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Abstract

Out-of-distribution (OOD) detection is important for deploy-
ing machine learning models in the real world, where test
data from shifted distributions can naturally arise. While a
plethora of algorithmic approaches have recently emerged
for OOD detection, a critical gap remains in theoretical un-
derstanding. In this work, we develop an analytical frame-
work that characterizes and unifies the theoretical understand-
ing for OOD detection. Our analytical framework motivates
a novel OOD detection method for neural networks, GEM,
which demonstrates both theoretical and empirical superi-
ority. In particular, on CIFAR-100 as in-distribution data,
our method outperforms a competitive baseline by 16.57%
(FPR95). Lastly, we formally provide provable guarantees
and comprehensive analysis of our method, underpinning
how various properties of data distribution affect the perfor-
mance of OOD detection.

1 Introduction
When deploying machine learning models in the open
world, it becomes increasingly critical to ensure the
reliability—models are not only accurate on their familiar
data distribution, but also aware of unknown inputs outside
the training data distribution. Out-of-distribution (OOD)
samples can naturally arise from an irrelevant distribution
whose label set has no intersection with training categories,
and therefore should not be predicted by the model. This
gives rise to the importance of OOD detection, which deter-
mines whether an input is in-distribution (ID) or OOD.

The main challenge in OOD detection stems from the fact
that modern deep neural networks can easily produce over-
confident predictions on OOD inputs (Nguyen, Yosinski,
and Clune 2015). This phenomenon makes the separation
between ID and OOD data a non-trivial task. OOD detec-
tion approaches commonly rely on an OOD scoring function
that derives statistics from the pre-trained neural networks
and performs OOD detection by exercising a threshold com-
parison. For example, (Hendrycks and Gimpel 2017) use
the maximum softmax probability (MSP) and classifies in-
puts with smaller MSP scores as OOD data. While improved
OOD scoring functions (Liang, Li, and Srikant 2018; Lee
et al. 2018b; Liu et al. 2020; Sun, Guo, and Li 2021) have
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emerged recently, their inherent connections and theoretical
understandings are largely lacking. To the best of our knowl-
edge, there is limited prior work providing provable guaran-
tees for OOD detection methods from a rigorous mathemat-
ical point of view.

This paper takes an important step to bridge the gap by
providing a unified framework that allows the research com-
munity to understand the theoretical connections among re-
cent model-based OOD detection methods. Our framework
further enables devising new methodology, theoretical and
empirical insights on OOD detection. Our key contribu-
tions are three folds:

• First, we provide an analytical framework that precisely
characterizes and unifies the theoretical interpretation
of several representative OOD scoring functions (Sec-
tion 2). We derive analytically an optimal form of OOD
scoring function called GEM (Gaussian mixture based
Energy Measurement), which is provably aligned with
the true log-likelihood for capturing OOD uncertainty.
In contrast, we show mathematically that prior scoring
functions can be sub-optimal.

• Second, our analytical framework motivates a new OOD
detection method for deep neural networks (Section 3).
By modeling the feature space as a class-conditional mul-
tivariate Gaussian distribution, we propose a GEM score
based on the Gaussian generative model. Empirical eval-
uations demonstrate the competitive performance of the
new scoring function. In particular, on CIFAR-100 as in-
distribution data, GEM outperforms (Liu et al. 2020) by
16.57% (FPR95). Our method is theoretically more rig-
orous than maximum Mahalanobis distance (Lee et al.
2018b) while achieving equally strong performance.

• Lastly, our work provides both provable guarantees and
empirical analysis to understand how various properties
of data representation in feature and input space affect
the performance of OOD detection (Section 4). Previous
OOD detection methods can be difficult to analyze due
to the stochasticity in neural network optimization. Our
framework offers key simplifications that allow us to (1)
isolate the effect of data representation from model op-
timization, and (2) flexibly modulate properties of data
representation in feature and input space. Through both
synthetic simulations and theoretical analysis, our study
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Figure 1: Left: The in-distribution data P in
X comprises of two classes Y = {−1,+1}, indicated by green and blue dots respec-

tively. Right: Out-of-distribution detection allows the learner to express ignorance outside the support set of current known
classes, and prevents the model from misclassifying OOD data (orange dots) into known classes (blue and green dots).

reveals important insights on how OOD detection perfor-
mance changes with respect to data distributions.

We end the introduction with an outline of this work. In Sec-
tion 2, we first define the problem of study and set the no-
tations that we need. Next, we analyze previous OOD de-
tection methods under the Gaussian mixture assumption and
introduce the GEM score. In Section 3, we extend GEM to
deep neural networks and perform experiments on common
benchmarks. In Section 4, we provide rigorous guarantees
for the performance of GEM, along with simulation verifi-
cations. We conclude our work in Section 6, following an
expansive literature review in Section 5.

2 OOD Detection Under Gaussian Mixtures
In this section, we mathematically describe representative
OOD scoring functions under the Gaussian mixture data
model. This allows us to contrast with the ideal OOD de-
tector where the data density is explicit. We later apply the
insight gained from this simple model to introduce a new
score OOD detection for deep neural networks.

Preliminaries
We denote by X = Rd the input space and Y = {y1, ..., yk}
the label space. Let P in

X ,Y denote a probability distribution
defined on X × Y . Furthermore, let P in

X and P in
Y denote the

marginal probability distribution on X and Y respectively.
A classifier f : X → Rk learns to map a given input x ∈ X
to the output space .

Problem Statement Given a classifier f learned on train-
ing samples from in-distribution P in

X ,Y , the goal is to design
a binary function estimator,

g : X → {in, out},

that classifies whether a test-time sample x ∈ X is generated
from P in

X or not. Estimating OOD uncertainty is challenging
due to the lack of knowledge on OOD data coming from
P out
X . It is infeasible to explicitly train a binary classifier g.

A natural approach is to use level set for OOD detection,
based on the data density P in

X . We define the ideal classifier

for OOD detection as follows,

gideal
λ (x) =

{
in pinX (x) ≥ λ

out pinX (x) < λ
,

where pinX is the density function of P in
X and λ is the thresh-

old, which is chosen so that a high fraction (e.g., 95%) of in-
distribution data is correctly classified. For evaluation pur-
pose, we define the error rate by,

TPR(g) := Ex∼P in
X
(I{g(x)=in}),

FPR(g) := Ex∼P out
X

(I{g(x)=in}).

By convention, we assume in-distribution samples have pos-
itive labels. In practice, P out

X is often defined by a distri-
bution that simulates unknowns encountered during deploy-
ment time, such as samples from an irrelevant distribution
whose label set has no intersection with Y and therefore
should not be predicted by the model.

In-distribution Data Model We assume in-distribution
data is drawn from a Gaussian mixture with equal priors and
a tied covariance matrix Σ. The simplicity is desirable for
us to precisely characterize various OOD detection methods
and their optimality. We will further extend our analysis to
neural networks in Section 3. Specifically,

x|yi ∼ N (µi,Σ),

pinY (yi) =
1

k
,

where µi ∈ Rd is the mean of class yi ∈ Y and Σ ∈ Rd×d is
the covariance matrix. The class-conditional density follows
a Gaussian distribution,

pinX|Y(x|yi) =
exp(− 1

2 (x− µi)
⊤Σ−1(x− µi))√

(2π)d|Σ|
.

Above implies the density function of P in
X can be written as

follows,

pinX (x) =
k∑

j=1

pinX|Y(x|yj) · p
in
Y (yj)

=

∑k
j=1 exp(−

1
2 (x− µj)

⊤Σ−1(x− µj))

k
√
(2π)d|Σ|

,
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which is mixture of k Gaussian distributions.

Bayes Optimal Classifier Under the Gaussian mixture
model, the posterior probability of a Bayes optimal classi-
fier for class yi ∈ Y is given by,

pY|X (yi|x) =
pY(yi)pX|Y(x|yi)∑k

j=1 pY(yj)pX|Y(x|yj)
(1)

=
exp(− 1

2 (x− µi)
⊤Σ−1(x− µi))∑k

j=1 exp(−
1
2 (x− µj)

⊤Σ−1(x− µj))

(2)

=
exp fi(x)∑k
j=1 exp fj(x)

, (3)

where f : X → Rk is a function mapping to the logits.
One can note that the above form of posterior distribution
is equivalent to applying the softmax function on the logits
f(x), where,

fi(x) = −1

2
(x− µi)

⊤Σ−1(x− µi),

which is also known as the Mahalanobis distance (Maha-
lanobis 1936).

OOD Scoring Functions and Their Optimality
We now contrast several representative OOD scoring func-
tions and also introduce our new scoring function GEM.
Note that an ideal OOD detector should use a scoring func-
tion that is proportional to the data density. We focus on post
hoc OOD detection methods, which have the advantages of
being easy to use and general applicability without modify-
ing the training procedure and objective.

Prior: Maximum Softmax Score Hendrycks and Gimpel
propose using the maximum softmax score (MSP) for esti-
mating OOD uncertainty,

gMSP
λ (x) =

{
in MSP(f,x) ≥ λ

out MSP(f,x) < λ
.

The OOD scoring function is given by,

MSP(f,x) = max
i

pY|X (yi|x)

= max
i

1

kβpinX (x)
exp(−1

2
(x− µi)

⊤Σ−1(x− µi))

̸∝ pinX (x),

where β =
√
(2π)d|Σ|. The above suggests that MSP is

not aligned with the true data density, as illustrated in Fig-
ure 2. For simplicity, we visualize the case when the input
distribution is mixture of one-dimensional Gaussians, with
two classes Y = {+1,−1}. MSP can yield high score 1,
and misclassify data points in low-likelihood regions such
as x > 4 or x < −4 (highlighted in red). Also, depending
on threshold value λ, MSP may misclassify samples from
neighbourhood around the origin (highlighted in gray).
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Figure 2: Illustration of data density (middle, gray), maxi-
mum softmax score (top, black) and GEM score (bottom,
blue) when x ∈ R. The data distribution p(x) is a mixture of
two Gaussians with mean µ1 = 2 and µ2 = −2 respectively.
The variance σ1 = σ2 = 1. Under thresholding, MSP can
not distinguish samples x > 4 or x < −4 which have low-
likelihood of being in-distribution. In contrast, GEM score
(ours) is aligned with the true data density, and better cap-
tures OOD uncertainty.

Prior: Maximum Mahalanobis Distance Lee et al. pro-
pose using the maximum Mahalanobis distance w.r.t the
closest class centroid for OOD detection. Specifically, the
score is defined as:

M(f,x) = max
i

−(x− µi)
⊤Σ−1(x− µi)

̸∝ pinX (x),

which is equivalent to the maximum Mahalanobis distance.
The corresponding OOD classifiers based on Mahalanobis
score is,

gMahalanobis
λ (x) =

{
in M(f,x) ≥ λ

out M(f,x) < λ
.

The above suggests that Mahalanobis distance is not propor-
tional to the true data density either, hence sub-optimal.

Prior: Energy Score Given a function transformation f :
X → Rk, Liu et al. propose using the free energy score
for OOD detection. The free energy is defined to be the
-logsumexp of logit outputs,

E(f,x) = − log
k∑

j=1

exp(fj(x)), (4)

where f(x) = (f1(x), ..., fk(x))
⊤ ∈ Rk. We provide a

simple and concrete example to show there exists maximum
likelihood solution with the same posterior probability as in
Equation 3, but the resulting energy score is not aligned with
the data density:

pY|X (yi|x) =
exp(− 1

2 (x− µi)
⊤Σ−1(x− µi))∑k

j=1 exp(−
1
2 (x− µj)

⊤Σ−1(x− µj))

=
exp(µ⊤

i Σ
−1x− 1

2µ
⊤
i Σ

−1µi)∑k
j=1 exp(µ

⊤
j Σ

−1x− 1
2µ

⊤
j Σ

−1µj)

=
exp f ′

i(x)∑k
j=1 exp f

′
j(x)

,
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where f ′(x) := (f ′
1(x), ..., f

′
k(x))

⊤ ∈ Rk can be viewed as
a single layer network’s output with (row) weights µ⊤

i Σ
−1,

for 1 ≤ i ≤ k, and biases − 1
2µ

⊤
i Σ

−1µi, for 1 ≤ i ≤ k, and
the corresponding energy − log

∑
j exp f

′
j(x) is not aligned

with the log-likelihood, hence not always optimal.

New: GEM Score We now introduce a new scoring func-
tion, Gaussian mixture based energy measurement (dubbed
GEM). The GEM score can be written as,

GEM(f,x) = −E(f,x)

= log
k∑

j=1

exp(−1

2
(x− µj)

⊤Σ−1(x− µj))

∝ log pinX (x),

which suggests that the GEM score is proportional (by ig-
noring a constant term) to the log-likelihood of the in-
distribution data. Note that we flip the sign of free energy
to align with the convention that larger GEM score indicates
more ID-ness and vice versa. The key difference here is that
the GEM score is a special case of negative free energy,
where each fj(x) in Equation 4 takes on the form of Maha-
lanobis distance instead of directly using the logit outputs,

fj(x) = −1

2
(x− µj)

⊤Σ−1(x− µj).

In Figure 2, we show the alignment between the GEM (light
green) and true data density function (gray), in a simplified
case with x ∈ R, k = 2 and µ1 = 2, µ2 = −2. The corre-
sponding OOD classifiers based on energy score is,

gGEM
λ (x) =

{
in GEM(f,x) ≥ λ

out GEM(f,x) < λ
.

This leads to the following lemma that shows the optimality
of the GEM estimator.
Lemma 1. In the case of Gaussian conditional with equal
priors, the GEM based OOD estimator performs similarly
to the ideal classifier defined in Section 2. More specifically,

gidealλ = gGEM
log(kβ·λ),

where β =
√

(2π)d|Σ| and both the ideal classifier and our
method are aligned with P in

X by definition.
Remark 1. Note that the equal prior case is considered to
convey the main idea in simplest possible form. To make it
more general, a weighted version of GEM can be used to
achieve the optimality for the non-equal prior case. More
precisely, let wi = pinY (yi), then we have,

pinX (x) =
k∑

j=1

wjp
in
X|Y(x|yj)

∝
k∑

j=1

wj exp(−
1

2
(x− µj)

⊤Σ−1(x− µj)).

Now if we define the weighted GEM by,

GEMw(f,x) := log
k∑

j=1

wj exp(−
1

2
(x− µj)

⊤Σ−1(x− µj)),

then arguing similar to Lemma 1 implies that weighted GEM
would be aligned with the ideal classifier in the non-equal
prior case.

3 OOD Detection for Deep Neural Networks
In this section, we extend our analysis and method to deep
neural networks. To start, let h(x; θ) ∈ Rm be the feature
vector of the input x, extracted from the penultimate layer
of a neural net parameterized by θ. We assume that a class-
conditional distribution in the feature space follows the mul-
tivariate Gaussian distribution. Such an assumption has been
empirically validated in (Lee et al. 2018b); also see visual-
izations in Figure 3. Specifically, a k class-conditional Gaus-
sian distribution with a tied covariance is defined as,

h(x; θ)|yi ∼ N (ui, Σ̄),

where ui ∈ Rm is the mean of class yi and Σ̄ ∈ Rm×m

is the covariance matrix. To estimate the parameters of the
generative model from the pre-trained neural classifier, one
can compute the empirical class mean and covariance given
training samples {(x1, ȳ1), (x2, ȳ2), ..., (xN , ȳN )},

ûi =
1

Ni

∑
j:ȳj=yi

h(xj ; θ),

Σ̂ =
1

N

k∑
i=1

∑
j:ȳj=yi

(h(xj ; θ)− ûi)(h(xj ; θ)− ûi)
T ,

where Ni is the number of training samples with label yi ∈
Y . We can define the ideal classifier with respect to feature
space to be,

gideal
λ (x) =

{
in pfeature(x) ≥ λ

out pfeature(x) < λ,
, (5)

where pfeature denotes the density function of the posterior
distribution on the feature space induced by h(x, θ).

GEM for Neural Networks Similar to our definition in
Section 2, GEM for neural networks can be defined as

GEM(x; θ) = log

k∑
j=1

exp(fj(x; θ)),

where fj(x; θ) = − 1
2 (h(x; θ) − uj)

⊤Σ̄−1(h(x; θ) − uj).
We can empirically estimate each fj(x; θ) by,

f̂j(x; θ) = −1

2
(h(x; θ)− ûj)

⊤Σ̂−1(h(x; θ)− ûj).

It follows from an analogue of Lemma 1 that gGEM
λ , com-

puted from feature space, performs similarly to the ideal
classifier that we defined by Equation 5.
Lemma 2. The performance of GEM based detection is
same as the ideal classifier (with respect to the feature
space) defined by Equation 5 :

gidealλ = gGEM
log(kβ̄·λ),

where β̄ =
√
(2π)m|Σ̄|.

We also note that Lemma 2 can be extended to non-equal
prior case by arguing similar to Remark 1.
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In-
distribution Method

FPR95 AUROC AUPR In-dist
Test Error

↓ ↑ ↑ ↓

CIFAR-10

Softmax score (Hendrycks and Gimpel 2017) 51.04 90.90 97.92 5.16
ODIN (Liang, Li, and Srikant 2018) 35.71 91.09 97.62 5.16
Mahalanobis (Lee et al. 2018b) 36.96 93.24 98.47 5.16
Energy score (Liu et al. 2020) 33.01 91.88 97.83 5.16
GEM (ours) 37.21 93.23 98.47 5.16

CIFAR-100

Softmax score (Hendrycks and Gimpel 2017) 80.41 75.53 93.93 24.04
ODIN (Liang, Li, and Srikant 2018) 74.64 77.43 94.23 24.04
Mahalanobis (Lee et al. 2018b) 57.01 82.70 95.68 24.04
Energy score (Liu et al. 2020) 73.60 79.56 94.87 24.04
GEM (ours) 57.03 82.67 95.66 24.04

Table 1: Main Results. Comparison with competitive post hoc OOD detection methods. ↑ indicates larger values are better, and
↓ indicates smaller values are better. All values are percentages. Results for OOD detection are averaged over the six OOD test
datasets described in section 3. Numbers for individual OOD test datasets are available in the extended version (Morteza and
Li 2021). The reported results for baselines are courtesy of (Liu et al. 2020).

Experimental Results
Setup We use CIFAR-10 and CIFAR-100 (Krizhevsky,
Hinton et al. 2009) datasets as in-distribution data.1. We
use the standard split, and train with WideResNet architec-
ture (Zagoruyko and Komodakis 2016) with depth 40. For
the OOD test dataset, we use the following six datasets:
Textures (Cimpoi et al. 2014), SVHN (Netzer et al. 2011),
Places365 (Zhou et al. 2017), LSUN-Crop (Yu et al.
2015), LSUN-Resize (Yu et al. 2015), and iSUN (Xu et al.
2015). We report standard metrics including FPR95 (false
positive rate of OOD examples when the true positive rate
of in-distribution examples is at 95%), AUROC, and AUPR.

GEM is both empirically competitive and theoretically
grounded. Table 1 compares the performance of the GEM
method with common OOD detection methods. For fair-
ness, all methods derive OOD scoring functions post hoc
from the same pre-trained model. For example, on CIFAR-
100 as in-distribution data, GEM outperforms the energy
score (Liu et al. 2020) by 16.57% (FPR95). Compared
to (Lee et al. 2018b), our method is more theoretically
grounded than taking the maximum Mahalanobis distance.
We note that the similar empirical performance is primar-
ily due to log-sum-exp being a smooth approximation of
maximum Mahalanobis distance in the feature space (more
details in Remark 2 below). Therefore, our method overall
achieves both strong empirical performance and theoreti-
cal soundness—bridging a critical gap under unified under-
standings.

Remark 2 (Significance w.r.t Mahalanobis). The main dif-
ference w.r.t (Lee et al. 2018b) is that we are taking
the log-sum-exp over Mahalanobis distances Mi, in-
stead of taking the maximum Mahalanobis distance. This
was motivated by our theoretical analysis in previous Sec-
tion where taking log-sum-exp would be aligned with
likelihood (w.r.t feature space), whereas max is not ex-
act in theory. In other words, we bring theoretical rigor
to an empirically competitive method. Mathematically,

1Code is available at: https://github.com/PeymanMorteza/GEM

log
∑k

i exp(Mi) ≈ maxi Mi with the following bound:
maxi Mi ≤ log

∑k
i exp(Mi) ≤ maxi Mi + log(k). There-

fore, our method overall achieves equally strong empirical
performance yet with theoretical soundness and guarantees
(see formal analysis in Section 4).
Lemma 3. In the case of Gaussian conditional with equal
priors in the feature space, the Mahalanobis-based OOD es-
timator is not aligned with the density of in-distribution data
in the feature space and it is not equivalent to the ideal clas-
sifier defined by Equation 5.
Remark 3 (Significance w.r.t Energy Score). The energy
score in (Liu et al. 2020) was derived directly from the logit
outputs, rather than a Gaussian generative model as in ours.
As a result, the original energy score might not always cor-
respond to the Bayes optimal logit to ensure alignment w.r.t
likelihood (we showed this by an explicit example in Sec-
tion 2). Instead, our analytical framework and method pro-
vide strong provable guarantees (c.f. Section 4) and enable
precise understanding by disentangling the effects of various
factors (c.f. Section 4), both of which were not presented in
(Liu et al. 2020). Moreover, we show empirically that GEM
achieves strong empirical performance, outperforming en-
ergy score by a significant margin (16.57% in FPR95 on
CIFAR-100, see Table 1).

4 Provable Guarantees for GEM
The main goal of this section is to provide rigorous guaran-
tees and understandings for our method GEM. This is im-
portant but often missing in previous literature on OOD de-
tection.

Let P in
X be a mixture of Gaussians (similar to Section 2)

and assume P out
X = N (µout,Σ). We can think of X as ei-

ther the feature space or input space of a deep neural net.
We work with the re-scaled version of the GEM score (by
omitting the log operator), which does not change the for-
mal guarantees.

ES(x) =
k∑

i=1

ESi(x),
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where,

ESi(x) = exp(−1

2
(x− µi)

⊤Σ−1(x− µi)).

Next, we consider the following quantity,
D := Ex∼P in

X
(ES(x))− Ex∼P out

X
(ES(x)).

Intuitively, we can think of D as a measure of how well
GEM distinguishes ID samples from OOD samples. For
example, when µout is far away from µi then we expect
Ex∼P out

X
(ES(x)) to be small (i.e., D is large), and we ex-

pect that the our OOD estimator performs better compared
to the case when µout is close to µi (i.e., D is small). We
make this intuition precise by bounding D in terms of Ma-
halanobis distance between µout and µi. First, we recall the
following definition and set some notations,
Definition 1. For u,v ∈ Rd, the Mahalanobis distance,
with respect to Σ, is defined by,

dM (u,v) :=
√

(u− v)⊤Σ−1(u− v),

and for r > 0 the open ball with center u and radius r is
defined by,

Br(u) := {x ∈ Rd|dM (x,u) < r}.
Next, we can state the following theorem.

Theorem 1. We have the following bounds,

• Ex∼P out
X

(ES(x)) ≤
∑k

i=1

((
1 − P out

X (Bαi
(µout))

)
+

exp(− 1
2α

2
i )
)

,

• Ex∼P in
X
(ES(x))− Ex∼P out

X
(ES(x)) ≤

∑k
i=1 αi,

where, for 1 ≤ i ≤ k, αi :=
1
2dM (µi,µout).

We emphasize that in Theorem 1 µi and µout can have
arbitrary configurations. We refer the reader to the extended
version2 (Morteza and Li 2021) for the proof of Theorem 1
and detailed discussions on other variants.

Performance with respect to the distance between ID and
OOD data The next corollary explains how Theorem 1
can quantify that the performance of GEM-based OOD de-
tector increases as the distance between ID and OOD data
increases.
Corollary 1. For 1 ≤ i ≤ k, set α = dM (µout,µi). We
have the following from the first bound in Theorem 1,

Ex∼P out
X

(ES(x)) ≤ k
((

1− P out
X (Bα(µout))

)
+ exp(−1

2
α2)

)
.

Now as α → ∞ the right hand side in the above approaches
to 0. This indicates that the performance of our method im-
proves as α → ∞. On the other hand, using the second
bound in the Theorem 1, we have,

Ex∼P in
X
(ES(x))− Ex∼P out

X
(ES(x)) ≤ kα,

and it follows that as α → 0 the energy difference between
in-distribution and out-of-distribution data converges to 0.
In other words, the performance decreases as α approaches
to 0. We will further justify our theory in simulation study
(next subsection).

2Available at: https://arxiv.org/abs/2112.00787

Performance in high dimensions We now show that the
performance of GEM decreases as dimension of feature
space increases. This is due to curse of dimensionality which
we next explain. First, for simplicity assume that µout = 0
and for all 1 ≤ i ≤ k, α = dM (µout,µi). Consider
a multi-dimensional gaussian N (0, Id). As d increases the
high-probability region under this gaussian distribution will
concentrate away from the origin. More precisely,

x ∼ N (0, Id) =⇒ ∥x∥22 ∼ χ2
d =⇒ E(∥x∥22) = d.

Therefore, the out-of-distribution samples will have a larger
distance (on average) to the origin as dimension increases
and it follows that the OOD detector may misclassify these
OOD samples as in-distribution.

We next conduct several simulation studies to systemati-
cally verify our provable guarantees.

Simulation Studies and Further Analysis
What properties of the data representation make OOD un-
certainty challenging? In this subsection, we construct a syn-
thetic data representation that allows us to flexibly modulate
different properties of the data representation including:

(i) distance between ID and OOD data,
(ii) feature or input dimension,

(iii) number of classes.

We simulate and probe how these factors affect OOD uncer-
tainty estimation. The simulation also serves as a verification
of our theoretical guarantees.

Feature representation setup The in-distribution repre-
sentation on the feature space (or input space) comprises a
mixture of k class-conditional Gaussian. To replicate com-
mon empirical benchmarks such as CIFAR-10 and CIFAR-
100 (Krizhevsky, Hinton et al. 2009), we explore both k =
10 and k = 100 by default. Unless otherwise specified, we
set the feature (or input) dimension d = 512. We fix the
total number of in-distribution samples N = 20, 000. The
tied covariance matrix is diagonal with magnitude σ2, i.e.,
Σ = σ2Id.

We assume the data in the feature space (or input space)
x ∈ Rd is sampled from the following class-conditional
Gaussian,

xin | yi ∼ N (µi, σ
2Id),

where µi is the mean for in-distribution classes i ∈
{1, 2, ..., k}. We consider different configurations of µi,
1 ≤ i ≤ k representing means of each k in-distribution
classes. Specifically, the mean µi corresponding to i-th class
is a unit vector vi, scaled by a distance parameter r > 0. In
particular, µi = r · νi, where ∥νi∥2 = 1. νi is a sparse
vector with s = ⌊d/k⌋ non-zero entries, with equal values
in the position from (i− 1) · s up to i · s and 0 elsewhere. It
follows that for i, j ∈ {1, ..., k} and i ̸= j,

⟨νi,νj⟩ = 0,

∥νi − νj∥2 =
√
2.

(6)
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Furthermore, we assume that the out-of-distribution data
representation is centered at the origin, with µout = 0 ∈ Rd,

xout ∼ N (0, σ2Id).

Note that the above configuration is considered for simplic-
ity and similar simulation results holds when we translate µi
and µout with a constant vector or by applying an orthogo-
nal transformation.

Rationale of the synthetic data Compared to estimating
GEM scores from real datasets using parameterized mod-
els (such as neural networks), these synthetic simulations
offer two key simplifications. First, viewing the setting on
feature space, we can flexibly modulate key properties of
datasets such as the number of classes and distance between
induced ID and OOD representation in the feature space. In
contrast, in real datasets, these properties are usually pre-
determined. Second, viewing the setting on input space, the
function mapping f(x) is completely deterministic and opti-
mal, provided with known parameters {µ1,µ2, ...,µk} and
Σ. This allows us to isolate the effect of data distribution
from model optimization. In contrast, estimating f(x) using
complex models such as neural networks might have induc-
tive bias, and depend on the optimization algorithm chosen.

Performance with respect to the number of classes We
now show that the performance of our method decreases as
the number of classes increases. To explain this, we compute
D in terms of k to see how they are related. First, we need
the following definition,

Definition 2. Let µ,ν ∈ Rd with γ = ∥µ− ν∥2. Let P ∼
N (µ, Id). Define,

Aγ := Ex∼P (exp(−
1

2
∥x− ν∥22)).

Remark 4. Notice that, since standard Gaussian distribu-
tion is rotationally invariant, Aγ only depends on the dis-
tance between µ and ν (i.e. γ). Also it is easy to see that Aγ

decreases as γ increases.

Proposition 2. We have the following,

D = A0 −Ar + (k − 1)(A√
2·r −Ar).

We refer the reader to the extended version (Morteza and
Li 2021) for the proof of Proposition 2. The next Corollary
explains how the performance of our method decreases by
increasing the number of classes.

Corollary 2. Since
√
2·r > r, it follows from Remark 4 that

A√
2·r < Ar. This means that the last term in the following

is negative,

D = A0 −Ar + (k − 1)(A√
2·r −Ar).

In other words, as k increases D becomes smaller which in-
dicates that the performance of the GEM method decreases.

Simulation Results
In this subsection, we report simulation results that confirm
our theoretical guarantees presented above.

Effect of distance between ID and OOD Figure 3 (left)
shows how the False Positive Rate (at 95% TPR) changes
with the distance between ID and OOD features. The σ is
set to be 1 and the distance is modulated by adjusting the
magnitude parameter r, where a larger r results in a larger
distance. For both k = 10 and k = 100, the FPR decreases
as the distance increases, which matches our intuition that
more drastic distribution shifts are easier to be detected. Un-
der the same distance, we observe a relatively higher FPR
for data with more classes (k = 100). The performance gap
diminishes as the distance becomes very large.

Higher dimension exacerbates OOD uncertainty Fig-
ure 3 (middle) shows how the FPR changes as we increase
the input dimension from d = 100 to d = 1, 000 while keep-
ing the distance fixed with r = 10 and σ = 1. As the dimen-
sion d increases, the number of non-zero entries in each µi
increases accordingly (i.e. µi becomes less sparse). Under
the same feature dimension, we observe a higher FPR for
k = 100 than k = 10, which corroborates the empirical ob-
servations on CIFAR-10 and CIFAR-100 (Section 3). This
suggests that higher dimensions can be a key factor induc-
ing the detrimental effect in OOD detection.

Effect of the number of classes Lastly, we investigate the
performance of OOD uncertainty estimation by linearly in-
creasing the number of classes k from 10 to 100. We keep
the magnitude parameter fixed with r = 10 and dimension
d = 512 and σ = 1. We see as the number of classes in-
creases, the performance of our method decreases. We close
this section by noting that we also provided formal mathe-
matical justifications in the previous subsection.

5 Related Work
Detecting unknowns has a long history in machine learn-
ing. We review works that are studied this problem in the
context of deep neural networks. See (Yang et al. 2021) for
a survey on generalized OOD detection (an umbrella term
that includes closely related domains such as anomaly de-
tection, novelty detection, open-set recognition, and OOD
detection).

Out-of-distribution detection for discriminative models
In (Bendale and Boult 2015), the OpenMax score is devel-
oped for OOD detection based on the extreme value the-
ory (EVT). Subsequent work by Hendrycks and Gimpel pro-
posed a simple baseline using maximum softmax probabil-
ity. The MSP score for OOD input is proven to be arbitrarily
high for neural networks with ReLU activation (Hein, An-
driushchenko, and Bitterwolf 2019). Liang, Li, and Srikant
improved MSP by proposing the ODIN score, which ampli-
fies the ID and OOD separability. It is shown that a suffi-
ciently large temperature has a strong smoothing effect that
transforms the softmax score back to the logit space—which
more effectively distinguishes between ID vs. OOD. In (Lee
et al. 2018b), a score is constructed based on the maximum
Mahalanobis distance to the class means in the feature space
of the pre-trained network. Liu et al., proposed using the
energy score, which can be derived directly from the logit
output of the pre-trained network. In (Huang and Li 2021),
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Figure 3: Left: UMAP visualization of embeddings for CIFAR-10 model. Performance of our method under induced configu-
rations in feature space, including the distance between ID and OOD data (middle left), the dimension of input data d (middle
right), and number of classes (right). Each curve is averaged over 5 different runs (shade indicates the variance). A lower value
on the y-axis is better.

OOD detection is studied when the label space is large. It is
shown that grouping the labels for in-distribution data can
be effective in OOD detection for large semantic space. In
(Ming, Yin, and Li 2022), the effect of spurious correlation
is studied for OOD detection. Huang, Geng, and Li derived a
scoring function termed GradNorm from the gradient space.
GradNorm employs the vector norm of gradients, backprop-
agated from the KL divergence between the softmax output
and a uniform probability distribution. In (Wang et al. 2021),
the OOD detection is studied for multi-label classification
where each data instance has multiple labels. In this work,
we develop an analytical framework to analyze the perfor-
mance of OOD scoring functions and show the superiority
of GEM both theoretically and empirically.
Out-of-distribution detection via generative modeling
There are several works that attempt modeling OOD data us-
ing generative modeling (e.g. GANs). Lee et al. use GANs
to generate data with low density for model regularization.
Vernekar et al. model in-distribution as a low dimensional
submanifold of input space and uses auto-encoders to gen-
erate OOD samples outside of the in-distribution domain.
Sricharan and Srivastava use GANs to generate OOD sam-
ples that the initial classifier is confident about and use those
to create a more robust OOD detector. Prior research also
used generative modeling to estimate the density of the in-
distribution data, and classify a sample as OOD if the es-
timated likelihood is low. However, it is shown in (Nalis-
nick et al. 2019) that deep generative models can produce a
higher likelihood for OOD data. For example, it fails to dis-
tinguish CIFAR10 samples from SVHN. In (Ren et al. 2019)
and (Serrà et al. 2020), this problem is addressed by consid-
ering a likelihood ratio and taking the input complexity into
account.

Out-of-distribution detection by model regularization
Several works address the out-of-distribution detection
problem during training-time regularization (Lee et al.
2018a; Bevandić et al. 2018; Geifman and El-Yaniv 2019;
Malinin and Gales 2018a; Mohseni et al. 2020; Jeong and
Kim 2020; Chen et al. 2021). In (Lee et al. 2018a), a new
term is added to the loss function of the neural net to force
the out-of-distribution sample to have uniform prediction
values across labels. A similar loss is followed by outlier ex-
posure (Hendrycks, Mazeika, and Dietterich 2018). In (Liu
et al. 2020; Du et al. 2022), a term is added to the loss func-

tion of the network to force out-distribution samples to have
higher energy values after training. In (Chen et al. 2021),
an informative outlier mining procedure is proposed, which
adaptively samples from auxiliary OOD data that is near the
decision boundary between ID and OOD.

Such methods typically require having access to auxiliary
unlabeled data. We focus on post hoc OOD detection meth-
ods, which have the advantages of being easy to use and
general applicability. This is convenient for the adoption of
OOD detection methods in real-world production environ-
ments, where the overhead cost of retraining or modifying
the model can be prohibitive.

Uncertainty estimation in deep neural networks A
Bayesian model is a statistical model that implements
Bayes’ rule to infer uncertainty within the model (Jaynes
1986). Recent works attempt several approximations of
Bayesian inference including MC-dropout (Gal and Ghahra-
mani 2016) and deep ensembles (Dietterich 2000; Lakshmi-
narayanan, Pritzel, and Blundell 2017). These methods ad-
dress model uncertainty (i.e., epistemic) and are less com-
petitive for OOD uncertainty estimation. Kendall and Gal
developed an extended framework to study aleatoric and
epistemic uncertainty together. In (Van Amersfoort et al.
2020) an uncertainty estimation method is developed us-
ing the RBF network. Dirichlet Prior Network (DPN) is
also used for OOD detection with an uncertainty modeling
of three different sources of uncertainty: model uncertainty,
data uncertainty, and distributional uncertainty and form a
line of works (Malinin and Gales 2018b, 2019; Nandy, Hsu,
and Lee 2020).

6 Conclusion
In this work, we develop an analytical framework that pre-
cisely characterizes and unifies the theoretical understand-
ing of out-of-distribution detection. Our analytical frame-
work motivates a novel OOD detection method for neural
networks, GEM, which demonstrates both theoretical and
empirical superiority. We formally provide provable guaran-
tees and comprehensive analysis of our method, underpin-
ning how various properties of data distribution affect the
performance of OOD detection. We hope our work can mo-
tivate future research on the theoretical understandings of
OOD detection.
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