 1993.
Nuclear feature extraction for breast tumor diagnosis. In
Biomedical image processing and biomedical visualization.
International Society for Optics and Photonics.
Van Mechelen, I.; Boulesteix, A.-L.; Dangl, R.; Dean, N.;
Guyon, I.; Hennig, C.; Leisch, F.; and Steinley, D. 2018.
Benchmarking in cluster analysis: A white paper. arXiv.
Vanschoren, J.; van Rijn, J. N.; Bischl, B.; and Torgo, L.
2013. OpenML: Networked Science in Machine Learning.
SIGKDD Explorations.
Vashishth, S.; Jain, P.; and Talukdar, P. 2018. Cesi: Canoni-
calizing open knowledge bases using embeddings and side
information. In WWW.
Virtanen, P.; and Gommers, R. e. a. 2020. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python.
Nature Methods.
Von Luxburg, U.; Williamson, R. C.; and Guyon, I. 2012.
Clustering: Science or art? In Proceedings of ICML workshop
on unsupervised and transfer learning.
Yadan, O. 2019. Hydra - A framework for elegantly
configuring complex applications. https://github.com/
facebookresearch/hydra. Accessed: 2021-08-01.
Zaheer, M.; Ahmed, A.; Wang, Y.; Silva, D.; Najork, M.; Wu,
Y.; Sanan, S.; and Chatterjee, S. 2019. Uncovering hidden
structure in sequence data via threading recurrent models. In
WSDM.
Zhang, T.; Ramakrishnan, R.; and Livny, M. 1996. BIRCH:
an efficient data clustering method for very large databases.
ACM sigmod record.
Zhang, X.; Zhao, J.; and LeCun, Y. 2016. Character-level
Convolutional Networks for Text Classification. arXiv.

7796


