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Abstract

Federated Learning (FL) is a machine learning paradigm
in which multiple clients participate to collectively learn a
global machine learning model at the central server. Clients
share updates derived from their local data to the server such
that their privacy is not compromised. The server aggregates
these updates and applies it to the global model. It is plau-
sible that not all the data owned by each client is relevant
to the server’s learning objective. The updates incorporated
from irrelevant data could be detrimental to the global model.
The task of selecting relevant data is explored in traditional
machine learning settings where the assumption is that all
the data is available in one place. In FL settings, the data
is distributed across multiple clients and the server can’t in-
trospect it. This precludes the application of traditional so-
lutions to selecting relevant data here. In this paper, we pro-
pose an approach called Federated Learning with Relevant
Data (FLRD), that facilitates clients to derive updates us-
ing relevant data. Each client learns a model called Relevant
Data Selector (RDS) that is private to itself to do the selec-
tion. This in turn helps in building an effective global model.
We perform experiments with multiple real-world datasets to
demonstrate the efficacy of our solution. The results show (a)
the capability of FLRD to identify relevant data samples at
each client locally and (b) the superiority of the global model
learned by FLRD over other baseline algorithms.

Introduction
The paradigm of Federated learning (FL) is introduced in
(McMahan et al. 2017) where multiple clients collectively
train a global model which we refer to as Globally Learned
Model (GLM ) in this paper. The data needed to train GLM
is available or distributed across a set of clients. The local
data possessed by each client is private to itself and is not
shared with other clients or the server. The client(s) com-
pute updates using their local data and shares it to the server
where they are aggregated and applied to GLM .

It is plausible that not all data owned by each client is rel-
evant to the GLM ’s objective (Toneva et al. 2018). Using
irrelevant data to derive the clients’ updates might be detri-
mental to the GLM . Hence it is important to develop an
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approach that selects relevant data at each client and thereby
derive meaningful updates for GLM in each iteration of FL.
The topic of selecting relevant data is explored in traditional
machine learning settings (Ghorbani and Zou 2019; Yoon,
Arik, and Pfister 2020) where the assumption is that all the
data is available in one place. In FL settings, given that the
data is distributed across multiple clients and the server can’t
introspect it due to privacy constraints, the traditional solu-
tions to select relevant data are not applicable here.

We call data samples that are favorable to GLM as rel-
evant data and those that are detrimental to GLM as irrel-
evant data. Irrelevance in data can arise due to a variety of
reasons (Toneva et al. 2018; Wang, Wang, and Li 2019; Tuor
et al. 2021; Zhu and Wu 2004). However, to accurately learn
the GLM , it is worthwhile for each client to derive the up-
dates only using its relevant subset of data. Hence, there is a
need to introduce a mechanism that facilitates the clients to
select relevant data from its local training data. This mecha-
nism should necessarily adhere to the privacy requirements
of the FL framework. In this work, we assume that no clients
participate with adversarial intent; i.e., no client wants to
purposefully corrupt the GLM .

The desired characteristic of a relevant data selection
mechanism is that the relevance of a data sample should
not be the same across multiple communication rounds. The
value of a data point should change according to the state
of GLM that varies across rounds. The updates computed
by a client in communication round t is thus relevant to the
server. Further as the GLM converges to a local optimum,
value of data points also converge. In summary, the relevant
data selection mechanism should be able to adapt to the dy-
namics of the FL environment that changes over time. We
refer this dependence on time as Dynamic in the term Dy-
namic Data Selection.

Motivation for Our Work: we conduct an experiment
to motivate the importance of detecting irrelevant/noisy data
samples at each client in FL settings. We partition the Iris
(Dua and Graff 2019) dataset among a server (S) and two
clients (C1,C2). The server uses its data samples as test data.
We use the FedAvg algorithm mentioned in (McMahan et al.
2017) to train a two-layered neural network (GLM ) at the
server. Then, we apply FedAvg to two cases: (a) After intro-
ducing 20% closed-set noise at each client as mentioned in
(Wang et al. 2018) by flipping the labels of data samples; (b)
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Figure 1: Impact of Noise on GLM in Federated Learning

After removing the noisy data samples introduced in case
(a).

Figure 1 shows the performance of GLM on server’s test
data across 500 communication rounds. It is evident from
the figure that the GLM trained in case (b) outperforms the
GLM trained in case (a). This is despite the fact that clients
have 20% lesser data in case (b). This experiment demon-
strates the importance of identifying irrelevant/noisy data
samples at each client and excluding them while deriving
updates to collectively train GLM . In the subsequent sec-
tions, we propose an approach called Federated Learning
with Relevant Data (FLRD) that enables clients to select
data relevant to the server’s objective which in-turn results
in better performance of GLM .

In summary, there is a strong need for each client to
learn a function that provides an estimate of relevance value
to each data point without compromising the privacy con-
straints. We have provided an implementation of our ap-
proach in the supplementary material.

The following are the major contributions of our work:

• Data relevance estimation that assigns a relevance score
to each datum at each client adaptive to the state of
GLM .

• Policy gradients based solution for Data relevance es-
timation in Federated Learning (FL) setting called
FLRD.

• Extensive experimental evaluation to highlight the use-
fulness of our approach in handling multiple types of ir-
relevancies in data such as label-noise, attribute noise,
etc.

Related Work
Recent literature shows (Toneva et al. 2018) that not all the
samples in the training data are equally important for learn-
ing, especially in Deep Neural Networks. Datasets usually
contain irrelevant data points due to low data quality, out-
liers, label noise, attribute noise, distribution mismatch be-
tween training data and test data, etc. Impact of attribute
noise and its possible solutions is highlighted in (Zhu and
Wu 2004; Petety, Tripathi, and Hemachandra 2019; Man-

nino, Yang, and Ryu 2009). Various types of label noise cat-
egories are mentioned in (Wang et al. 2018). Different solu-
tions for model training in the presence of label noise are ex-
plored in (Patrini et al. 2017; Han et al. 2018; Ghosh, Kumar,
and Sastry 2017; Veit et al. 2017; Vahdat 2017; Hendrycks
et al. 2018; Yu et al. 2019). Apart from label noise and at-
tribute noise, a subset of training data becomes irrelevant
when there is a mismatch in its distribution w.r.t to test data
(Zhu et al. 2019; Zagoruyko and Komodakis 2016). Outliers
are also examples of irrelevant data points in training data
(Bergman and Hoshen 2020). With irrelevant data points in
the training data, higher performance may be achieved after
removing that subset from the training data as mentioned in
(Ferdowsi, Jagannathan, and Zawodniok 2014; Frenay and
Verleysen 2014). Therefore, detection and selection of rele-
vant data are important for performance improvement.

Data Valuation is an area of research that provides a use-
fulness value to each datum. Leave-one-out (LOO) strategy
assigns value to a data sample proportional to the perfor-
mance difference of a model trained on data with and with-
out that data sample. The approach of using influence func-
tions (Koh and Liang 2017) for data valuation provides a
closed-form expression for an approximation to LOO objec-
tive. The valuation strategy based on Shapely values (Shap-
ley 1953), a cooperative game theory concept, provides eq-
uitable value to each datum. (Ghorbani and Zou 2019) used
Monte Carlo sampling approximation and gradient-based
estimation to reduce the computational complexity of the ap-
proach. The policy gradient method of Reinforcement learn-
ing (RL) is used for data valuation in (Yoon, Arik, and Pfister
2020). All the above-mentioned approaches for data valua-
tion requires entire training data at one place to assign value
to each data sample. Hence, these strategies are not directly
applicable to the FL setting where training data resides pri-
vately at multiple clients and can’t be shared due to privacy
and bandwidth constraints.

Client Selection in FL: Recently, the field of client se-
lection in FL has gained significant interest from the re-
search community. Selecting the clients with relevant data
using Shapely-based valuation is studied in (Nagalapatti and
Narayanam 2021). Client selection for efficient communi-
cation and faster convergence is studied in (Jee Cho et al.
2020; Cho, Wang, and Joshi 2020; Tang et al. 2021). FedProf
(Wu et al. 2021) matches server data footprint (baseline)
with clients data footprints to select clients at each round
for efficient and faster convergence. All these works have
shown that client selections aids in faster convergence and
better performance of FL algorithms. These works focuses
on identifying the clients/updates as relevant or irrelevant
based on complete data possessed by the client. However,
in practical scenarios clients’ training data is a mix of rele-
vant and irrelevant data samples. While learning the global
shared model, it is important to know the relevance of each
data point for the global learning task to improve the perfor-
mance of the GLM .

Data Selection in FL: The field of selecting the relevant
data w.r.t. the central server’s learning objective in the FL
setting is under-explored. The detection of noisy and irrel-
evant data in the FL setting is studied in (Tuor et al. 2021)
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and we refer to this approach as KSLoss in this paper. For
identifying the noisy data samples, the server trains a bench-
mark model on a noise-free validation dataset and shares
it with clients. Each client then computes the loss of each
data point that it owns and communicates it back to the
server. The server then runs a hypothesis test called Kol-
mogorov–Smirnov (KS) test on the cumulative distribution
function of the losses corresponding to the test dataset and
all clients’ datasets to find a global threshold and communi-
cates it back to the clients. Each client then filters out noise
from its private data by dropping the data points that have a
loss greater than the communicated threshold. This approach
requires the identification of irrelevant data before starting
the training of GLM and hence relevance of data is con-
stant across time. Further, this strategy requires the sharing
of losses w.r.t each data sample to the server which due to
privacy constraints is a strong assumption in the FL setting.

One other approach that uses loss values to detect ir-
relevant samples is explored in Active Federated Learning
(AFL) (Goetz et al. 2019). Unlike the previous approach, this
approach is dynamic in nature. In each round, each client k
shares a value vk = 1√

nk

∑
(x,y)∈Dk

l(x, y) where Dk is the
private dataset that k owns. Then the server uses these val-
ues to construct a probability distribution and does a biased
selection of clients using the distribution. We use the above
two methods as baselines in our experiments and refer to
them as KSLoss and the AFL respectively.

Our Approach: FLRD
We first introduce the formal problem statement and then
discuss our proposed solution approach in detail.

Problem Statement
In a typical FL setting, a dedicated node called server (S)
devises the objective of a globally learned model (GLM ) to
be built. It decides the architecture of the model denoted by
fθ : X → Y . The tuple (x, y) ∈ (X,Y ) denotes a sam-
ple input-output pair. The objective of the server is modeled
by a loss function l(y, fθ(x)). For classification problems,
a popular choice for l is categorical cross-entropy loss. We
assume that the server is accompanied with validation data
DV and test data DTest respectively. Samples from DV and
DTest are assumed to be IID drawn from the target distribu-
tion. The server doesn’t use these to train the GLM rather
only uses them to test its performance. Server learns the pa-
rameters from a set of n clients, say {C1, · · · , Cn}. Each
client Ci has local data Di which is private to itself and is
not transferable to other clients or the server.

The progress of FL happens in a sequence of commu-
nication rounds t ∈ [T ]. In each round t, each client Ci

downloads the parameters of the GLM denoted by θt. It
then derives a local update (δtbi ) with a subset of data (bi)
it has and shares it with the central server. δtbi is typically
the gradient derived from a subset of client’s local training
data, i.e., the updates of client Ci is δtbi = −ηi

∂
∂θ (l(bi))

∣∣
θt .

In this case, θt + δtbi forms the parameters of the Locally
Learned Model LLMi at the ith client for communication
round t with learning rate ηi. The central server collects all

Figure 2: Schematic diagram of one communication
round of proposed Federated Learning with Relevant Data
(FLRD)

the local updates {δtb1 , · · · , δ
t
bn
} and aggregates them using

an aggregation function Agg to derive the aggregate vector
δtagg = Agg(δtb1 , · · · , δ

t
bn
). A popular choice for the Agg

function is Federated Averaging (FedAvg) (McMahan et al.
2017). The server then applies the aggregated updates to
GLM and computes the parameters for the next commu-
nication round using θt+1 = θt + δtagg . The data Di owned
by each client Ci is generally prone to be noisy. We call data
samples that are benign to GLM as relevant data and those
that are detrimental to GLM as irrelevant data respectively.

One interesting question in this regard is how each client
learns a relevance prediction function locally that assigns
Relevance Score (RS) to its data samples w.r.t. the GLM ’s
objective? There are three key challenges associated with
this problem: (1) The proposed solution should adhere to
the privacy constraints imposed by the FL framework; (2)
The client’s local data is not a representative of the target
distribution and hence designing a solution that relies only
on client’s local data may lead to sub-optimalities in the rel-
evance prediction function and thereby it adversely affects
GLM ; and (3) As mentioned in Section , the relevance value
of a data point (x, y) ∈ Di should vary as a function of time
t.

Solution Approach
In our approach, each client learns a relevance prediction
function locally that tries to predict the Relevance Score
(RS) of each data point that it owns. RS ranges in [0, 1].
We call the relevance prediction function at each client Ci

as Relevant Data Selector (RDSi) which is local to Ci and
is not revealed to other clients or the server. Hence, the strat-
egy to select relevant data samples is determined solely by
the client with the aid of the server as we will see in Section .
In this paper, we use the terms value/relevance interchange-
ably.

Hence, in FLRD, there are n+ 1 functions to be trained
– one GLM at the server and n RDSi functions, one each at
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n clients. The state of GLM is accessible to both the server
and the clients but the state of RDSi is accessible only to
the ith client Ci. Both GLM and RDSi are modeled as
deep neural networks. The function signature for GLM and
RDSi is as follows.

GLM : fθ : X → Y (1)
RDSi : giϕi

: (X,Y ) → [0, 1] (2)
{θ, ϕ1, · · · , ϕn} form the parameters to be learnt. In all our
experiments, the parameters are the weights and bias vectors
of fully connected neural networks. The overall objective of
Federated Learning with Relevant data (FLRD) is given by:

θ̂ = argmin
θ

n∑
i=1

∑
(x,y)∈Di

giϕi
(x, y) · l(y, fθ(x)) (3)

where the loss for each example is weighted by its corre-
sponding relevance score. The target parameters θ∗ are the
ones that minimize the loss on unseen test data.

θ∗ = argmin
θ

∑
(x,y)∈DTest

l(y, fθ(x)) (4)

In literature, Equations 3 and 4 are also called as empirical
risk and true risk respectively. We want gi(x, y) to be high
for samples which when used to minimize θ will help us find
a better θ̂ that is closer to θ∗. In other words, gi should assign
high values to relevant data samples. We interpret the output
of gi (between [0, 1]) as probability of the sample being rele-
vant. Hence in each client Ci, for each (x, y) ∈ Di, gi(x, y)
acts as a Bernoulli random variable that denotes the event
of a sample being relevant to GLM . We call this probabil-
ity gi(x, y) as Relevance Score (RS) of the sample (x, y).
Once gi is learned, each client Ci samples a mini-batch bi of
examples according to relevance scores and derives the up-
date δtbi using them to share with the server. Because gi aids
in the selection of relevant samples, we call it a Relevant
Data Selector (RDSi). The steps carried out in one round of
FLRD is elucidated in Figure 2.

Training GLM : We train GLM using the standard feder-
ated averaging algorithm (McMahan et al. 2017). Assuming
that RDSi is available at each client Ci, it first samples a
mini-batch (bi ⊆ Di) of training data according to the rele-
vant scores. It then fits a Local model LLMi with bi. To do
so, at each communication round t, the client first downloads
the GLM parameters θt from the server and does E number
of successive Gradient Descent steps i.e., δti is obtained by
performing E successive gradient steps locally at Ci using
the data bi. We use local learning rate ηi = 0.01 and E = 10
for all clients in all experiments. The γE

i forms the parame-
ters of the local model LLMi after E gradient steps. Finally,
the update shared by Ci is computed as δtbi = γE

i − θt. The
server then collects the updates from all the clients and ag-
gregates them using Agg function. In our experiments, we
use mean/average function for Agg. The server computes
the average δtagg and applies it to the GLM as follows.

δtagg =
1

n

n∑
i=1

δtbi (5)

θt+1 = θt + δtagg (6)

This completes one round of GLM training. The clients will
now download θt+1 and participate in the next round using
it. Next, we see how to train RDSi that helps clients in se-
lecting the best mini-batch for subsequent communication
rounds.

Training RDSi: Our solution to model RDSi is inspired
from (Yoon, Arik, and Pfister 2020). We use policy gradients
to train RDSi. In particular, we treat RDSi as a local policy
network of client Ci that helps in selecting the relevant mini-
batch bi. We use REINFORCE (Williams 1992) algorithm to
optimize the policy gradients and the reward signal to train
the policy network RDSi is obtained from the server.

As mentioned in Section , the objective of each RDSi

module is to assign high values to relevant data samples lo-
cal to the client Ci. To train RDSi, we need feedback that
measures the goodness of the relevance scores assigned by
it. One way of doing it is to measure the performance gain in
GLM when the update δtbi is incorporated in it. But comput-
ing the performance of GLM locally at each client is not ad-
visable because, to get a good estimate of the performance,
we need the evaluation of GLM to be done on samples that
represent the server’s target distribution. However, in FL, the
client’s data distribution is significantly different from the
server’s target distribution and hence the performance mea-
sured on local data samples possessed by the clients is not
a good indicator of the actual test performance. Therefore,
we need the intervention of the server to assist the clients in
terms of getting feedback/reward for training RDSi. How-
ever, due to privacy constraints, it is not appreciable for the
clients to share the state of the RDSi model to the server.
We conduct an experiment to further validate this point 1. At
this juncture, there are two possible solutions. (1) the server
makes validation data DV public and each client uses it to
compute the feedback locally. (2) DV is private to the server
and the server computes the feedback on it and communi-
cates it back to clients subject to privacy constraints. While
(1) is straightforward, it is not applicable in all cases. Espe-
cially if DV involves sensitive data, regulations like General
Data Protection Regulation (Yang et al. 2019), makes it pro-
hibitive. Therefore it is more appreciable to develop solution
approaches that follow (2).

In our approach, DV is private to the server and is only
used to compute the reward and not to train GLM . The
only additional requirement made by us is that each client
Ci in addition to sending the update δtbi , sends one more
update δtfi , which is also obtained by performing E gradi-
ent steps locally at Ci using a subset fi(⊆ Di) that is sam-
pled uniformly at random (not using mini-batch bi). Hence
the updates sent by each client Ci is a tuple of two entries
(δtbi , δ

t
fi
). Now, server computes the reward rti as follows.

rti(bi) = P(θt + δtbi)− P(θt + δtfi) (7)

P(θ) =
1

|DV |
∑

(x,y)∈DV

I(y == fθ(x)) (8)

where P(θ) is a performance measure on validation set with
parameters of GLM as θ and I is the indicator function.

1refer to Section B in the supplementary material
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Equation 8 shows classification accuracy as an example for
the performance measure. Note that if DV is indeed pub-
lic, there is no need for client to share δtfi to the server and
instead it can compute rti locally. Our hypothesis is that if
bi is actually relevant, then δtbi is likely to add more value
to GLM than δtfi . Now, we see how each client Ci updates
RDSi using rti .

The utility function that is to be maximized at each client
Ci is

max
ϕi

J(ϕi) = Eα∼πi
[rti(bi, fi)] (9)

where α ⊆ Di and πi is a probability distribution over 2Di

given by

πi(α|Di) =
∏

(x,y)∈α

gϕi
(x, y) ·

∏
(x,y)∈Di\α

[
1− gϕi

(x, y)
]

(10)

Now, the client derives policy gradients for RDSi as follows

∇ϕiJ(ϕi) = ∇ϕi

∑
α∈2Di

rti(α) · πi(α|Di) (11)

We use Policy Gradients Theorem (Sutton and Barto 2018)
to get an approximation of ∇ϕi

J(ϕi) as follows.

ˆ∇ϕiJ(ϕi) = rti(bi) ·
[
πi(bi|Di)

]
·
[
∇ϕi log(πi(bi|Di))

]
(12)

where we approximate the expectation using one sample
subset bi that we use for deriving δtbi . The gradients in Equa-
tion 12 can be obtained easily because gϕi is a neural net-
work function which is differentiable. Finally, the client Ci

updates RDSi using

ϕi = ϕi + ζi ˆ∇ϕiJ(ϕi) (13)

where ζi is the local learning rate to update RDSi. We set
ζi = 0.01 in all our experiments.

Experiments
We evaluate the efficacy of our approach FLRD (Federated
Learning with Relevant Data) on multiple datasets by con-
sidering various scenarios of irrelevant data samples.

Datasets: We use eight public datasets to evaluate our
approach. 7 datasets are tabular: (1) Adult, (2) Mushroom,
(3) Iris, (4) Balance, (5) Monk, (6) Segment, (7) Contra-
ceptive, and the last is an image dataset: (8) Flower 2. The
datasets are obtained from UCI (Dua and Graff 2019) and
KEEL (Alcala-Fdez et al. 2010) repositories. For the Flower
dataset, we extract a feature vector of 2048 dimensions per
image using InceptionV3 (Chollet et al. 2018). Other details
of datasets and data pre-processing are included in Section
A of the supplementary material.

Irrelevant Data Samples at Each Client: To demon-
strate the effectiveness of FLRD, we experiment with

2https://www.tensorflow.org/datasets/catalog/tf flowers

vanilla datasets (without introducing any noise) and noisy
datasets. We consider three types of noise: attribute noise,
closed-set label noise, and open-set label noise. For at-
tribute noise, we use public datasets with 5% noise from
Keel repository (Alcala-Fdez et al. 2010). To introduce x%
closed-set label (Wang et al. 2018) noise, we randomly flip
labels of x% data samples at each client. In open-set la-
bel noise, we assign x% out of distribution samples to each
client and label them randomly. We refer the reader to (Wang
et al. 2018) for more details about noise injection strategies.

Data Partitioning Among Server and Clients: For our
experiments, given a dataset, we assign 10%, 20% of data
samples as validation data DV and test data DTest respec-
tively to the server. We distribute the remaining 70% sam-
ples among clients equally.

Model Architecture and Hyperparameters: For our ex-
periments, at each client Ci we use a five-layered neural net-
work (NN) of 100 neurons each as Relevant Data Selector
(RDSi) with a learning rate of 0.01. We select accuracy as
the performance evaluation metric P . We use a two-layered
neural network of 100 dimensions each as Global Learning
Model (GLM ). For GLM also we consider the learning rate
of 0.01 with a decay rate of 0.995 at every 50th communica-
tion round. For both the networks, we use stochastic gradient
descent (SGD) optimization algorithm.

Baselines: We illustrate our empirical findings in a vari-
ety of experiments. We compare our approach FLRD with
three baselines: (1) Standard Federated Averaging algorithm
(McMahan et al. 2017) which we refer to as FL (2) Static
filtering of data points according to their losses (Tuor et al.
2021) which we refer to as KSLoss, and (3) Dynamic fil-
tering of clients according to their cumulative losses (Goetz
et al. 2019) which we refer to as AFL.

Detection of Irrelevant Data Samples
In this experiment, data samples of the Adult dataset are par-
titioned among 10 clients (C1, C2, · · · , C10) and a server
(S) as per the strategy explained earlier. To introduce the
irrelevant data samples, we use a closed-set label noise strat-
egy. The irrelevant data percentage in clients C1, C2 is 10%;
C3, C4 is 20%; C5, C6 is 30%; C7, C8 is 40%; and C9, C10

is 50%. Figure 3 shows the relevance score (RS) of data
samples learned using RDSi at each clients Ci after 100
communication rounds. In the interest of space, we show
results only for odd clients. The green bars correspond to
non-noisy data samples whereas the red bars correspond to
noisy data samples. It is evident from the figure that the rel-
evance scores of non-noisy samples are higher than that of
noisy samples across clients. Hence, using our approach, the
RDSi of each client i can differentiate between noisy and
non-noise data samples at each client. Please refer to the sec-
tion G in supplementary material for graphs of all clients for
Adult, Flower, and Mushroom datasets. In all these results,
we observe that RDSi assigns high values to non-noisy data
samples consistently across all clients. We further note that
due to the dynamic nature of FLRD, the magnitude of rele-
vance keeps changing across communication rounds. How-
ever, the trend between noise and non-noise samples remains
consistent.
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Figure 3: Relevance scores of clients using Adult dataset with closed-set label noise obtained after 100 communication rounds.
The noise percentage in client C1, C2 is 10%; C3, C4 is 20%; C5, C6 is 30%; C7, C8 is 40%; C9, C10 is 50%. The data samples
are sorted for the representational purpose only; however, in the training data the samples are shuffled.

Figure 4: Performance of GLM on test data using FLRD
and other baselines across multiple communication rounds
with datasets having 5% attribute noise.

FLRD vs Baselines: Attribute Noise
In this experiment, we show the impact of FLRD with at-
tribute noise. We use 4 datasets with 5% attribute noise:
Balance, Contraceptive, Monk, and Segment obtained from
(Alcala-Fdez et al. 2010). The training data contains at-
tribute noise whereas DTest and DV are noise-free. The
noisy training data samples are divided among 10 clients
and we run all the algorithms for 500 communication rounds
independently. Figure 4 shows that even in presence of at-
tribute noise at each client, the performance of GLM using
FLRD is significantly better than the performance of other
baselines. A close competitor to FLRD on all but the Seg-
ment dataset is AFL. This observation underlines the need
for dynamic data valuation in a federated learning setting.
Please refer section E of supplementary material for results
on Contraceptive and Monk datasets.

FLRD vs Baselines: Closed-Set Label Noise
In this experiment, we demonstrate the impact of RDSi on
the performance of GLM . To do so, we run FLRD and the
other three baselines independently on two versions of the
dataset viz. original and corrupted. For original, we use the
ground truth dataset as is and for corrupted, we introduce
closed-set noise where noise percentage is randomly taken
from {5%, 7%, · · · , 25%} at each of the 10 clients. Ideally,
if RDSi learns to detect irrelevant samples correctly, each
client would send updates derived only from relevant data to
the server which in turn would lead to a better GLM . Fig-
ure 5 shows that GLM trained using FLRD outperforms
GLM trained using other baselines in both original and

Figure 5: Performance of GLM on DTest using FLRD and
other baselines across multiple communication rounds with
the original dataset (without noise) and noisy dataset (with
noise).

corrupted datasets. We further note that because FL does
not take countermeasures to mitigate the impact of noise
on GLM , its performance is much less on the corrupted
datasets. Please refer to Section C for results on Mushroom
dataset. These results signify that at each client identify-
ing relevant data samples and then using only those to send
updates to the server is important for building an efficient
GLM . Please refer to section D of supplementary material
for results on open-set label noise.

Impact of Removing Data Samples With High/Low
Relevance Score
In this experiment, we show that removing data samples
with high relevance scores (RS) deteriorates GLM perfor-
mance whereas removing data samples with low RS helps
to improve it. To do so, we take a dataset and split it across
the server and 10 clients. We introduce 15% closed-set label
noise in each client. Then we run FLRD for 500 commu-
nication rounds and record the RS of data samples at each
client. Recall that RS of samples of Ci is given by RDSi.
We sort the data samples locally at each client in descending
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Figure 6: Performance of GLM on DTest after remov-
ing data samples with the high/low relevance score at each
client.

order of their corresponding RS. Then we conduct two ex-
periments viz. High, Low. For High, we remove x% samples
with high RS at each client. Then, we train the GLM using
the standard FedAvg algorithm (McMahan et al. 2017). We
run FedAvg for 500 communication rounds. We repeat this
for various x percentages: {5%, 10%, · · · , 50%}. For Low
scenario also, we follow a setup similar to High except that
we remove x% samples with low RS at each client.
As shown in Figure 6, it is evident that removing samples
with high RS indeed affects the performance of GLM ad-
versely. On contrary, removing samples with low RS im-
proves GLM performance. We can consistently observe that
removing as many as 50% samples with low RS scores
didn’t affect the GLM at all. Whereas removing even 10 −
20% samples with high RS has a noticeable negative impact
on GLM . We observe this trend consistently across multiple
datasets: Flower, Adult, and Mushroom.

Parameter Sensitivity: Noise Percentage
In this experiment, we vary the noise percentage across
{10%, 20%, 30%, 40%} and check its impact on the perfor-
mance of GLM . We partition the Mushroom dataset across
a server and 10 clients and introduce closed-set label noise
appropriately. Then we train GLM using FL and FLRD
and measure the performance on DTest across 500 com-
munication rounds. As we can see in Figure 7, FLRD
consistently outperforms FL. This shows the robustness of
FLRD to both low and high noisy datasets.

Figure 7: Parameter Sensitivity: noise percentage

Figure 8: Parameter Sensitivity: validation dataset size

Parameter Sensitivity: Validation Dataset Size
Our approach FLRD requires a validation set (DV ), using
which the server calculates reward for each client’s update.
To provide a correct reward, the validation data needs to
be of high quality, noise-free, follow the same distribution
as test data, etc. Collecting such samples is costly. Hence
FLRD must work well in cases where we don’t have abun-
dant validation samples. In this experiment, we show the
sensitivity of our approach to the size of validation data.
We work with the Mushroom dataset and split it across the
Server and 10 clients. We introduce 20% closed-set label
noise in each client. Then, we run FLRD multiple times
with the varying number of validation samples in the server.
In particular, we vary the size of validation data from 20 to
600 samples and record the performance of FLRD across
500 communication rounds. As we can see in Figure 8,
FLRD outperforms FL even when validation samples are
scarce. However, the convergence of GLM using FLRD is
fast when the size of the validation dataset is large.

Conclusion and Future Work
In this paper, we proposed an approach called FLRD that
uses policy gradients to train a module called RDSi. We
showed that RDSi is instrumental in performing dynamic
data valuation in Federated Learning (FL) to select relevant
data for sharing updates at each client which in turn helps
in improving the performance of GLM . Through extensive
experimental analysis using multiple real-world datasets and
various types of irrelevance scenarios, we demonstrated the
effectiveness of our approach over other baselines. We like
to extend the proposed FLRD framework to active learning
settings where we assume that each client possess a small
amount of labeled data and a large amount of unlabeled
data. The problem then is to use a variant of RDSi to as-
sign a high probability to those samples which when used in
training post annotation (through an annotation service by
incurring an appropriate cost) would be effective in training
GLM . Clients cannot afford invocations of the annotation
service above a cost budget and hence the problem becomes
even more challenging. Current proposal for RDSi doesn’t
take cost of exploration into account and We like to design
appropriate solution approaches as part of future work.
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