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Abstract

One of the main concerns about fairness in machine learning
(ML) is that, in order to achieve it, one may have to trade
off some accuracy. To overcome this issue, Hardt et al. pro-
posed the notion of equality of opportunity (EO), which is
compatible with maximal accuracy when the target label is
deterministic with respect to the input features.
In the probabilistic case, however, the issue is more compli-
cated: It has been shown that under differential privacy con-
straints, there are data sources for which EO can only be
achieved at the total detriment of accuracy, in the sense that a
classifier that satisfies EO cannot be more accurate than a triv-
ial (random guessing) classifier. In our paper we strengthen
this result by removing the privacy constraint. Namely, we
show that for certain data sources, the most accurate classifier
that satisfies EO is a trivial classifier. Furthermore, we study
the trade-off between accuracy and EO loss (opportunity dif-
ference), and provide a sufficient condition on the data source
under which EO and non-trivial accuracy are compatible.

Introduction
During the last decade, the intersection between machine
learning and social discrimination has gained considerable
attention from the academia, the industry and the public in
general. A similar trend occurred before between machine
learning and privacy, and even the three fields have been
studied together recently (Pujol et al. 2020; Cummings et al.
2019; Kearns and Roth 2019; Agarwal 2020).

Fairness, has proven to be harder to conceptualize than
privacy, for which differential privacy has become the de-
facto definition. Fairness is subjective and laws vary be-
tween countries. Even in academia, depending on the ap-
plication, the words fairness and bias have different mean-
ings (Crawford 2017). The current general consensus is that
fairness can not be summarized into a unique universal def-
inition; and for the most popular definitions, several trade-
offs, implementation difficulties and impossibility theorems
have been found (Kleinberg, Mullainathan, and Raghavan
2017; Chouldechova 2017). One such definition of fairness
is equal-opportunity (Hardt, Price, and Srebro 2016).

To contrast equal-opportunity (EO) with accuracy, we
borrow the notion of trivial accuracy from (Cummings et al.
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2019). A non-trivial classifier is one that has higher accu-
racy than any constant classifier. Since constant classifiers
are independent of the input, trivial accuracy determines a
very low performance level that any correctly trained classi-
fier should overcome. Yet, as shown in related works (Cum-
mings et al. 2019; Agarwal 2020), under the simultaneous
constraints of differential privacy and equal-opportunity, it
is impossible to have non-trivially accurate classifiers.

In this paper, we strengthen the result of (Cummings et al.
2019; Agarwal 2020) by showing that, even without the as-
sumption of differential-privacy, there are distributions for
which equal-opportunity implies trivial accuracy. In particu-
lar this is possible when the data source is probabilistic, i.e.,
the correct label for a given input is not necessarily unique.

Probability plays two different roles in this paper. On the
one hand, we allow classifiers to be probabilistic, i.e. we
allow the classification to be influenced by controlled ran-
domness for some inputs. This is needed because satisfying
equal-opportunity typically requires a probabilistic predic-
tor (Hardt, Price, and Srebro 2016), but also because it has a
practical justification. Namely, in some cases, randomness is
the only fair way to distribute an indivisible limited resource.
For instance, a parent with one candy and two children might
throw a coin to decide whom to give it. This principle is even
applied in decisions that have significant social impact such
as the Diversity Visa Program to qualify for a Green Card in
the United States (State.gov 2021), and the Beijing lottery
for getting a car license plate (Global Times 2018).

On the other hand, we consider probabilistic data sources.
This is motivated by two different reasons:

1. It enables a more realistic and general representation of
reality: one in which the information in the input may
be insufficient to conclude definitely the yes-no decision,
or in which real-life constraints force the decision to be
different for identical inputs.

2. It provides a more general, yet simple, perspective for
understanding the trade-off between fairness and accu-
racy. Also, it can take into account that in practice, input
datasets are a noisy (thus probabilistic) approximation of
reality.

Our contributions are the following.

1. We prove that for certain probabilistic distributions, no
predictor can achieve EO and non-trivial accuracy simul-
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taneously.
2. We provide a sufficient condition that guarantees com-

patibility between non-trivial accuracy and EO.
3. We explain how to modify existing results that assume

deterministic data sources to the probabilistic case:

(a) We prove that for certain distributions, the Bayes clas-
sifier does not satisfy EO. As a consequence, in these
cases, EO can only be achieved by trading-off some
accuracy.

(b) We give sufficient and necessary conditions for non-
trivially accurate predictors to exist.

4. We prove and depict several algebraic and geomet-
ric properties about the feasible region in the plane of
opportunity-difference versus error.

Related Works
Our paper is strongly related to the following two works
that consider a randomized learning algorithm guarantee-
ing (exact) equal-opportunity and also satisfying differen-
tial privacy: (Cummings et al. 2019) shows that, for cer-
tain distributions, these constraints imply trivial accuracy.
(Agarwal 2020) proves the same claim for any arbitrary dis-
tribution and for non-exact equal-opportunity, i.e. bounded
opportunity-difference. It also highlights that, although there
appears to be an error in the proof of (Cummings et al.
2019), the statement is still correct. In contrast, in this paper,
we prove the existence of particular distributions in which
trivial accuracy is implied directly from the (exact) equal-
opportunity constraint, without any differential privacy as-
sumption.

Another work about differential-privacy and fairness is
(Pujol et al. 2020), but their notion of fairness is not equal-
opportunity, and this allows them to provide examples in
which privacy and fairness are not necessarily in a trade-off.

There are also several works that focus on the compatibil-
ity of fairness constraints. In (Kleinberg, Mullainathan, and
Raghavan 2017), it is shown that several different fairness
notions cannot hold simultaneously, except for exceptional
cases. Similarly, in (Lipton, Chouldechova, and McAuley
2018), it is shown that the two main legal notions of discrim-
ination are in conflict for some scenarios. In particular when
impact parity and treatment parity are imposed, the learned
model seems to decide based on irrelevant attributes. These
works reveal contradictions when different notions of fair-
ness are imposed together.

In contrast, (Corbett-Davies and Goel 2018) show is-
sues inherent to anti-classification, classification parity and
calibration separately. Regarding equal-opportunity in the
COMPAS case, they show that forcing equal and low false
positive rates obliges the system to decide almost randomly
(trivially) for black defendants. Our work presents theoret-
ical scenarios in which this problem is even more extreme
and the system becomes trivial on both classes.

Lastly, our geometric plots differ from those in the sem-
inal paper of equal-opportunity (Hardt, Price, and Srebro
2016). Graphically, their analysis is carried out over ROC
curves while we plot directly the two metrics of interest. In

this sense, we provide a complementary geometric perspec-
tive for analyzing equal-opportunity and accuracy together.

Preliminaries
The notation described in this section is summarized in Ta-
ble 1.

We consider the problem of binary classification with a
binary protected feature. Protected features, also called sen-
sible attributes or sensible features, are input features that
represent race, gender, religion, nationality, age, or any other
variable that could be used to discriminate against a group of
people. A feature may be considered as a protected feature
in some contexts and not in others, depending on whether
the classification task should ideally consider that feature or
not. For our purposes, we assume the simple and fundamen-
tal case in which there is a single protected attribute that can
only take two values, e.g. man or woman, or, religious or
non-religious.

Data Source
We consider an observable underlying statistical model con-
sisting of three random variables over a probability space
(Ω, E ,P): the protected feature A : Ω → {0, 1}, the non-
protected feature vector X : Ω → Rd for some positive
integer d, and the target label Y : Ω → {0, 1}. We refer to
this statistical model as the data source.

The distribution of (X,A) is denoted by the measure
π that computes for each ((X,A)-measurable) event E ⊆
Rd × {0, 1}, the probability π(E)

def
= P[ (X,A)∈E ]. To

reduce the verbosity of the discrete case, we denote the
probability mass function as π(x, a)

def
= π({(x, a)}), i.e.

π(x, a) = P[X=x,A=a ].
The expectation of Y conditioned on (X,A) is denoted

both as the function q(x, a)
def
= E[Y |X=x,A=a ] (condi-

tional expectation, see the supplementary material for more
details) and the random variable Q

def
= E[Y |X,A ] =

q(X,A).
The random variableQ plays the role of a soft target label

because, since q(x, a) = P[Y =1 |X=x,A=a ], then Y
can be modeled as a Bernoulli random variable with success
probability Q.

The distribution of (X,A, Y ) is completely characterized
by the pair (π, q), hence we refer to this pair as the distri-
bution of the data source. And we distinguish two cases: the
data source is probabilistic in general, but if Q ∈ {0, 1}
(with probability 1), then it is said to be deterministic. This
distinction is crucial, because several statements hold exclu-
sively in one of the two cases.

Classifiers and Predictors
Analogously to the data source, we model the estimation
Ŷ as a Bernoulli random variable with success probability
Q̂ = q̂(X,A) for some ((X,A)-measurable) function q̂. We
refer to Ŷ as a (hard) classifier, and to Q̂ or q̂ as a (soft)
predictor. Notice that Ŷ is deterministic when Q̂ ∈ {0, 1}
(with probability 1), in which case, Ŷ = Q̂ (w.p. 1). Hence
all deterministic classifiers are also predictors.
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(X,A, Y ) Data source
X Non-protected feature vector in Rd

A Protected feature in {0, 1}
Y Target label in {0, 1}
Q, q Soft target label Q def

= E[Y |X,A ]
π Distribution of (X,A)
(π, q) Distribution of (X,A, Y )

Q̂, q̂ Predictor Q̂ = q̂(X,A) = E[ Ŷ |X,A ]

Ŷ Predicted label in {0, 1}
Q Set of all predictors
acc(Q̂) Accuracy of Q̂: P[ Ŷ=Y ]

oppDiff(Q̂) Opportunity difference of Q̂:
E[ Q̂ |Y =1, A=1 ]− E[ Q̂ |Y =1, A=0 ]

Table 1: Notation used in the paper.

The set of all soft predictors is denoted asQ. We highlight
the following predictors in Q:

1. the two constant classifiers, 0̂ and 1̂, given by 0̂(x, a)
def
=

0 and 1̂(x, a)
def
= 1,

2. for each Q̂ ∈ Q, the 1/2-threshold classifier given by
Q̂1/2

def
= 1Q̂>1/2,

3. the data source soft target Q, and
4. the Bayes classifier Q1/2 = 1Q>1/2.

It is well known1 that the Bayes classifier Q1/2 has min-
imal error among all predictors in Q, regardless of whether
the data source is deterministic or not.

Evaluation Metrics
To refer to equal-opportunity (Hardt, Price, and Sre-
bro 2016), we introduce a continuous metric called the
opportunity-difference. The opportunity-difference of a pre-
dictor Q̂ ∈ Q is defined as

oppDiff(Q̂)
def
= (P[ Ŷ=1 |A=1, Y =1 ]

− P[ Ŷ=1 |A=0, Y =1 ] )

and a predictor Q̂ ∈ Q is said to satisfy equal-opportunity
whenever oppDiff(Q̂) = 0.

The error and the accuracy of a predictor Q̂ ∈ Q are
defined as

err(Q̂)
def
= P[ Ŷ 6=Y ]

acc(Q̂)
def
= 1− err(Q̂)

Additionally, we consider a minimal reference level of ac-
curacy that should be outperformed intuitively by any well-
trained predictor. The trivial accuracy (Cummings et al.
2019) is defined as τ def

= max
{

acc(Q̂) : Q̂ ∈ Triv
}

, where
Triv is the set of (trivial) predictors whose output does not
depend on X and A at all, and as a consequence is in in-
dependent of Y as well. In other words, Triv consists of all

1See for instance Chapter 3 of (Fukunaga 2013).

Figure 1: RegionM for an arbitrary source distribution. The
data source is not deterministic because the Bayes classifier
does not satisfy equal-opportunity. The Python code for gen-
erating this figure is in the supplementary material.

constant soft predictors Triv def
= {((x, a) 7→ c) : c ∈ [0, 1]}.

According to the Neyman-Pearson Lemma, the most accu-
rate trivial predictor is always hard, i.e. must be either 0̂ or
1̂. Thus τ is well defined and can be computed as

τ = max {P[Y =0 ], P[Y =1 ]} .

A predictor Q̂ ∈ Q is said to be trivially accurate if
acc(Q̂) ≤ τ , and non-trivially accurate, or non-trivial oth-
erwise. Notice that for a degenerated data source in which
the decision Y is independent of X and A, all predictors are
forcibly trivially accurate.

The Error vs Opportunity-Difference Region
In this section, we remark several properties of the region
M ⊆ [0, 1]× [−1,+1] given by

M
def
= {(err(Q̂), oppDiff(Q̂)) : Q̂ ∈ Q}

which represents the feasible combinations of the evalua-
tion metrics (error and opportunity-difference) that can be
obtained for a given source distribution (π, q).
M determines the tension between error and opportunity

difference. Figure 1 shows an example of this region.

Theorem 1. Assuming a discrete data source with finitely
many possible outcomes, the region M of feasible combi-
nations of error versus opportunity-difference satisfies the
following claims.

1. M is a convex polygon.
2. The vertices of the polygonM correspond to some deter-

ministic predictors.
3. M is symmetric with respect to the point (1/2, 0).

Proof. The proof is in the supplementary material. It uses
the fact that affine transformations map polytopes into poly-
topes (See Chapter 3 of (Grünbaum 2013)).

7995



Figure 2: Randomly generated example using Algorithm 1
(Python code in supplementary material). The constant clas-
sifiers are vertices of the polygon, thus the constraints of
equal-opportunity and non-trivial accuracy can not be satis-
fied simultaneously.

The reader is invited to visualize the aforementioned
properties of M in Figure 1, which depicts the region M
for a particular instance 2 of ~P and ~Q.

Strong Impossibility Result
Contrasting with Figure 1 in the previous section, Figure 2
shows a data source for which the constant classifiers are
vertices of the polygon. This figure illustrates the strong in-
compatibility that may occur (especially in highly proba-
bilistic distributions). Namely, among the predictors satis-
fying equal-opportunity (those in the X-axis), the minimal
error is achieved by a constant classifier.

In other words, there are data sources for which no predic-
tor can achieve equal-opportunity and non-trivial accuracy
simultaneously. This is Theorem 3.

Since Theorem 3 is our strongest result, we also show
how to generalize it to non-finite domains. For this purpose,
and focusing on formality, we state in Definition 2 very pre-
cisely, for which kind of domains it applies.

Definition 2. The essential range of a random variable S :
Ω→ Rk is the set

{~s ∈ Rk : (∀ε > 0) P[ ‖S−~s‖<ε ] > 0}

We call a setD ⊆ Rk an essential domain if it is the essential
range of any random variable.

Definition 2 excludes pathological domains such as non-
measurable sets, the Cantor set or the irrationals. But it al-
lows for isolated points, convex and closed sets, finite unions
of them and countable unions of them as long as the resulting
set is closed. This includes typical domains, such as products
of closed intervals

∏n
i=1[li, ri], or the whole space Rn.

2Namely P=[0.267 0.344 0.141 0.248], Q=[0.893
0.896 0.126 0.207] and A=[0 1 0 1].

~F3

~F2

~F1

~F

~F ∗

~P

~Z

Bayes

~0

Figure 3: In vectorial form, the predictors that satisfy equal-
opportunity form a plane inside the rectangular box of all
predictors.

Theorem 3. For any essential domain X ⊆ Rd with |X | ≥
2 there exists a data source (X,A, Y ) whose essential range
is X × {0, 1}2 and such that the accuracy acc(Q̂) of any
predictor Q̂ ∈ Q that satisfies equal opportunity is at most
the trivial accuracy τ .

Proof. The complete proof is contained in the supplemen-
tary material. Here we highlight only the sketch, the intuition
and some relevant details.

Partition the non-protected input space X into two non-
empty sets X1,X2, and the input space X ×{0, 1} into three
regions Rj :

R1 = X1 × {0}
R2 = X2 × {0}
R3 = X × {1}

For any distribution (π, q) for which these 3 regions have
positive probabilities, denote ~Pj

def
= P[ (X,A)∈Rj ] > 0

and ~Qj
def
= P[Y =1 | (X,A)∈Rj ] for j ∈ {1, 2, 3}. We

search for constraints over ~P and ~Q that are feasible and
cause acc(Q̂) ≤ τ for any predictor Q̂ ∈ Q satisfying EO.
As shown in the supplementary material, the following con-
straints suffice:

C1. ~P ∈ (0, 1)3 and, for probabilism, also ~Q ∈ (0, 1)3.
C2. The accuracy of Q̂ = 1̂ is higher than that of Q̂ = 0̂ (for

fixing an orientation).
C3. ~Q1 < 1/2 and ~Q2, ~Q3 > 1/2.
C4. ~Q3 + ~Q1 ≥ 1, and
C5. ~P1

~Q1 + ~P2
~Q2 < ~P3

~Q1.

The last three constraints are not straightforward, but
their main consequence can be explained graphically. Let
us characterize each predictor Q̂, with a vector ~F given by
~Fj

def
= P[ Ŷ=1, (X,A)∈Rj ], so that Q̂ = 1̂ corresponds to

~F = ~P . Figure 3 depicts the set of all predictors (box), and
those that satisfy EO (plane). This plane can be character-
ized by the two vectors ~Z and ~P .
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Algorithm 1: Random generator for Theorem 3.
1: procedure VECTORGENERATOR(seed)
2: Initialize random sampler with the seed
3: ~Q1 ← random in (0, 1/2)

4: ~Q2 ← random in (1/2, 1)

5: ~Q3 ← random in (1− ~Q1, 1)

6: ~P3 ← random in (1/2, 1)

7: a← max{(1− ~P3) ~Q1, 1/2− ~P3
~Q3}

8: b← min{(1− ~P3) ~Q2, ~P3
~Q1}

9: c← random in (a, b)

10: ~P2 ← (c−~Q1(1−~P3))/~Q2−~Q1

11: ~P1 ← 1− ~P3 − ~P2

12: return ~P , ~Q

Constraint C3 simply fixes the location of the Bayes clas-
sifier at (0, ~P2, ~P3). Constraints C4 and C5 force the gradient
of the accuracy along the plane to be non-decreasing in the
directions ~Z and ~P − ~Z, so that for each predictor ~F there is
a pivot ~F ∗ with higher accuracy than ~F and lower accuracy
than ~P . As a consequence, when the constraints are satisfied,
1̂ has maximal accuracy in Q.

In order to satisfy the constraints, we propose a random-
ized algorithm (Algorithm 1) that generates random vectors
~P , ~Q satisfying the five constraints, regardless of the seed
and the random sampling function, e.g. uniform. The proof
is presented in the supplementary material. To corroborate,
Figure 2 shows a particular output of the algorithm3.

The proof concludes by showing that given ~P and ~Q
(produced by the algorithm), it is always possible to split
X × {0, 1} into the three regions Rj (for j ∈ {1, 2, 3}) that
satisfy P[ (X,A)∈Rj ] = ~Pj and P[Y =1 | (X,A)∈Rj ] =
~Qj .

Finally, to conclude this section we present Example 1. It
shows that there are many other scenarios, not necessarily
those of Theorem 3, in which EO and non-trivial accuracy
are incompatible.

Example 1. Consider a data source (X,A, Y ) over {0, 1}3
whose distribution is given by

x a π(x, a) q(x, a)
0 0 3/8 9/20
0 1 2/8 15/20
1 0 1/8 15/20
1 1 2/8 16/20

Then, (i) there are predictors satisfying equal-opportunity,
(ii) there are predictors with non-trivial accuracy, but (iii)
there are no predictors satisfying both. (End)

Indeed, Figure 4 depicts the region M for Example 1.
On the one hand, the set of non-trivially accurate predic-
tors corresponds to the area with error strictly smaller than

3The output is P=[0.131 0.096 0.772] and Q=[0.274
0.858 0.891]. Also, A=[0 0 1] from the partition
{R1, R2, R3}.

Figure 4: Example 1. One of the constant classifiers is
Pareto-optimal.

the left constant classifier. On the other hand, the set of
equal-opportunity predictors is (for this particular example)
the closed segment between the two constant classifiers. As
claimed in Example 1 (and depicted in Figure 4), these two
sets are non-empty and do not intersect each other.

Probabilistic vs Deterministic Sources
In this section we compare the tension between error and
opportunity-difference when the data source is determinis-
tic and probabilistic. The motivation for studying the proba-
bilistic case is presented in the introduction. Particularly, we
show that some known properties that apply for the discrete
case may fail to hold for the probabilistic one, and under
what conditions this happens.

Deterministic Sources
Under the assumption that the data source is deterministic,
there are some important existing results showing the com-
patibility between equal-opportunity and high accuracy:
Fact 4. Assuming a deterministic data source, if τ < 1, then
there is always a non-trivial predictor, for instance the Bayes
classifier Q1/2. Otherwise (degenerated case) all predictors
are trivially accurate.
Fact 5. Assuming a deterministic data source, the Bayes
classifier Q1/2 satisfies equal-opportunity necessarily.

As a consequence, EO and maximal accuracy (thus also
non-trivial accuracy) are always compatible provided τ < 1,
because the Bayes classifier satisfies both. This is a cel-
ebrated fact and it was part of the motivations of (Hardt,
Price, and Srebro 2016) for defining equal-opportunity, be-
cause other notions of fairness, including statistical parity,
are incompatible with accuracy.

Probabilistic Sources
If we allow the data source to be probabilistic, the results of
the deterministic case change. In particular, Fact 4 is gen-
eralized by Proposition 6 and Fact 5 is affected by Proposi-
tion 7 and Example 1.
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Analogous to τ for deterministic sources, we define a sec-
ondary reference value τ∗ ∈ [0, 1]. We let

τ∗
def
= max {P[Q≥1/2 ], P[Q≤1/2 ]} ,

highlighting that (i)Q = q(X,A) is a random variable vary-
ing in [0, 1], (ii) τ and τ∗ are equal when the data source is
deterministic, and (iii) the condition τ = 1 implies τ∗ = 1,
but not necessarily the opposite.

As shown in Proposition 6, the equation τ∗ = 1 charac-
terizes the necessary and sufficient conditions on the data
source for non-trivially accurate predictors to exist.

Particularly, in the deterministic case, we have τ∗ = τ ,
and Proposition 6 resembles Fact 4.

Proposition 6. (Characterization of the impossibility of
non-trivial accuracy)

For any arbitrary source distribution (π, q), non-trivial
predictors exist if and only if τ∗ < 1.

Proof. The proof is in the supplementary material. Intu-
itively, if P[Q≥1/2 ] = 1, then predicting 1 for any input
is optimal, and vice versa.

Finally, in Proposition 7 and its proof, we show a
simple family of probabilistic examples for which equal-
opportunity and optimal accuracy (obtained by the Bayes
classifier) are not compatible. This issue does not merely
arise from the fact that the Bayes classifier is hard while the
data distribution is soft. Adding randomness to the classifier
does not solve the issue. To justify this, and also for com-
pleteness, we considered the soft predictor Q and showed
that it also fails to satisfy equal-opportunity.

Proposition 7. There are data sources for which neither
the Bayes classifier Q1/2 nor the predictor Q satisfy equal-
opportunity.

Proof. Fix any data source with P[A=a, Y =1 ] > 0 for
each a ∈ {0, 1}, pick an arbitrary ((X,A)-measurable)
function c : Rd → (0, 1/2) and let

q (x, a)
def
=

{
1/2− c(x) if a = 0
1/2 + c(x) if a = 1

for each (x, a) ∈ Rd × {0, 1}.
Since we know that Q1/2(x, a) = a, then the term

E[Q1/2(X,A) |A=a, Y =1 ] can be reduced more simply
into E[A |A=a, Y =1 ] = a. Therefore, the Bayes classi-
fier satisfies oppDiff(Q1/2) = 1− 0 > 0.

Regarding Q, we have E[Q |A=1, Y =1 ] = 1/2 +
E[ c(X) |A=1, Y =1 ] and E[Q |A=0, Y =1 ] = 1/2 +
E[ c(X) |A=0, Y =1 ]. Notice from the range of c, that
E[Q |A=1, Y =1 ] ∈ (1/2, 1) and E[Q |A=0, Y =1 ] ∈
(0, 1/2). Hence oppDiff(Q) > 0.

Therefore neither Q1/2 nor Q satisfy equal-opportunity.

As a remark, notice that the data sources proposed in the
proof of Proposition 7, contrast the extreme case Y = A be-
cause they allow some mutual information between X and

Y after A is known, as one would expect in a real-life dis-
tribution. Nevertheless, there is an evident inherent demo-
graphic disparity in these distributions, and this can be the
reason why equal-opportunity hinders optimal accuracy for
these examples.

Sufficiency Condition
In this section, we provide a simple sufficient (but not nec-
essary) condition (Theorem 9) that guarantees that equal-
opportunity and non-triviality are compatible. It is not very
restrictive and it is valid for discrete, continuous and mixed
data sources. Therefore, it may be used as a minimal as-
sumption for any research work on equal-opportunity deal-
ing with probabilistic data sources. It can also be used to
verify whether a data source (X,A, Y ) of a particular appli-
cation is pathogenic for equal-opportunity or not.

Figure 5 summarizes the sufficiency condition in sim-
ple manner. The proof consists of showing that when the
4 events highlighted in Figure 5 have positive probabilities,
then it is possible to use one of them to improve the per-
formance of the best constant classifier and another one to
compensate for equal opportunity.

Q < 1/2
A = 0

Q < 1/2
A = 1

Q = 1/2
A = 0

Q = 1/2
A = 1

Q > 1/2
A = 0

Q > 1/2
A = 1

Figure 5: Sufficiency condition: If the 4 blue events
have positive probability, then equal-opportunity and non-
triviality are compatible.

Lemma 8. Assume, for EO to be well defined, that
P[Y =1, A=a ] > 0 for each a ∈ {0, 1}. For any predic-
tor Q̂, we have

P[ Ŷ =1 |Y =1, A=a ] =
E[ Q̂Q |A=a ]

E[Q |A=a ]

Proof. Proved in the supplementary material.

Theorem 9. (Sufficiency condition, Figure 5)
For any given data source (X,A, Y ), not-necessarily dis-

crete, if

P[Q>1/2, A=a ],P[Q<1/2, A=a ] > 0

for each a ∈ {0, 1}, then equal-opportunity and non-
triviality are compatible.

Proof. We begin by noticing that P[Q>1/2, A=a ] > 0 im-
plies P[Y =1, A=a ] > 0 for each a ∈ {0, 1}, thus equal-
opportunity is well-defined.

The proof is divided into two cases depending on which
constant classifier is optimal (either 0̂ or 1̂). The distinction
is needed because equal-opportunity treats Y = 1 and Y =
0 differently.
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Case 1. Assume err(0̂) ≤ err(1̂).
We will show that there are constants q̂0, q̂1 ∈ [0, 1] such

that the following predictor satisfies equal-opportunity and
non-triviality.

Q̂
def
=


0 if Q ≤ 1/2

q̂0 if Q > 1/2, A = 0

q̂1 if Q > 1/2, A = 1

For Q̂ to satisfy non-triviality, it suffices to have smaller
error than 0̂. This holds whenever q̂0 or q̂1 are positive, be-
cause for each a ∈ {0, 1}, the optimal classification over the
region {Q > 1/2, A = a} is 1, thus any positive value q̂a im-
proves the misclassification of 0̂. For this reason, we restrict
q̂0, q̂1 ∈ (0, 1].

Regarding equal-opportunity, recall from Lemma 8 that

P[ Ŷ |Y =1, A=a ] =
E[ Q̂Q |A=a ]

E[Q |A=a ]

Let us call αa
def
= E[ Q̂Q |A=a ] to the numerator. Since

Q̂ = 0 for Q ≤ 1/2, then αa may be computed as

αa = q̂aE[Q |A=a,Q>1/2 ]P[Q>1/2 |A=a ]

and it is positive.
Hence, equal-opportunity may be stated as

q̂1
q̂0

=
α0E[Q |A=1 ]

α1E[Q |A=0 ]

The right hand side term is always well-defined, and it is a
positive real number. Since q̂0 and q̂1 can be made arbitrarily
small, there are always solutions to this equation in the range
q̂0, q̂1 ∈ (0, 1].

Case 2. Assume err(1̂) < err(0̂).

Analogously, for q̂0, q̂1 ∈ [0, 1], let Q̂ be given by

Q̂
def
=


1 if Q ≥ 1/2

q̂0 if Q < 1/2, A = 0

q̂1 if Q < 1/2, A = 1

If q̂0, q̂1 < 1, then Q̂ satisfies non-triviality, because it has
less error than 1̂. Hence, we restrict q̂0q̂1 < 1.

Equal-opportunity, may be equivalently stated in terms
of P[ Ŷ =0 |Y =1, A=a ] because it is the complement of
P[ Ŷ =1 |Y =1, A=a ]. Recall from Lemma 8 that

P[ Ŷ =0 |Y =1, A=a ] =
E[ (1−Q̂)Q |A=a ]

E[Q |A=a ]

Let us call αa
def
= E[ (1−Q̂)Q |A=a ] to the numerator.

Since (1 − Q̂) = 0 for Q ≥ 1/2, then αa may be computed
as

αa = (1− q̂a)E[Q |A=a,Q<1/2 ]P[Q<1/2 |A=a ]

and it is non-negative.
Hence, equal-opportunity my be stated as

(1− q̂1)α1E[Q |A=0 ] = (1− q̂0)α0E[Q |A=1 ]

If α1E[Q |A=0 ] = 0, we let q̂0 = 1 and q̂1 = 1/2. If
α0E[Q |A=1 ] = 0, we let q̂1 = 1 and q̂0 = 1/2. And if
none of the two is zero, we use the same argument as in
the first case: since 1− q̂0 and 1− q̂1 can be made arbitrarily
small, there are always solutions to this equation in the range
q̂0, q̂1 ∈ [0, 1).

Conclusion and Future Work
Our work extends existing results about equal-opportunity
and accuracy from a deterministic data source to a prob-
abilistic one. The main result, Theorem 3, states that for
certain probabilistic data sources, no predictor can achieve
equal-opportunity and non-trivial accuracy simultaneously.
We also provided a sufficient condition on the data source
under which EO and non-trivial accuracy are compatible.

Our method focuses on the fairness notion of equal-
opportunity, which seeks for equal true positive rates. A
symmetric analysis can be carried out for equal false pos-
itive rates using the same ideas. Since the notion of equal-
odds seeks for both equal true positive rates and equal false
positive rates, our methodology and results can be adapted
to equal-odds. However, we believe that our results do not
extend to statistical parity or to individual fairness notions.

An interesting question left for future work is whether the
scenarios in which equal-opportunity and non-trivial accu-
racy are incompatible require the data source to be unfair on
its own in some sense. If this is true, it would provide addi-
tional theoretical justification for equal-opportunity as a fair-
ness notion. Nevertheless, any practical limitation of equal-
opportunity that applies for the chosen application should al-
ways be prioritized, e.g. those shown for the COMPAS study
case in (Corbett-Davies and Goel 2018).

Another line of research is the extension of our geometric
and impossibility results to continuous distributions, possi-
bly using existing theory from (Chzhen et al. 2019).

We also intend to characterize completely the conditions
under which equal-opportunity and non-trivial accuracy are
compatible.

Furthermore, we plan to study the trade-off and Pareto-
optimality between accuracy and opportunity-difference as
well as the accuracy gap between the Bayes classifier and
the most accurate predictor that satisfies equal-opportunity.

Finally, we aim at bounding the opportunity-difference by
taking into account the learning process and the statistical
sampling.
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