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Abstract

We propose a new framework for tensor decomposition based
on trace invariants, which are particular cases of tensor net-
works. In general, tensor networks are diagrams/graphs that
specify a way to ”multiply” a collection of tensors together
to produce another tensor, matrix or scalar. The particularity
of trace invariants is that the operation of multiplying copies
of a certain input tensor that produces a scalar obeys spe-
cific symmetry constraints. In other words, the scalar result-
ing from this multiplication is invariant under some specific
transformations of the involved tensor. We focus our study
on the O(n)-invariant graphs, i.e. invariant under orthogonal
transformations of the input tensor. The proposed approach is
novel and versatile since it allows to address different theoret-
ical and practical aspects of both CANDECOMP/PARAFAC
(CP) and Tucker decomposition models. In particular we ob-
tain several results: (i) we generalize the computational limit
of Tensor PCA (a rank-one tensor decomposition) to the
asymmetric case (ii) we introduce new algorithms for both
decomposition models (iii) we obtain theoretical guarantees
for these algorithms and (iv) we show improvements with re-
spect to state of the art on synthetic and real data which also
highlights a promising potential for practical applications.

Introduction
Tensor PCA is a model introduced in (Richard and Monta-
nari 2014) that is formally equivalent to the best rank-one
approximation of a tensor. It consists in detecting and re-
trieving a spike v⊗k

0 associated to an unknown unit vector
v0 from noise-corrupted multi-linear measurements put in
the form of a tensor T

T = βv⊗k
0 + Z, (1)

with Z ∈ (Rn)⊗k a pure Gaussian noise tensor of order
k and dimension n with identically independent distributed
(iid) standard Gaussian entries: Zi1,i2,...,ik ∼ N (0, 1) and β
is the signal-to-noise ratio.

Thus, it could be seen as a particular case (rank one) of
both the CP and the Tucker tensor decomposition models,
which are the two most notable generalizations of the ma-
trix SVD to the tensor case and were recently successfully
used to address important problems in unsupervised learning

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(learning latent variable models, in particular latent Dirich-
let allocation (Anandkumar et al. 2014, 2015)), supervised
learning (training of two-layer neural networks, (Janzamin,
Sedghi, and Anandkumar 2015)) and reinforcement learning
(Azizzadenesheli, Lazaric, and Anandkumar 2016). How-
ever, despite this formal and well known correspondence be-
tween tensor PCA and Tensor decomposition, it is important
to note that the respective literature of both subjects have
quite different motivations.

Indeed, even if there are some practical applications
of Tensor PCA (e.g. in telecommunications (Decurninge,
Land, and Guillaud 2020)), the main motivation of its re-
lated literature is theoretical. In particular, these works con-
cern the study of statistical limits when the signal-to-noise
ratio (SNR) is low (Lesieur et al. 2017; Arous et al. 2019,
2020; Perry et al. 2020; Jagannath et al. 2020) and the
study of the gradient-based exploration of high dimensional
landscapes through Tensor PCA (Ros et al. 2019a) or its
simplified version, the Matrix-Tensor PCA (Mannelli et al.
2019; Sarao Mannelli et al. 2019; Mannelli et al. 2020). In
opposite, even if there are some theoretical results in the
tensor decomposition (e.g. (Wang and Anandkumar 2016),
(Zhang and Xia 2018)), the main motivation of its re-
lated literature is the practical applications (Tensor faces
(Vasilescu and Terzopoulos 2002), Hyperspectral imagery
(Lin and Bourennane 2013), DNN compression (Astrid and
Lee 2017), chemical materials (Sun and Braatz 2020), multi-
modal data fusion (Lahat, Adali, and Jutten 2015), data min-
ing (Papalexakis, Faloutsos, and Sidiropoulos 2016), etc.).

We argue that these point of views are complementary.
For example, the statistical study of the performance of a
practical tensor decomposition algorithm is important since
it opens the possibility to apply this algorithm in high-risk
and safety-critical applications where we need quantitative
guarantees or certifications. Thus, it is important to have the
possibility to find new algorithms to address a large set of
problems (i.e. symmetric or asymmetric tensor), with the
best possible precision/accuracy while also being able to
compute the statistical performances of the algorithms re-
garding the SNR.

Recently, a fundamentally different set of mathematical
tools organised in the framework of Random Tensor Theory
(RTT) have been developed for tensors in the context of high
energy physics. In this paper, leverage these novel and valu-
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able tools to introduce a new and powerful framework based
on RTT to design and study algorithms for this large family
of problems including Tensor PCA and CP/Tucker Tensor
decomposition. More specifically, RTT consists of a set of
combinatorial tools dedicated to the study of some classes
of tensor networks, i.e. graphs that can be interpreted as ten-
sor multiplications.

Our contribution In this study, we show that we can use
this sharply distinct and versatile framework in order to:

• Generate a matrix from a certain graph (which represents
a way to multiply tensors) such that its eigenvalues and
eigenvectors encodes the information contained in the
tensor himself.

• Show that the two best existing algorithms (tensor un-
folding and homotopy) appears to be related to the sim-
plest graphs in the proposed framework.

• From a graph called tetrahedral, we derived new algo-
rithms for the targeted Tensor decomposition problems.

• Experimentation with these new algorithms show im-
provements for Tensor PCA in the symmetric and asym-
metric cases

• More generally, we find a new phase transition for Tensor
PCA in the asymmetric case.

• We provide experimentation on real data for Tucker de-
composition and CP decomposition.

Notations We use bold characters T,M ,v for ten-
sors, matrices and vectors and Tijk,Mij , vi for their
components. [p] denotes the set {1, . . . , n}. A real k−th
order tensor is of order k if it is a member of the ten-
sor product of Rni , i ∈ [k]: T ∈

⊗k
i=1 Rni . It is

symmetric if Ti1...ik = Tτ(i1)...τ(ik) ∀τ ∈ Sk where
Sk is the symmetric group (more details are provided
in Supplementary Material). A⊤ is the transpose of A
and In the identity matrix. O(n) is the set of orthog-
onal matrices (that verifies AA⊤ = In). For a vector
v ∈ Rn, we use v⊗p ≡ v ⊗ v ⊗ · · · ⊗ v ∈

⊗p Rn to
denote its p-th tensor power. ⟨v,w⟩ denotes the scalar
product of v and w. The operator norm is equivalent to
the highest eigenvalue of a tensor of any order: ∥T∥op ≡
max {Ti1,...,ik(w1)i1 . . . (wk)ik , ∀i ∈ {1, . . . , n}, ∥wi∥ ≤ 1}.
The trace of M is denoted Tr(M). We denote the expecta-
tion of a variable X by E(X) and its variance by σ(X). We
say that a function f is negligible compared to a positive
function g and we write f = o(g) if limn→∞ f/g → 0.

Related Work and Positioning
Tensor decomposition: From the various generalizations of
matrix SVD to tensors, there is two main tensor decompo-
sitions that have been successfully used in numerous appli-
cations: (i) CANDECOMP/PARAFAC (CP) decomposition
that consists in approximating a tensor with a sum of rank-
one tensors. (Anandkumar et al. 2014; Anandkumar, Ge, and
Janzamin 2015; Wang and Anandkumar 2016). One of the
most used algorithms is Alternative Least Squares (ALS)
(Comon, Luciani, and De Almeida 2009). (ii) Tucker de-
composition that approximates the initial tensor with one

small core tensor and a set of matrices (Zhang and Xia
2018). HOSVD (De Lathauwer, De Moor, and Vandewalle
2000a) and HOOI (De Lathauwer, De Moor, and Vandewalle
2000b) are the most popular algorithms for this model and
their statistical limits have been studied in (Zhang and Xia
2018).

Tensor PCA: Tensor PCA was introduced by (Richard
and Montanari 2014) where the authors suggested and ana-
lyzed different methods to recover the signal vector like ten-
sor unfolding and power iteration. Since then, various other
methods were proposed. Hopkins, Shi, and Steurer (2015)
introduced algorithms based on the sum of squares hierarchy
with the first proven algorithmic threshold of nk/4. How-
ever this class of algorithm generally requires high com-
puting resources and relies on complex mathematical tools
(which makes its algorithmic optimization difficult). Other
studied methods have been inspired by different perspec-
tives like homotopy in Anandkumar et al. (2017), statis-
tical physics (Arous et al. 2020; Ros et al. 2019b; Wein,
El Alaoui, and Moore 2019; Biroli, Cammarota, and Ricci-
Tersenghi 2020), quantum computing (Hastings 2020) as
well as statistical query (Dudeja and Hsu 2020).

Moitra and Wein (2019) briefly mentioned in their paper
that some existing methods like Homotopy and Unfolding
can be viewed through tensor Networks, as spectral methods
on matrices built from contracting (multiplying) the tensor.
However, their contribution to Tensor PCA is summarized in
that remark. By contrast, in our work we use the tensor in-
variant concept (the backbone of our framework) to select
specific matrices obtained from restricted class of graphs
and justify theoretically their relevance. This is reflected in
the fact that our framework successfully introduced new and
more accurate algorithms. Moreover the new theoretical re-
sults were built on combinatorial tools associated to tensor
invariants and cannot be used in general tensor network.

On another side, Random Tensor Theory have been used
in (Evnin 2020) to study the highest eigenvalue of a real
symmetric Gaussian tensor. Subsequently, (Gurau 2020)
provided a theoretical study on a function based on an in-
finite sum of these invariants. Their results suggest a transi-
tion phase for the highest eigenvalue of a tensor for β around
n1/2 in a similar way to the BBP transition in the matrix case
(Baik et al. 2005). Thus, this function allows the detection of
a spike. However evaluating it involves computing an inte-
gral over a n-dimensional space, which may not be possible
in a polynomial time. Furthermore, the question of signal
recovery was not studied.

The contribution of this paper is the use of these invariant
tools to build tractable algorithms with polynomial complex-
ity. In contrast to (Gurau 2020), instead of using a sum of an
infinite number of invariants, we select one trace invariant
with convenient properties to build our algorithm. In order
to recover the signal vector besides simply detecting it, we
introduce new tools in the form of matrices associated to this
specific invariant.
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Random Tensor Theory
Random Tensor Theory (RTT) provides a set of combina-
torial tools dedicated to the study of trace invariant graphs
(Gurau 2017). Trace invariants of a tensor T ∈

⊗k
i=1 Rni

are tensor networks scalars that are invariant under the fol-
lowing O(n1)× · · · ×O(nk) transformations:

Ti1...ik −→ T′
i1...ik

=
∑

j1...jk

O
(1)
i1j1

. . . O
(k)
ikjk

Tj1...jk

RTT allows to obtain important probabilistic results on trace
invariants by using simple enumerative combinatorics. In
particular, it gives a simple way to compute the moments
(expected value, variance, etc.) of the distribution of these
scalars for random tensors. In the following, it should be un-
derstood from the context that

Einstein summation convention: It is important to keep
in mind throughout the paper that we will follow the Ein-
stein summation convention: when an index variable appears
twice in a single term and is not otherwise defined, it implies
summation of that term over all the values of the index. For
example: TijkTijk ≡

∑
ijk TijkTijk. It is a common con-

vention when addressing tensor problems that helps to make
the equations more comprehensible.

Trace Invariants and Their Associated Graphs
An important concept in problems involving matrices is the
spectral theory. It refers to the study of eigenvalues and
eigenvectors of a matrix and it is of fundamental importance
in numerous areas. Equivalently, the traces of the n first ma-
trix powers Tr

(
AA⊤),Tr((AA⊤)2

)
, . . . ,Tr

(
(AA⊤)n

)
contain the same information as the eigenvalues (in absolute
value) since each set can be inferred from the other through
some basic algebraic operations.

In the tensor case, the concept of eigenvalue and eigenvec-
tor is ill-defined and not practical giving that the number of
eigenvalues is exponential with the dimension n (Qi 2005;
Cartwright and Sturmfels 2013) and computing them is very
complicated. In contrast, we have a very convenient gener-
alization of the traces of the power matrices for the tensors
that we call trace invariants.

We first give a more formal definition of trace invariants.
Let T be a tensor whose entries are Ti1,...,ik . Let’s define a
contraction of a pair of indices as setting them equal to each
other and summing over them, as in calculating the trace
of a matrix (Aij →

∑n
i=1 Aii). The trace invariants of the

tensor T correspond to the different ways to contract pairs
of indices in a product of an even number of copies of T.
The degree of the trace invariants consists in the number of
copies of T contracted. For example,

∑
i1,i2,i3

Ti1i2i3Ti1i2i3

and
∑

i1,i2,i3
Ti1i2i2Ti1i3i3 are trace invariants of degree 2.

A trace invariant of degree d of a tensor T of order k ad-
mits a practical graphical representation as an edge colored
graph G obtained by following two steps: we first draw d
vertices representing the d different copies of T. The indices
of each copy is represented by k half-edges with a differ-
ent color in {1, . . . , k} for each index position as shown in
Figure 1a. Then, when two different indices are contracted

in the tensor invariant, we connect their corresponding half-
edges in G. Reciprocally, to obtain the tensor invariant as-
sociated to a graph G with d vertices, we take d copies of
T (one for each vertex), we associate a color for each in-
dex position {1, . . . , k}, and we contract the indices of the d
copies of T following the coloring of the edges connecting
the vertices. We denote this invariant IG(T). Three impor-
tant examples of trace invariants worth mentioning are: the
melon diagram (Figure 1b), the tetrahedral (1c) and the tad-
pole (1d). (Avohou, Ben Geloun, and Dub 2020) provides
a thorough study about the number of trace invariants for a
given degree d.

Combinatorial Tools
In order to be able to compute the moments of trace invari-
ants in a simple way, we introduce the concept of covering
graph used in (Gurau 2014): a covering graph of G consists
in adding d/2 new edges of color 0 (also called propagators)
relying pairwise the vertices of G. If we denote E0(G) the
edges of color 0 of a graph G, then {G′,G′\E0(G′) = G}
denotes the graphs which restrict to the graph G when we
remove their edges of color 0. These are by the definition
the covering graphs.

Let c1, c2 ∈ {0, . . . , d} be two different colors of edges.
We denote F c1,c2(G) the number of closed cycles (that we
also call faces) of 2 colors of G. More explicitly, it consists
of the number of connected subgraphs left when we keep in
G only the edges of colors c1, c2.

Then, we have the formula:

E(IG(T)) =
∑

G′,G′\E0(G′)=G

n
∑

c F 0,c(G′). (2)

This will be the expression (of enumerative combinatorial
nature) that we will use to calculate the expectations of our
graphs. The details of its derivation are given in the supple-
mentary material.

Random Tensor Theory for Tensor
Decomposition

In this section, we will first demonstrate how to recover the
signal in the Tensor PCA model using trace invariants, then
we will indicate how to generalize the method to address
the CP and Tucker Tensor decomposition models. But first
we give the general idea of the proposed framework. As we
previously explained, generalizing eigenvalues and eigen-
vectors to the tensor case is not convenient. Thus, our ap-
proach is to associate a matrix to the tensor of interest in
order to recover the signal by exploiting the well mastered
spectral theory of matrices. However, there is two main im-
portant characteristics for these matrices that are required
for them to be of interest: they have to be relevant, in the
sense that they should reveal the information/signal hidden
in the tensor even in low signal regime, and they also have to
be easy to study from a probabilistic point of view in order
to provide theoretical guarantees. Conveniently, RTT allows
us to select matrices that meet these requirements. Indeed,
we provide matrices that are able to obtain the signal in the

7915



(a) Tijk (b) TijkTijk
(c) TijkTij′k′

Ti′jk′Ti′j′k

(d) TijjTikk

Figure 1: Example of graphs and their associated invariants.

high noise regime, and we have access to simple enumera-
tive combinatorial tools in order to have theoretical guaran-
tees for their performance.

Matrices Associated to Trace Invariants
Given that our the objective of Tensor PCA is to recover the
signal, we should find mathematical objects that are able to
provide a vector. To this effect, we introduce in this paper
a new set of tools in the form of matrices. We denote by
MG,e the matrix obtained by cutting an edge e of a graph G
in two half edges (see Figure 2 for an example). Indeed, this
cut amounts to not summing over the indices i1 and i2 as-
sociated to these two half-edges and using them to index the
matrix. We will drop the index G, e of the matrix when it is
clear. Advantageously, we can compute the operator norms
of these matrices using the same tools described above.

edge e

IG(T) = TijkTijk

i1 i2

(MG,e)i1,i2∈[n] ≡
(Ti1jkTi2jk)i1,i2∈[n]

Cut the edge e

Figure 2: Obtaining a matrix by cutting the edge of a trace
invariant graph G.

Signal Retrieving Using Random Tensor Theory
In Tensor PCA, we can represent the tensor from which we
hope to extract the signal graphically as:

Tij1...jk−1
= β vivj1 . . . vjk−1 + Zij1...jk−1

An identical decomposition can be carried out for the ma-
trix based on this. Let’s consider a tensor T, a graph G and
its associated trace invariant IG(T). Let’s denote I ′G(T) the
invariant associated to the subgraph obtained by removing
from G the edge e and its two vertices. We can distinguish
three kind of contributions to the matrix MG,e that we de-
note M (N)

G,e ,M
(D)
G,e and M

(R)
G,e , illustrated in Figure 3 (where

we denoted the invariant I ′G(T) by I ′ and dropped the index
G, e for simplicity).

Lemma 1 E(M (N)) =
E(I(N)

G )

n In.

Using the lemma 1, we identify two possible phases de-
pending on which matrix operator norm is much larger than
the others: (i) No recovery: If

∥∥M (N) − E(M (N))
∥∥

op ≫∥∥M (D)
∥∥

op,
∥∥M (R)

∥∥
op then we can’t distinguish if there is

a signal. It is for example the phase for β → 0. (ii) Recov-
ery:

∥∥M (R)
∥∥

op ≫
∥∥M (N) − E(M (N))

∥∥
op,

∥∥M (D)
∥∥

op.
We recover the signal vector. It is for example the phase for
β →∞.

Algorithmic Threshold for a General Graph
We can now state the important algorithms that will be es-
sential for this paper. It is important to keep in mind that the
following claims concern the large n limit. Empirically, the
approximation of large n limit seems valid for n > 25.

The proposed algorithm is able to recover the spike in a
tensor T through the construction of the matrix of size n×n
MG,e(T) associated to a given graph G and edge e.

Algorithm 1: Recovery algorithm associated to the graph G
and edge e

Input: The tensor T = βv⊗k + Z
Goal: Estimate v0.
Calculate the matrix MG,e(T)
Compute its top eigenvector by matrix power iteration (re-
peat vi ←Mijvj).
Output: Obtaining an estimated vector v

Theorem 2 Let G be a graph of degree d, ∃ βrec > 0 so
that Algorithm 1 gives an estimator v so that v is strongly
correlated to v0 ( ⟨v,v0⟩ > 0.9) for β ≥ βrec.

Since the algorithm 1 consists in algebraic operations on
the tensors entries, it is very suitable for a parallel architec-
ture (for example by computing independently each entry of
the matrix MG,e(T)). The Theorem 3 gives a lower bound
to the threshold above which we can recover a spike using a
single graph. Interestingly, this threshold which appears nat-
urally in our framework, matches the threshold below which
there is no known algorithm that is able to recover the spike
in polynomial time. We call the Gaussian variance of a graph
G, the variance of the invariant IG(B) where Bijk are Gaus-
sian random.

Theorem 3 Let k ≥ 3. It is impossible to detect or recover
the signal using a single graph below the threshold β ≤
nk/4 which is the minimal Gaussian variance of any graph
G.
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I ′ I ′(N) I ′(S) I ′ I ′ I ′

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

=

=

Zi1..Zi2.. . . . +

+

Zi1...Zi2... . . . +

+

(vi1Zi2.. . . . +

+

vi2Zi1.. . . . ) +

+

vi1vi2 . . .

Mi1i2 =

=

M
(N)
i1i2

+

+

M
(D)
i1i2

+

+

M
(R)
i1i2

Pure noise
matrix

Signal contribution to the detection Signal contribution
to the recovery

= + + +

= + + + +

Figure 3: Decomposition of a matrix graph and the melon example

Using these algorithms, we are now able to investigate
the performance of our framework in various theoretical
settings. In the first two subsections, we study the algo-
rithms associated to two trace invariants of degree 2. They
consist of the melonic diagram and the tadpole diagram.
The third subsection goes further in terms of graph’s de-
gree and investigate the algorithms associated to the perfect
one-factorization graphs (consisting in the tetrahedral when
k = 3). The last two sections are an illustration of the versa-
tility of this framework. We study the case where the dimen-
sions ni of the tensor T (T ∈

⊗k
i=1 Rni ) are not necessarily

equal, which is important for practical applications where
the dimensions are naturally asymmetric. Our methods al-
lows us to derive a new algorithmic threshold for this case
and we provide generalizations of this method for tensor de-
composition.

The Melon Graph and the Tadpole Graphs
Correspond To Existent Algorithms
Let’s consider the invariant Ti1...inTi1...in (illustrated by the
graph in Figure 1b when k = 3). Its recovery algorithm
(with the matrix obtained by cutting any of the edges) is sim-
ilar to the tensor unfolding method presented in Richard and
Montanari (2014).
Theorem 4 The algorithm 1 associated to the melon graph
is successful above βrec = O(nk/4) in linear time and
O(n2) memory requirement.

Figure 1d has a special characteristic: we can obtain two
disconnected parts by cutting only one line. Therefore, the
matrix obtained by cutting that edge is of rank one (in the
form of vv⊤). Thus, the vector v has a weak correlation with
the signal v0, which allow the tensor power iteration (vi ←
Tijkvjvk) to empirically recover it (formal proofs require to
consider some more sophisticated variants of power iteration

like in (Anandkumar et al. 2017) and (Biroli, Cammarota,
and Ricci-Tersenghi 2020)). This algorithm is a variant of
the already existent homotopy algorithm.
Theorem 5 The tadpole graph allows to recover the signal
vector for k ≥ 3 and β = O(nk/4) by using local algorithms
to enhance the signal contribution of the vector Tijj .

Tensor Invariant Based on the Perfect
One-Factorization Graphs
The theoretical physics community that had developed the
theory of trace invariants for tensor have made a partic-
ular focus on a family of graphs called the perfect one-
factorization graphs (Ferrari, Rivasseau, and Valette 2019)
(more details in supplementary material). This focus is mo-
tivated by their nice combinatorial properties due to their
symmetries. It was then natural for us to explore the algo-
rithmic potential of these graphs in our tensor decomposi-
tion context. Our first candidate was the simplest next graph
which is of degree strictly superior to two named tetrahe-
dral graph. Our investigation through the tetrahedral shows
that for k = 3, the algorithms based on the tetrahedral graph
shows a very interesting improvement of empirical results
and thus highlights the richness of the proposed framework.
Moreover, the properties of this family of graphs also sim-
plify the proofs for recovery theorems. Therefore, the stan-
dard methods involved in the demonstrations of these theo-
rems are instructive for the study of more general graphs.
Theorem 6 The algorithm associated to a perfect one-
factorization graph is able to recover the signal vector for
β = O(nk/4).

Handling a Spike With Different Dimensions
We consider the more general case where the tensor T has
axes of different dimensions ni (T ∈

⊗k
i=1 Rni ). We can
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assume without any loss of generality that n1 ≥ n2 ≥ · · · ≥
nk.
T = βv1 ⊗ · · · ⊗ vk + Z where vi ∈ Rni , ni ∈ N.

(3)
Our framework naturally handles this case and allows us

to derive a new algorithmic threshold. It is, to the best of
our knowledge, the first generalization of the threshold β =
nk/4 derived in (Richard and Montanari 2014) when ni =
n ∀i ∈ [k] and appears easily using our framework.
Theorem 7 Using the melon graph, the threshold for v1 is
given by max

(
(
∏k

i=1 ni)
1/4, n

1/2
1

)
while the thresholds for

vj , j ≥ 2 are equal to (
∏k

i=1 ni)
1/4.

Tensor Decomposition
Adaptation to low-rank CP decomposition: We consider
a symmetric tensor with multiple orthogonal spikes.

T =

p∑
i=1

βiv
⊗k
i + Z where ⟨vi,vj⟩ = 0 ∀i ̸= j. (4)

Theorem 8 If we have a number of spikes p that is constant
in respect to n, we can recover the p spikes by an alternating
the use of melonic diagram, power iteration and deflation.
We first use the tetrahedral diagram to obtain a vector corre-
lated with the signal vectors, then we follow by power itera-
tion to obtain a normalized vector v highly correlated to one
of the spikes and then deflation which consists in replacing
the tensor T by T − αv⊗3 where α = T.v⊗3. The experi-
mental results suggest that it works not only for small values
of p but also for a number of spikes up to n.

Adaptation to Tucker decomposition: We consider the
decomposition of a tensor into a set of matrices (load-
ings) with orthogonal columns and a core tensor. Thus, we
adapted in a simple way our framework to this other decom-
position scheme. This highlights how generic and important
this new framework is. We compared the principal methods
of Tucker decomposition with a straightforward adaptation
of these methods where we use the matrix associated to the
tetrahedral instead of the melonic (tensor unfolding matri-
ces) that are initially used in these methods (as loadings in
the initialization as well as in the power iteration).

The case r=1 It is straightforward to see that when r1 =
r2 = r3 = 1, HOOI is exactly equivalent to Tensor Unfold-
ing with power iteration. From a theoretical point of view,
not only our algorithm also achieve the optimal estimation
error rate but we also unveiled a new phase transition ap-
pearing in the asymmetric case when the tensor dimensions
are of the form n1 > n2 ∗ n3. This was not studied in
(Zhang and Xia 2018) as they considered only the cases
where ∃C0 an universal constant such that n1, n2, n3 ≤
C0 min(n1, n2, n3).

The case r>1 We adapted the framework to the Tucker
decomposition case to compare to HOOI. Indeed one
straightforward application of our new results is to replace
the matricization Mk which correspond to the melonic
graph (since SVD(M)=Eigenvalues(MM⊤) with a new ma-
tricization corresponding to the tetrahedral graph. ⇒ We
perform SVD on the tetrahedral matrices.

2.00 2.25 2.50 2.75 3.00 3.25 3.50
/ n

0.2

0.4

0.6

0.8

1.0

<
v,
v 0

>

p-tetr
tetr
p-mel
mel
hom

Figure 4: Comparison of different methods for symmetric
recovery. n=150.

Numerical Experiments
In this section we will investigate the empirical results of
the previously mentioned applications in order to see if they
match with our theoretical results. We restrict to the dimen-
sion k = 3 for simplicity. More experiments, a discussion
about the computational complexity of the algorithms, and
details about the settings could be found in the Supplemen-
tary Material.

Comparison of Recovery Methods for Tensor PCA
For the recovery algorithm, we focus in the symmetric case
and, as in (Richard and Montanari 2014), for every algo-
rithm we use two variants: the simple algorithm outputting
v and an algorithm where we apply 100 power iterations
on v: vi ← Tijkvjvk, distinguishable by a prefix ”p-”. In
Figure 4, we run 200 experiments for each value of β and
plot the 95% confidence interval of the correlation of the
vector recovered with the signal vector. We will compare
our method (tetrahedral) to other algorithmic methods: the
melonic (tensor unfolding) (Richard and Montanari 2014)
and the homotopy (Anandkumar et al. 2017). To the best
of our knowledge, they give the state of art respectively for
the symmetric and asymmetric tensor (Biroli, Cammarota,
and Ricci-Tersenghi 2020). Other methods exist but are ei-
ther too computationally expensive (sum of squares) or are
variants of these algorithms.

Spike with different dimensions: We aim to recover the
three vectors v1,v2 and v3 from a tensor Z+βv1⊗v2⊗v3.
We repeat 100 times each instance consisting in choosing
randomly v1,v2 and v3 and the Gaussian random tensor Z
and we plot the correlation of the signal vectors with the
vectors recovered using the tetrahedral. We see in the Fig-
ure 5 that the threshold (n1n2n3)

1/4 for the three vectors
matches perfectly with the experiences when n3 < n1.n2.
We also see that when n3 > n1.n2 the recovery of v3 (in
green and with the diamond and square markers) have a dif-
ferent asymptotic behavior than v1 and v2 (it becomes n1/2

3

since n
1/2
3 ≥ (n1n2n3)

1/4), corresponding to what our the-
oretical study predicted.

Comparison for CP and Tucker Decomposition
In Figure 6 and 7, we compare the proposed tensor decom-
position algorithms that we derived from our framework
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Figure 5: Recovery of a spike with different dimensions.

λ 900 1100 1300 1500

HOOI 0.696
±0.008

0.845
±0.006

0.993
±0.008

1.125
±0.007

Tetra-
HOOI

0.610
±0.017

0.648
±0.010

0.707
±0.019

0.754
±0.013

Table 1: We compare HOOI and the proposed Tetra-HOOI
algorithm for a fixed value of the rank of the matrices in-
volved in these methods (p1, p2, p3) = (10, 10, 10). We
compute the average and standard deviation (over 5 runs)
of the Frobenius norm for different noise intensities (λ).

with the state of the art for both CP and Tucker decomposi-
tions. The comparisons are done for n = 100 and for differ-
ent β over 20 independent runs. The figure 6 concerns the CP
decomposition and suggests that the proposed Tetrahedral
(Tetra) method is more robust to noise than the commonly
used algorithm of the TensorLy package (based on ALS),
as well as the power iteration method. For Tucker decom-
position, the results show that the proposed method (Tetra
HOOI) provides better results than HOOI and HOSVD in
the symmetric case with r1 = r2 = r3 = 20 in the large
noise regime. Furthermore, we carried out experiments on
structured real data, the Yale Face Database B (Lee, Ho,
and Kriegman 2005). In more details, we considered a set
of stacked face images that form this database as an initial
tensor to which we added Gaussian noise. First, we compare
HOOI and the proposed Tetra-HOOI algorithms for a fixed
value of the rank of the matrices involved in this type of
methods (r1, r2, r3) = (10, 10, 10) and for different values
of the noise intensity (λ). To evaluate the denoising perfor-
mance of those methods, we compute the average and stan-
dard deviation (over 5 runs) of the Frobenius norm ∥X−V∥

∥V∥
where V is the input tensor and X is the output of the al-
gorithm. The results which are reported in the table 1 show
that Tetra HOOI again outperforms HOOI even on real data.
Note that, we obtained similar results (reported in supple-
mentary materials) for a fixed (λ = 1000) and for different
values of (r1, r2, r3). Note that the Frobenius norm of the
difference between two completely uncorrelated normalized
vectors is equal to 2.
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40

60

80

100

Su
cc

es
s 

ra
te

Method
Tetra
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Figure 6: Comparison CP decomposition methods for n =
100 and nspikes = 20.
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Figure 7: Comparison Tucker decomposition methods for
n = 100 and r1 = r2 = r3 = 20

Conclusion

In this paper we introduced a novel framework for the tensor
decomposition based on trace invariants. Within this frame-
work, we provide different algorithms to recover a signal
vector it with theoretical guarantees. These algorithms use
tensor contractions that has a high potential of paralleliza-
tion and computing optimization. We illustrate the practical
pertinence of our framework by presenting some examples
of algorithms as well as generalizations of these algorithms
for CP decomposition and Tucker decomposition methods.
Our experimental results show that the tetrahedral graph per-
forms better than the the state of the art for Tensor PCA, and
that its tensor decomposition generalizations shows a better
robustness to noise comparing to existent algorithms. Inter-
estingly, our framework is also able to extend the theoretical
and practical study of tensor PCA to new and less restrictive
situations like data where the dimensions of the axes are dif-
ferent. Important directions of future research is to explore
the potential of more general graphs, as well as investigate
the new proposed theoretical threshold for different dimen-
sions in the context of tensor decomposition.
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