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Abstract

In safety-critical machine learning applications, it is crucial
to defend models against adversarial attacks — small modifi-
cations of the input that change the predictions. Besides rig-
orously studied ℓp-bounded additive perturbations, semantic
perturbations (e.g. rotation, translation) raise a serious con-
cern on deploying ML systems in real-world. Therefore, it
is important to provide provable guarantees for deep learn-
ing models against semantically meaningful input transfor-
mations. In this paper, we propose a new universal probabilis-
tic certification approach based on Chernoff-Cramer bounds
that can be used in general attack settings. We estimate the
probability of a model to fail if the attack is sampled from a
certain distribution. Our theoretical findings are supported by
experimental results on different datasets.

Introduction
Deep neural network (DNN) models have achieved tremen-
dous success in many tasks. On the other hand, it is well
known that they are intriguingly susceptible to adversarial
attacks of different kinds (Szegedy et al. 2013), thus there
is a pressing lack of models that are robust to such attacks.
Several mechanisms are proposed as empirical defenses to
various known adversarial perturbations. However, these de-
fenses have been later were circumvented by new more ag-
gressive attacks (Carlini and Wagner 2017b,a; Athalye, Car-
lini, and Wagner 2018; Tramer et al. 2020).

Therefore, a natural question arises: given a DNN model
f , can we provide any provable guarantee on its prediction
under a certain threat model, i.e. f(x) = f(xT ), where xT

is a transformed input? This is precisely the topic of a grow-
ing field of certified robustness. A part of the existing re-
search relies on the analysis of the Lipschitz properties of a
classifier: its output’s Lipschitz-continuity leads to a robust-
ness certificate for additive attacks (Anil, Lucas, and Grosse
2019; Li et al. 2019; Serrurier et al. 2021). Another excellent
tool for such a task is smoothing: the inference of the model
is replaced by averaging of predictions over the set of trans-
formed inputs. First, this approach was developed for small-
norm attacks (Cohen, Rosenfeld, and Kolter 2019; Levine
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and Feizi 2020), but then it was successfully generalized to
a much more general class of transforms such as transla-
tions or rotations (Balunović et al. 2019; Fischer, Baader,
and Vechev 2020). A recent work (Li et al. 2021) and its
follow-up (Alfarra et al. 2021) study a general smoothing
framework that is able to provide useful certificates for the
most common synthetic image modifications and their com-
positions.

However, a drawback of smoothing methods is that they
can only certify a smoothed model which is significantly
slower than the original one due to a large number of sam-
ples to approximate the expectation. Thus, we need a method
that a) can certify any given black-box model, and b) is gen-
eral and not tailored to a specific threat model (such as small-
norm perturbations). Providing an exact rigorous certifica-
tion in this setting is a very challenging task.

Instead, in this paper, we propose and investigate a prob-
abilistic approach that produces robustness guarantees of a
black-box model against different threat models. In this ap-
proach, we estimate the probability of misclassification, if
the attack is sampled randomly from the admissible set of
attacks. We bound this quantity by the probability of the
large deviation of a certain random variable Z, which is de-
rived from the distance between the probability vectors (see
Lemma 1). To estimate the probability of the large deviation,
we propose to use the empirical version of the Chernoff-
Cramer bound and show that under the additional assump-
tion on Z this bound holds with high probability (see Theo-
rem 1).

Our contributions are summarized as follows:
• We propose a new framework called Chernoff-Cramer

Certification (CC-Cert) for probabilistic robustness
bounds and theoretically justify them based on the em-
pirical version of Chernoff-Cramer inequality;

• We test those bounds and demonstrate their efficacy
for several models trained in different ways for single
semantic parametric transformations and some of their
compositions.

Preliminaries
We consider the classification task with fixed set of data
samples S = {(x1, y1), . . . , (xm, ym)} where xi ∈ RD is
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Figure 1: Illustration of Algorithm (1) for a single sample. Classifier f is used to compute vector p of class probabilities and
the difference d between its two largest components for initial sample x. Then, initial sample is perturbed by transformation
Tθ to obtain its n perturbed versions {xTi

}ni=1. Classifier f is then applied to these perturbed samples to obtain corresponding
probability vectors {pTi

}ni=1 and discrepancies {Zi}ni=1. Next, given the discrepancies {Zi}ni=1 and set t of temperatures, an
empirical Chernoff bound is compute. The procedure of computation of bound is repeated k times and resulting maximum
bound is divided by δ in order to minimize the probability of bound obtained to be less than the actual one in Chernoff-Cramer
method. Finally, the obtained quantity b̂ is treated as an upper bound for the probability of change of classifier’s prediction
under transform Tθ of its input x which is certified with probability 1− ε if b̂ < ε.

a D−dimensional input drawn from unknown data distri-
bution pdata and yi ∈ {1, . . . ,K} are corresponding labels.
Let f : RD → [0, 1]K be the deterministic function such that
h(x) = argmaxk∈{1,...,K} fk(x) maps any input x to the
corresponding data label.

Under a transformation T : RD → RD, an input image
x is transformed into xT = T (x). It is known that f(x)
and f(xT ) may differ significantly under certain transfor-
mations, namely, some perturbations which do not change
semantic of an image may mislead the classifier h(·) that
correctly classifies its unperturbed version. In our work, we
focus on certifying the stability of h(·) under transforma-
tion T with certain assumptions on its parameter space Θ,
or, in other words, providing guarantees that h(·) is proba-
bilistically robust at x under perturbation of general type. A
more formal description of such perturbations is given in

Definition 1 (Perturbation of general type). Perturbation of
general type is a parametric mapping T : Θ × X → X .
Throughout the paper, we denote Θ as a parameter space of
a given transform, Tθ(x) = xT as the transformed version
of x given θ ∈ Θ and ST (x) as the space of all transformed
versions of x under perturbation T.

Definition 2 (Probabilistic robustness, (Mohapatra et al.
2020a)). Let T be the transformation of general type and
x be the input sample with ground truth class c. Suppose
that ST (x) is the space of all images xT of x under pertur-
bations induced by T and P be the probability measure on
space ST (x). The K-class model f is said to be robust at

point x with probability at least 1− ϵ if

PxT∼ST (x)

(
arg max
k∈{1,...,K}

fk(xT ) = c

)
≥ 1− ϵ. (1)

Probabilistic Certification of Robustness
Robustness and Large Deviations
Our proposal is to certify the robustness of the classifier f
by estimating the probability of large deviations of its out-
put probability vectors. The following lemma shows how the
discrepancy f(x)− f(xT ) between the output vectors f(x)
and f(xT ) assigned by f to the original sample x and its
transformed version xT is connected to their predicted class
labels.

Lemma 1. Let f : RD → [0, 1]C be the classifier with a
known inference procedure and x be an input sample. Let
xT be a transformation of x after transform T ∈ T where
T is a given class of transforms. Assume that p = f(x)
and pT = f(xT ) are the probability vectors of the origi-
nal sample x and its transformed version xT , respectively.
Let c = argmaxp and c̃ = argmaxpT be the classes as-
signed by f to x and xT , respectively and let d = p1−p2

2
be the half of the difference between two largest components
of p.

Then, if ∥p− pT ∥∞ < d holds, c̃ = c.

Proof. Suppose that c ̸= c̃, then, pT c̃ > pT c and
pc > pc̃. On the other hand, since the difference norm
∥p− pT ∥∞ = max(|p1 − pT1

|, . . . , |pC − pT C |) < d,
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we have pc − d < pT c and pT c̃ − d < pc̃, which leads to

pT c − pT c̃ > (pc − d)− (pc̃ + d) = pc − pc̃ − 2d.

Since 2d = p1 − p2 = pc − p2,

pc − pc̃ − 2d = p2 − pc̃ ≥ 0,

yielding a contradiction. Thus, c = c̃.

Intuitively, the lemma states that whenever the maximum
change in the output pT does not exceed half the distance d
between the two largest components in p, the argument of
the maximum in pT does not change in comparison to the
one in p.

We suggest to estimate the right tail of the probability dis-
tribution of Z = Zx,T = ∥p − pT ∥∞. Namely, we want
to bound from above the probability P (Z ≥ d) to provide
guarantees that transformations from class T applied to x
do not lead to a change of class label assigned by f.

Deriving the Bound: Estimates of the Tail of the
Distribution
In this section, we describe our method to estimate the tail
of probability distribution. Namely, we refer to the Chernoff-
Cramer approach and propose a technique that allows us to
use a sample mean instead of the population mean in the
right-hand side of the bound.
Lemma 2 (Markov’s inequality). Let Z be a non-negative
scalar random variable with finite expectation and t ∈
R, t > 0, then

P(Z ≥ t) ≤ E(Z)

t
.

Lemma 3 (Chernoff-Cramer method, (Boucheron, Lugosi,
and Bousquet 2003)). Let Z be a scalar random variable,
t ∈ R, t > 0 and d ∈ R. Then

P(Z ≥ d) = P(eZt ≥ edt) ≤ E(eZt)

edt
(2)

by a Markov’s inequality.
The right-hand side of Eq. 2 is the upper-bound for ϵ in

Eq. 1. Note that depending on the value of t, Eq. 2 produces
a lot of bounds, so it is natural to choose t that minimizes its
right-hand side.

Sample Mean Instead of True Expectation. Overall, we
want to use Eq. (2) to bound the probability that the devia-
tion between p and pT is greater than half the difference be-
tween the two largest components of p, i.e. d. Unfortunately,
it is impractical to compute its right hand side directly, be-
cause the population mean of eZt is unknown in general.
Instead, the task is to estimate the density of

Y = exp(−dt) 1
n

n∑
i=1

exp(Zit), (3)

where ∀i ∈ {1, . . . n} Zi = ∥p− pTi
∥∞ is the norm of the

difference in the probability vectors of original and trans-
formed samples. There is a certain challenge in such an ap-
proach: when the population mean is replaced by the sample

mean, it is possible to underestimate the true expectation,
and thus, provide an incorrect bound which is less than the
right-hand side of Eq. (2). It implies that the inequality

P(Z ≥ d) ≤ Y, (4)

which is the modification of (2) by the replacement of the
true expectation by a sample mean, holds with some proba-
bility: it is guaranteed to hold only in case Y ≥ e−dtE(eZt).

Thus, the probability of the sample mean to underestimate
the population mean,

P
(
Y ≤ E(eZt)

edt

)
, (5)

needs to be small as it regulates the correctness of com-
putation of the bound in the form of Eq. (3). Our pro-
posal is to bound from above the probability in Eq. (5) by
sampling k i.i.d. sample means {Y1, . . . , Yk} in the form
of (3) and exploit the statistics of the random variable
max({Y1, . . . , Yk}).

The pseudo-code in Algorithm (1) summarizes the bound
computation for a single input x1.

Several Sample Means Instead of One. In this section,
we show that, under certain assumptions, bound provided
by the Algorithm (1) may be used instead of the right-hand
side of Eq. (2).
Lemma 4 (Paley-Zygmund, (Paley and Zygmund 1930)).
Suppose a random variable X is positive and have finite
variance, σ2

X <∞. Then, ∀δ ∈ (0, 1),

P (X < δE(X)) ≤ σ2
X

σ2
X + (1− δ)2(E(X))2

. (6)

Theorem 1 (Worst-out-of-k-bounds). Suppose that random
variable X takes values from [0, 1], probability density func-
tion of random variable ξ = eXt is positively skewed and
has coefficient of variation Cv =

σξ

E(ξ) ∼ 1. Then, given b̂ as
the bound produced by the Algorithm 1,

P
(
b̂ <

E(ξ)
edt

)
<

 1

1 + n(1−δ)2

C2
v

k

. (7)

Proof. As one of the steps of the Algorithm 1, sample
means Yj = ξje

−dt =
{∑n

i=1 etXi

nedt

}
j

are computed. Note

that the expectation and variance of ξ and ξ are related as

E(ξ) = E(ξ) = µξ and σ2
ξ
=

σ2
ξ

n , respectively.
Then, according to (6),

P
(
ξ < δE(ξ)

)
= P

(
ξ < δµξ

)
≤

σ2
ξ

σ2
ξ
+ (1− δ)2(µξ)2

=
σ2
ξ

σ2
ξ + n(1− δ)2µ2

ξ

=
1

1 + n(1−δ)2

C2
v

= p(n,Cv).

1In our repository the code is parallelized for batches.
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Algorithm 1: Chernoff-Cramer bound calculation algorithm.
1: function BOUND(f,x, y, t,transform, n, k, δ)
2: p← f(x) ▷ compute model output on original x
3: d = p[0]−p[1]

2 ▷ Compute the difference between
top 2 classes

4: ŷ = max(p) ▷ compute predicted class
5: hit← ŷ == y ▷ boolean variable indicating

correctness of prediction for initial input
6: xn = repeat(x, n) ▷ repeat original input n

times
7: pn = repeat(p, n) ▷ repeat p n times
8: bounds← {0, . . . , 0} ▷ initialize placeholder for

bounds with k zeros
9: for i=0, i<k, i++ do

10: xT = transform(xn) ▷ apply random
transforms to input xn

11: pT ← f(xT ) ▷ compute model output on
transformed xT

12: Z = ∥pn − pT ∥∞ ▷ compute the change in
output vector in terms of max norm

13: Zt⊤ = outer(Z, t) ▷ multiply every diff by
vector of temperatures t

14: E(eZt) = mean0(exp(Zt⊤)) ▷ compute
sample mean over n random transforms

15: edt = exp(dt)
16: b = E(eZt)/edt ▷ get the bounds vector over

temperatures
17: bmin = min(b) ▷ compute the smallest bound

over temperatures
18: bounds[i]← bmin

19: bound = 1
δmax(bounds) ▷ compute the largest

of obtained bounds and normalize by δ
20: return min(1.0,bound), hit

Since sample means ξj = Yje
dt, j ∈ [1, . . . , k], in Algo-

rithm (1) are i.i.d.,

P
(
max(ξ1, . . . , ξk

)
< δµξ) =

k∏
j=1

P (ξj < δµξ)

≤
k∏

j=1

p(n,Cv) = p(n,Cv)
k.

Thus, since the left-hand side of the above inequality is
the one from (7), namely

P
(
max(ξ1, . . . , ξk) < δµξ

)
= P

(
1

δ
max(ξ1, . . . , ξk) < µξ

)
= P

(
b̂ <

E(ξ)
edt

)
,

inequality (7) holds.

Remark. When the number of samples in the Algorithm (1)
is enough, namely, n > n0 = (1 − δ)−2C2

v , the right hand

side of inequality (7) is less than
(
1
2

)k
. In other words, there

exists a number n0 such that for all n > n0 the probabil-
ity can be made small for not very large k. In Figure 2, we
present an example of positively skewed probability density.

Figure 2: Example of positively skewed probability density
function.

Types of Model Training and Computation Cost of
Inference
It should be mentioned that our method can be applied
for certification of any model f(x), i.e. it does not require
changing the inference procedure as it is done in smooth-
ing methods. However, if the model training is done in the
standard way, the overall robust accuracy is expected to be
significantly lower than the plain accuracy of the model. A
straightforward way to improve the robustness of the model
is to modify the training procedure. We can adapt the train-
ing procedure used in smoothing methods such as (Li et al.
2021). Such procedure can be implemented through data
augmentation: the model is trained on transformed samples,
thus we expect it will have higher robust accuracy. During
the inference stage, the smoothed model has to be evalu-
ated many times (Horváth et al. 2021), thus increasing the
complexity. In our approach, we can apply the certification
directly to the original model trained in an augmented way.
Our numerical experiments confirm that such models typ-
ically have better accuracy, however, there are notable ex-
ceptions. This means that more research is needed in train-
ing more robust plain models and/or mixed approaches such
as smoothing with a small number of samples.

Experiments
In order to evaluate our method, we assess the proposed
bounds on the public datasets, namely, MNIST and CIFAR-
10.

All the models, training and testing procedures are imple-
mented in PyTorch (Paszke et al. 2019), and the transfor-
mations considered are implemented with use of Kornia
framework (Riba et al. 2020). We use architectures, training
parameters and procedures from (Li et al. 2021) and evalu-
ate our approach on 500 random test samples for each ex-
periment, following (Cohen, Rosenfeld, and Kolter 2019).
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As a result of the experiments, we provide probabilis-
tically certified accuracy, PCA, in dependence on proba-
bility threshold ε and show how it is connected to em-
pirical robust accuracy, ERA, under corresponding adap-
tive attack. Namely, given the classifier h(·), set of images
S = {(x1, y1), . . . , (xm, ym)} and threshold ε, probabilisti-
cally certified accuracy is computed as

PCA(S, ε) = |(x, y) ∈ S : BOUND(x) < ε & h(x) = y|
m

.

At the same time, given the discretization
Θ = {θ1, . . . , θr} of space of parameters of the trans-
form T , empirical robust accuracy is computed as a fraction
of objects from S that are correctly classified under all the
transformations Tθi , i ∈ [1, . . . , r] :

ERA(S) = |(x, y) ∈ S : h(Tθi(x)) = y ∀i ∈ [1, . . . r]|
m

.

Bound Computation Parameters and Cost
In all our experiments, we use the following parameters for
the Algorithm 1: number of samples n = 200, number of
bounds k = 30, parameter δ = 0.9 for Lemma (4), temper-
ature vector t consists of 500 evenly spaced numbers from
interval [10−4, 104]. We use r = 20 as discretization param-
eter for space of parameters for each transform. Execution
of the Algorithm 1 on single GPU Tesla V100-SXM2-16GB
takes 30− 1000 seconds on MNIST and 60− 2000 seconds
on CIFAR-10 depending on the transform complexity.

Considered Transformations
Here we present the set of transformations studied in this
work and provide the set of corresponding parameters used
in the experiments with single transformations.

Image Rotation. The transformation of rotation is pa-
rameterized by the rotation angle ϕ and is assumed to be
followed by the bilinear interpolation with zero-padding
of rotated images. In case of CIFAR-10 dataset, we use
Θ = {ϕ ∈ [−10◦, 10◦]}, and Θ = {ϕ ∈ [−50◦, 50◦]} for
MNIST.

Image Translation. The transformation of image transla-
tion is parameterized by a translation vector and is also as-
sumed to be followed by bilinear interpolation. We use zero-
padding and are not restricted to discrete translations. In case
of CIFAR-10, we use Θ = {v ∈ R2 : |v| ≤ 0.2 ∗ w}, and
for MNIST Θ = {v ∈ R2 : |v| ≤ 0.3 ∗ w}, with w equal
to the width/height of the image, i.e. translation by no more
than 20% of image for CIFAR-10 and no more than 30% of
image for MNIST, respectively.

Brightness Adjustment. The transformation of bright-
ness adjustment is just an element-wise addition of a bright-
ness factor to an image. We change the brightness by no
more than 40% for CIFAR-10 and by no more than 50%
for MNIST.

Figure 3: An illustration of the evaluation protocol
on CIFAR-10 dataset, brightness adjustment transform.
Number of samples n = 20000, number of computed
bounds k = 30, δ = 0.9, brightness adjustment parameter
θb ∈ [−40%,+40%].

Contrast Adjustment. The transformation of contrast ad-
justment is just an element-wise multiplication of image by
a contrast factor. We change contrast by no more than 40%
for CIFAR-10 and by no more than 50% for MNIST.

Image Scaling. The transform of image scaling is re-
size of one by two factors corresponding to spatial di-
mensions. In our work, we zero-pad downscaled images
and use Θ = {s ∈ R2 : ∥s∥22 ∈ [0.7, 1.3]} for CIFAR-10
and Θ = {s ∈ R2 : ∥s∥22 ∈ [0.5, 1.5]} for MNIST. In other
words, we adjust no more than 30% of image size on
CIFAR-10 and no more than 50% of image size on MNIST.

Gaussian Blurring. The transformation of Gaussian blur-
ring (Li et al. 2021) convolves an image with the Gaussian
function

Gσ(k) =
1√
2πσ

e−k2/2σ,

where a squared kernel radius σ is a parameter. In our exper-
iments, Θ = {σ ∈ (0, 9]} for both CIFAR-10 and MNIST.

Composition of Transformations. Aside from single
transformations, we consider more complicated image per-
turbations, namely compositions of transformations. For ex-
ample, the composition of translation and rotation of an im-
age is a consecutive application of (a) rotation and (b) trans-
lation, with two steps of interpolation en route.

Quantitative Results of Experiments. We present con-
sidered transformations, corresponding parameters, and
quantitative results in Table 1 and visualize our results in
the Technical Appendix. In almost all cases, PCA bounds
are smaller than ERA, and the difference is small. This con-
firms that our bounds are sufficiently tight for a wide class
of transformations.

Evaluation Protocol Illustration
Figure 3 illustrates the certification of the model to bright-
ness adjustment on CIFAR-10. Following Theorem 1, it is
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Dataset Transform Parameters Training type ERA PCA(ε) PA
ε = 10−10 ε = 10−7 ε = 10−4

CIFAR-10

Brightness θb ∈ [−40%, 40%]
plain 58.4% 47.8% 51.6% 55.2% 91.18%

smoothing 65.0% 55.4% 59.4% 61.8% 88.67%

Contrast θc ∈ [−40%, 40%]
plain 91.6% 62.4% 67.0% 69.6% 91.18%

smoothing 88.0% 67.0% 72.8% 74.2% 88.67%

Rotation θr ∈ [−10◦, 10◦] plain 73.4% 64.6% 69.0% 71.0% 91.18%
smoothing 72.4% 57.4% 63.6% 67.4% 87.77%

Gaussian blur θg ∈ [0, 3] – kernel radius plain 12.2% 11.0% 11.0% 11.0% 91.18%
smoothing 60.4% 57.2% 57.2% 57.8% 81.11%

Translation |θt| ≤ 20%
plain 40.4% 28.0% 31.2% 35.2% 91.18%

smoothing 35.0% 17.8% 22.4% 25.6% 85.98%

Scale θs ∈ [70%, 130%]
plain 57.0% 54.4% 54.4% 54.4% 91.18%

smoothing 55.0% 53.4% 53.4% 53.6% 86.76%

Contrast + Brightness see Contrast & Brightness plain 0.0% 0.0% 0.0% 0.0% 91.18%
smoothing 0.4% 0.0% 0.0% 0.0% 88.67%

Rotation + Brightness see Rotation & Brightness plain 22.6% 16.2% 20.6% 21.8% 91.18%
smoothing 30.4% 21.2% 24.6% 27.6% 84.50%

Scale + Brightness see Scale & Brightness plain 10.2% 10.4% 10.4% 10.4% 91.18%
smoothing 41.8% 40.6% 40.6% 40.6% 86.53%

MNIST

Brightness θb ∈ [−50%, 50%]
plain 97.8% 94.8% 96.4% 97.0% 99.26%

smoothing 98.6% 97.0% 98.2% 98.2% 99.04%

Contrast θc ∈ [−50%, 50%]
plain 98.8% 96.0% 97.0% 97.2% 99.26%

smoothing 98.6% 98.2% 98.2% 98.2% 99.04%

Rotation θr ∈ [−50◦, 50◦] plain 18.8% 11.6% 14.8% 16.4% 99.26%
smoothing 98.0% 97.0% 97.4% 97.6% 99.01%

Gaussian blur θg ∈ [0, 3] – kernel radius plain 78.0% 68.8% 68.8% 68.8% 99.26%
smoothing 97.8% 97.8% 97.8% 97.8% 98.35%

Translation |θt| ≤ 30%
plain 0.0% 0.0% 0.0% 0.0% 99.26%

smoothing 39.6% 31.4% 34.4% 38.2% 99.09%

Scale θs ∈ [70%, 130%]
plain 21.6% 21.0% 21.0% 21.0% 99.26%

smoothing 34.4% 34.4% 34.4% 34.4% 99.25%

Contrast + Brightness see Contrast & Brightness plain 8.4% 0.0% 0.0% 0.0% 99.26%
smoothing 7.6% 2.4% 2.4% 2.4% 99.04%

Rotation + Brightness see Rotation & Brightness plain 14.0% 9.2% 11.2% 13.0% 99.26%
smoothing 95.2% 93.0% 93.4% 94.6% 99.08%

Scale + Brightness see Scale & Brightness plain 13.0% 13.4% 13.4% 13.4% 99.26%
smoothing 93.4% 93.0% 93.0% 93.4% 99.37%

Table 1: Comparison of probabilistically certified accuracy and empirical robust accuracy. We report probabilistically certified
accuracy for three levels of threshold parameter ε: high confidence in certification (ε < 10−10), middle level of confidence
(ε < 10−7) and low level of confidence (ε < 10−4). In the column PA, we report initial accuracy on the whole datasets.

at least 1 −
(
1
2

)30
chance that almost 60% of considered

samples will be correctly classified by a considered model
trained with smoothing after no more than 40% brightness
adjustment with probability 1− ε ≥ 1− 10−7.

Comparison with the Clopper-Pearson Confidence
Intervals

It is natural to compare upper bound for probability of a
model to fail obtained via proposed method with the up-
per limit of corresponding Clopper-Pearson confidence in-
terval (Clopper and Pearson 1934) for an unknown bino-
mial probability p. Namely, we randomly sample n trans-
forms and count the number k of the ones that mislead a
classifier. If it is zero, we can upper bound the probability
p ≤ C(α)

n given confidence level α. Thus, in order to get
bound of 10−4 we need at least 10000 transformed version
of a sample. Analogously to probabilistically certified accu-
racy, Clopper-Pearson certified accuracy (CPCA) is com-

puted as

CPCA(S, ε) = |(x, y) ∈ S : CP(x) < ε & h(x) = y|
m

,

where CP(x) = CP(x, n, k, α) is the upper limit of the clas-
sical Clopper-Pearson bound for sample x given n, k, α from
above.

In Figures 4, 5, we compare Clopper-Pearson certified ac-
curacy for different number of trials n and probabilistically
certified accuracy for the same experiment, respectively.

It can be seen that the method proposed in this paper al-
lows to get a better bound with smaller number of samples.
The reason is that we use additional information – the dis-
tribution of the random variable Z, unlike the CP approach
which relies solely on the fact of misclassification.

Related Work
Adversarial Vulnerability. Adversarial examples (Szegedy
et al. 2013; Goodfellow, Shlens, and Szegedy 2014) have
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Figure 4: Clopper-Pearson certified accuracy depending on
number of trials n for experiment with rotation transform on
MNIST.

Figure 5: Probabilistically certified accuracy depending on
number of samples n for experiment with rotation transform
on MNIST.

attracted significant attention due to vulnerability of neu-
ral networks in safety-critical scenarios. Although ini-
tially found as ℓp-bounded attacks (Goodfellow, Shlens,
and Szegedy 2014; Moosavi-Dezfooli, Fawzi, and Frossard
2016), several beyond ℓp adversaries have been proposed
that degrade performance of deep models. They include se-
mantic perturbations, such as rotation and translation (Kan-
bak, Moosavi-Dezfooli, and Frossard 2018; Xiao et al.
2018), color manipulation (Hosseini and Poovendran 2018),
renderer-based lightness and geometry transformation (Liu
et al. 2018), parametric attribute manipulation (Joshi et al.
2019), 3d scene parameters such as camera pose, sun po-
sition, global translation, rotation (Li et al. 2018b). These
threats present a serious obstacle for model deployment in
safety-critical real-world applications.
Certified Defenses Against Additive Perturbations. To
overcome the adversarial vulnerability of deep models, sev-
eral empirical defenses have been presented, however, they
were found to fail against new adaptive attacks (Tramer et al.
2020). This forced researchers to provide certified defenses
that guarantee stable performance. A number of works
have been tackling this problem for small additive per-
turbations from different perspectives. This includes semi-
definite programming (Raghunathan, Steinhardt, and Liang
2018), interval bound propagation (Gowal et al. 2018), con-
vex relaxation (Wong and Kolter 2018), duality perspec-
tive (Dvijotham et al. 2018), Satisfiability Modulo Theory
(Bunel et al. 2017; Katz et al. 2017; Ehlers 2017). Al-
though these methods consider small networks, randomized
smoothing (Cohen, Rosenfeld, and Kolter 2019; Li et al.
2018a; Lecuyer et al. 2019) and its improvements (Salman
et al. 2019; Zhai et al. 2020) have been proposed as a cer-
tified defense for any network that can be applied to large-
scale datasets.
Certified Defenses Against Image Transformations. Fol-
lowing certificates for ℓp-bounded perturbations, several
methods proposed certified robustness against semantic per-
turbations. Generating linear relaxation and propagating

through a neural network was used in (Singh et al. 2019;
Balunović et al. 2019; Mohapatra et al. 2020b). Extensions
of MCMC-based randomized smoothing (Cohen, Rosen-
feld, and Kolter 2019) to the space of semantic transforma-
tions were presented in (Fischer, Baader, and Vechev 2020;
Li et al. 2021; Alfarra et al. 2021). Our work presents a
probabilistic approach for certifying neural networks against
different semantic perturbations. Perhaps, the closest to our
approach are PROVEN (Weng et al. 2019), where authors
present a framework to probabilistically certify neural net-
works against ℓp perturbations and work of (Mangal, Nori,
and Orso 2019), where authors certify a neural network in
a probabilistic way by overapproximation of input regions
that violate model’s robustness. However, these works do not
consider probabilistic certifications under semantic transfor-
mations.

Conclusion and Future Work
We proposed a new framework CC-Cert for probabilistic
certification of the robustness of DNN models to synthetic
transformations and provide theoretical bounds on its ro-
bustness guarantees. Our experiments show the applicability
of our approach for certification of model’s robustness to a
random transformation of input. An important question that
is not considered in our work is the worst-case analysis of ro-
bustness to synthetic transformations. Future work includes
analysis of the discrepancy between worst-case transforma-
tions of general type and corresponding random transforma-
tions. A possible gap between certification with probability
and certification in worst-case should be carefully analyzed
and narrowed.
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