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Abstract

This paper studies bandit algorithms under data poisoning
attacks in a bounded reward setting. We consider a strong
attacker model in which the attacker can observe both the
selected actions and their corresponding rewards, and can
contaminate the rewards with additive noise. We show that
any bandit algorithm with regret O(log T ) can be forced
to suffer a regret Ω(T ) with an expected amount of con-
tamination O(log T ). This amount of contamination is also
necessary, as we prove that there exists an O(log T ) regret
bandit algorithm, specifically the classical Upper Confidence
Bound (UCB), that requires Ω(log T ) amount of contami-
nation to suffer regret Ω(T ). To combat such poisoning at-
tacks, our second main contribution is to propose verification
based mechanisms, which use limited verification to access
a limited number of uncontaminated rewards. In particular,
for the case of unlimited verifications, we show that with
O(log T ) expected number of verifications, a simple mod-
ified version of the Explore-then-Commit type bandit algo-
rithm can restore the order optimal O(log T ) regret irrespec-
tive of the amount of contamination used by the attacker. We
also provide a UCB-like verification scheme, called Secure-
UCB, that also enjoys full recovery from any attacks, also
with O(log T ) expected number of verifications. To derive
a matching lower bound on the number of verifications, we
also prove that for any order-optimal bandit algorithm, this
number of verifications Ω(log T ) is necessary to recover the
order-optimal regret. On the other hand, when the number
of verifications is bounded above by a budget B, we pro-
pose a novel algorithm, Secure-BARBAR, which provably
achieves Õ(min{C, T/

√
B}) regret with high probability

against weak attackers (i.e., attackers who have to place the
contamination before seeing the actual pulls of the bandit al-
gorithm), where C is the total amount of contamination by
the attacker, which breaks the known Ω(C) lower bound of
the non-verified setting if C is large.

1 Introduction
Multi Armed Bandits (MAB) algorithms are often used in
web services (Agarwal et al. 2016; Li et al. 2010), sensor
networks (Tran-Thanh, Rogers, and Jennings 2012), medical
trials (Badanidiyuru, Kleinberg, and Slivkins 2018; Rangi,
Franceschetti, and Tran-Thanh 2019), and crowdsourcing
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systems (Rangi and Franceschetti 2018). The distributed na-
ture of these applications makes these algorithms prone to
third party attacks. For example, in web services decision
making critically depends on reward collection, and this is
prone to attacks that can impact observations and moni-
toring, delay or temper rewards, produce link failures, and
generally modify or delete information through hijacking
of communication links (Agarwal et al. 2016) (Cardenas,
Amin, and Sastry 2008). Making these systems secure re-
quires an understanding of the regime where the systems
can be attacked, as well as designing ways to mitigate these
attacks. In this paper, we study both of these aspects in a
stochastic MAB setting.

We consider a data poisoning attack, also referred as man
in the middle (MITM) attack. In this attack, there are three
agents: the environment, the learner (MAB algorithm), and
the attacker. At each discrete time-step t, the learner se-
lects an action it among K choices, the environment then
generates a reward rt(it) ∈ [0, 1] corresponding to the se-
lected action, and attempts to communicate it to the learner.
However, an adversary intercepts rt(it) and can contami-
nate it by adding noise εt(it) ∈ [−rt(it), 1 − rt(it)]. It
follows that the learner observes the contaminated reward
rot (it) = rt(it) + εt(it), and rot (it) ∈ [0, 1]. Hence, the ad-
versary acts as a “man in the middle” between the learner
and the environment. We present an upper bound on both
the amount of contamination, which is the total amount of
additive noise injected by the attacker, and the number of
attacks, which is the number of times the adversary contam-
inates the observations, sufficient to ensure that the regret
of the algorithm is Ω(T ), where T is the total time of inter-
action between the learner and the environment. Addition-
ally, we establish that this upper bound is order-optimal by
providing a lower bound on the number of attacks and the
amount of contamination.

A typical way to protect a distributed system from a
MITM attack is to employ a secure channel between the
learner and the environment (Asokan, Niemi, and Nyberg
2003; Sieka and Kshemkalyani 2007; Callegati, Cerroni, and
Ramilli 2009). These secure channels ensure the CIA triad:
confidentiality, integrity, and availability (Ghadeer 2018;
Doddapaneni et al. 2017; Goyal and Mathew 2019). Vari-
ous ways to establish these channels have been explored in
the literature (Asokan, Niemi, and Nyberg 2003; Sieka and
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Kshemkalyani 2007; Haselsteiner and Breitfuß 2006; Calle-
gati, Cerroni, and Ramilli 2009). An alternative way to pro-
vide security is by auditing, namely perform data verifica-
tion (Karlof and Wagner 2003). The idea of data verification
or using trusted information is also embraced in the learn-
ing literature where small number of observations are veri-
fied (Charikar, Steinhardt, and Valiant 2017; Bishop, Tran-
Thanh, and Gerding 2020). Establishing a secure channel or
an effective auditing method or getting trusted information is
generally costly (Sieka and Kshemkalyani 2007). Hence, it
is crucial to design algorithms that achieve security, namely
the performance of the algorithm is unaltered (or minimally
altered) in presence of attack, while limiting the usage of
these additional resources.

Motivated by these observations, we consider a reward
verification model in which the learner can access verified
(i.e. uncontaminated) rewards from the environment. This
verified access can be implemented through a secure chan-
nel between the learner and the environment, or using audit-
ing. At any round t, the learner can decide whether to access
the possibly contaminated reward rot (it) = rt(it)+εt(it), or
to access the verified reward rot (it) = rt(it). Since verifica-
tion is costly, the learner faces a tradeoff between its perfor-
mance in terms of regret, and the number of times access to
a verified reward occurs. Second, the learner needs to decide
when to access a verified reward during the learning process.
We design an order-optimal bandit algorithm which strate-
gically plans the verification, and makes no assumptions on
the attacker’s strategy.

Against this background, we make the following contri-
butions in this paper:

• First, in Section 3 we provide a tight characterisation
about the total (expected) number of contaminations
needed for a successful attack. Specifically, while it is
well-known that with O(log T ) expected number of con-
taminations, a strong attacker can successfully attack any
bandit algorithm (see Section 3.2 for a more detailed dis-
cussion), it is not known to date whether this amount of
contamination is necessary. We fill this gap by providing
a matching lower bound on the amount of contamina-
tion (Theorem 1). This result is based on a novel insight
of UCB’s behaviour, which may be of independent in-
terest. Specifically, we show that for arbitrary (even ad-
versarial) reward sequences, UCB will pull every arm at
least log(T/2) times for sufficiently large T . Such con-
versativeness property of UCB guarantees its robustness
against any attack strategy with o(log T ) contaminations.
Note that we also extend the state-of-the-art results on
the sufficient condition by proposing a simpler yet opti-
mal attack scheme, which is oblivious to the bandit algo-
rithm’s actual behaviour (Proposition 1).

• We then consider bandit algorithms with verification as a
means of defense against these attacks. In our first set
of investigations, we consider the case of having un-
limited number of verification (Section 4.1). We first
show that the minimum number of verification needed
to recover from any strong attack is Θ(log T ) (Theo-
rem 2 and Corollary 2). We then propose an Explore-

Then-Commit (ETC) based method, called Secure-ETC
that can achieve full recovery from any attacks with this
optimal amount of verification (Observation 1). While
Secure-ETC is simple, it might not stop the exploration
phase before exceeding the time horizon. To avoid this
situation, we also propose a UCB-like method called
Secure-UCB, which also enjoys full recovery under opti-
mal verification scheme (Theorem 3).

• Finally, we consider the case when the number of
verifications is bounded above by a budget B. We
first show that if the attacker has unlimited contami-
nation budget, it is impossible to fully recover from
the attack if the verification budget B = o(T )
(Theorem 4). However, when the attacker also has
a finite contamination budget C, as typically as-
sumed in the literature, we propose Secure-BARBAR,

which achieves Õ
(

min
{
C, T log (2/β)/

√
B
})

regret

against a weaker attacker (who has to place the contam-
ination before seeing the actual pull of the bandit algo-
rithm). It remains an intriguing open question whether
there exists efficient but limited verification schemes
against stronger attackers.

2 Preliminaries and Problem Statement
2.1 Poisoning Attacks on Stochastic Bandits
We consider the classical stochastic bandit setting under data
poisoning attacks. In this setting, a learner can choose from
a set of K actions for T rounds. At each round t, the learner
chooses an action it ∈ [K], triggers a reward rt(it) ∈ [0, 1]
and observes a possibly corrupted (and thus altered) reward
rot (it) ∈ [0, 1] corresponding to the chosen action. The
reward rt(i) of action i is sampled independently from a
fixed unknown distribution of action i. Let µi denote the ex-
pected reward of action i and i∗ = argmaxi∈[K]µi.* Also,
let ∆(i) = µi∗ − µi denote the difference between the ex-
pected reward of actions i∗ and i. Finally, we assume that
{µi}i∈[K] are unknown to both the learner and the attacker.

The reward rot (it) observed by the learner and the true
reward rt(it) satisfy the following relation

rot (it) = rt(it) + εt(it), (1)
where the contamination εt(it) added by the attacker can be
a function of {in}tn=1 and {rn(in)}tn=1. Additionally, since
rot (it) ∈ [0, 1], we have that εt(it) ∈ [−rt(it), 1 − rt(it)].
If εt(it) 6= 0, then the round t is said to be under attack.
Hence, the number of attacks is

∑T
t=1 1(εt(it) 6= 0) and the

amount of contamination is
∑T
t=1 |εt(it)|.

The regret RA(T ) of a learning algorithm A is the dif-
ference between the total expected true reward from the
best fixed action and the total expected true reward over T
rounds, namely

RA(T ) = Tµi∗ − E[
T∑
t=1

rt(it)], (2)

*For convenience, we assume i∗ is unique though all our con-
clusions hold when there are multiple optimal actions.
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The objective of the learner is to minimize the regretRA(T ).
In contrast, the objective of the attacker is to increase the
regret to at least Ω(T ). As a convention, we say the attack
is “successful” only when it leads to Ω(T ) regret (Jun et al.
2018; Liu and Shroff 2019). The first question we address is
the following.
Question 1: Is there a tight characterization of the amount
of contamination and the number of attacks leading to a re-
gret of Ω(T ) in stochastic bandits?

2.2 Remedy via Limited Reward Verification
It is well known that no stochastic bandit algorithm can
be resilient to data poisoning attacks if the attacker has
sufficiently large amount of contamination (Liu and Shroff
2019). Therefore, to guarantee sub-linear regret when the
attacker has an unbounded amount of contamination it is
necessary for the bandit algorithm to exploit additional (and
possibly costly) resources. We consider one of the most nat-
ural resource — verified rewards. Namely, we assume that
at any round t, the learner can choose to access the true, un-
contaminated reward of the selected action it, namely, when
round t is verified we have rot (it) = rt(it). This process of
accessing true rewards is referred to as verification. If the
learner performs verification at each round, then it is clear
that the regret of any bandit algorithm is unaltered in the
presence of attacker. Unfortunately, this is unrealistic be-
cause verification is costly in practice. Therefore, the learner
has to carefully balance the regret and the number of verifi-
cations. This naturally leads to the second question that we
aim to answer in this paper:
Question 2: Is there a tight characterization of the num-
ber of verifications needed by the learner to guarantee the
optimal O(log T ) regret for any poisoning attack?

Finally, we consider the case of limited amount of con-
tamination from the attacker and limited number of verifica-
tions from the bandit algorithm. In the direction of study-
ing this trade-off between contamination and verification,
the third question that we aim to answer in this paper is:
Question 3: Can we improve upon the Ω(C) regret lower-
bound if the attacker’s contamination budget is at most C,
and the number of verifications that can be used by a bandit
algorithm is also bounded above by a budget B.

In this paper we answer the three questions above.

3 Tight Characterization for the Cost of
Poisoning Attack

In this section we show that if an attack can successfully
induce Ω(T ) linear regret for any bandit algorithm, both
its expected number of attacks and the expected amount of
contamination must be Θ(log T ). In other words, there ex-
ists a “robust” stochastic bandit algorithm that cannot be
successfully attacked by any attacker with only o(log T )
expected amount of contamination, and we show the cele-
brated UCB algorithm satisfies this property. The key tech-
nical challenge in proving the above result is to show the
sublinear regret of UCB against arbitrary poisoning attack
using at most o(log T ) amount of contamination. In order

to prove this strong result, we discover a novel “converva-
tiveness” property of the UCB algorithm which may be of
independent interest and has already found application in
completely different tasks (Shi et al. 2021). To complement
and also to match the above lower bounds of any success-
ful attack, we design a data poisoning attack that can indeed
use O(log T ) expected number of attacks to induce Ω(T )
regret for any order-optimal bandit algorithm, namely any
algorithm which has O(log T )-regret in the absence of at-
tack. Since rot (it) ∈ [0, 1], this implies that the attack would
require at mostO(log T ) expected amount of contamination.

3.1 Lower Bound on the Contaminations
We show that there exists an order-optimal bandit algorithm
— in fact, the classical UCB algorithm — which cannot be
attacked with o(log T ) amount of contamination by any poi-
soning attack strategy. This implies that if an attacking strat-
egy is required to be successful for all order-optimal ban-
dit algorithms, then the amount of contamination needed
is at least Ω(log T ). Since the amount of contamination is
bounded above by the number of attacks, this also implies
that any attacker requires at least Ω(log T ) number of at-
tacks to be successful. While adversarial attacks to bandits
have been extensively studied recently, to our knowledge
such a lower bound on the attack strategy is novel and not
known before; previous results have mostly studied the up-
per bound, i.e, how much contaminations are need for suc-
cessful attacks (Jun et al. 2018; Liu and Shroff 2019).

Here we briefly describe the well-known UCB algorithm
(Auer, Cesa-Bianchi, and Fischer 2002), and defer its details
to Algorithm ?? in Appendix ??. At each round t ≤ K, UCB
selects an action in round robin manner. At each round t >
K, the selected action it has the maximum upper confidence
bound, namely

it = argmaxi∈[K]

(
µ̂t−1(i) +

√
8 log t

Nt−1(i)

)
, (3)

where Nt(i) =
∑t
n=1 1(in = i) is the number of rounds

action i is selected until (and including) round t, and

µ̂t(i) =

∑t
n=1 r

o
n(in)1(in = i)

Nt(i)
, (4)

is the empirical mean of action i until round t. Note that the
algorithm uses the observed rewards.

The following Theorem 1 establishes that the UCB algo-
rithm will have sublinear regret o(T ) under any poisoning
attack if the amount of contamination is o(log T ). The proof
of Theorem 1 crucially hinges on the following “conserva-
tiveness” property about the UCB algorithm, which may be
of independent interest.†

Lemma 1 (Conservativeness of UCB). Let t0 be such that
t0/(log(t0))2 ≥ 36K2. Then for all t ≥ t0 and any se-
quence of rewards {ron(i)}i∈[K],n≤t in [0, 1] (can even be

†Indeed, Lemma 1 has been applied in (Shi et al. 2021) to the
task of incentivized exploration in order to show that a principal
can get sufficient feedback from every arm even if the agent who
pulls arms has completely different preferences from the principal.
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adversarial), UCB will select every action at least log(t/2)
times up until round t.

Lemma 1 is inherently due to the design of the UCB algo-
rithm. Its proof does not rely on the rewards being stochas-
tic, and it holds deterministically — i.e., at any time t ≥ t0,
UCB will pull each action at least log(t/2) times. This
lemma leads to the following theorem.
Theorem 1. For all 0 < ε < 1 and α > 0 such that
0 < εα ≤ 1/2, and for all T > max{(t0)

1
1−αε , exp (4α)},

if the total amount of contamination by the attacker is∑T
n=1 |εn(in)| ≤ (log T )1−ε, then there exists a constant

c1 such that the expected regret of UCB algorithm is

RUCB(T ) ≤ c1
(
T 1−αε max

i
∆(i)+

∑
i6=i∗

log T/∆(i)
)
, (5)

which implies the regret RUCB(T ) is o(T ).
The constant α in Theorem 1 is an adjustable parameter

to control the tradeoff between the scale of time horizon T
(T ≥ max{(t0)

1
1−αε , exp (4α)}) and the dominating term

(T 1−αε maxi ∆(i)) in the regret. If ε is small, then the larger
α leads to a smaller regret, however T should be sufficiently
large in order for us to see such a regret.

The upper bound on the expected regret in Theorem
1 holds if the total amount of contamination is at most
(log T )1−ε. Furthermore, if the total number of attacks is
at most (log T )1−ε, then using |εt(it)| ≤ 1, we have that∑T
n=1 |εn(in)| ≤ (log T )1−ε. Hence, Theorem 1 also estab-

lishes that if the total number of attacks is o(log T ), then the
expected regret of UCB is o(T ). Thus, the attacker requires
at least Ω(log T ) amount of contamination (or number of
attacks) to ensure its success.

The lower bound on the amount of contamination in The-
orem 1 cannot be directly compared with the upper bound in
Proposition 1 since the former assumes that the amount of
contamination is bounded above by o(log T ) almost surely,
while the latter is a bound on the expected amount of con-
tamination. Instead, we consider the following corollary,
which can be easily derived from Theorem 1 using Markov’s
inequality, and establishes the lower bound on the expected
amount of contamination necessary for a successful attack.
Corollary 1. For all ε ∈ (0, 1) and T such that the con-
ditions in Theorem 1 are satisfied, if the expected amount of
contamination by the attacker is at most (log T )1−ε, in other
words o(log T ), then the regret of UCB is o(T ).

3.2 Matching Upper Bound on Contamination
We now show that there indeed exists attacks that can suc-
ceed with O(log T ) attacks. Consider an attacker who tries
to ensure any action iA ∈ [K] to be selected by the bandit
algorithm at least Ω(T ) times in expectation. This implies
that the expected regret of the bandit algorithm is Ω(T ) if
iA 6= i∗. We consider the following simple attack, that pulls
the observed reward down to 0 whenever the target subopti-
mal action iA is not selected. Namely,

rot (it) =

{
rt(it) if it = iA,

0 if it 6= iA.
(6)

Equivalently, the attacker adds εt(it) = −rt(it)1(it 6= iA)
to the true reward rt(it). Unlike the attacks in (Jun et al.
2018; Liu and Shroff 2019), the attack in (6) is oblivious to
rewards, since it overwrites all the rewards observation by
zero. The following proposition establishes an upper bound
on the expected number of attacks sufficient to be successful.

Proposition 1. For any stochastic bandit algorithm A with
expected regret in the absence of attack given by

RA(T ) = O

(∑
i6=i∗

logα(T )

(∆(i))β

)
, (7)

where α ≥ 1 and β ≥ 1; and for any target action iA ∈
[K]; if an attacker follows strategy (6), then it will use an
expected number of attacks

E[
T∑
t=1

1(εt(it) 6= 0)]] = O

(
(K − 1) logα(T )/µβ+1

iA

)
,

(8)
an expected amount of contamination

E[
T∑
t=1

|εt(it)|] = O

(
(K − 1) logα(T )/µβ+1

iA

)
, (9)

and it will forceA to select the action iA at least Ω(T ) times
in expectation, namely E[

∑T
t=1 1(it = iA)] = Ω(T ) .

Proposition 1 provides a relationship between the regret
of the algorithm without attack and the number of attacks
(or amount of contamination) sufficient to ensure that the
target action iA is selected Ω(T ) times, which also implies
RA(T ) = Ω(T ) if iA 6= i∗. Another important consequence
of the proposition is that for an order optimal algorithm such
as UCB, we have that α = 1 and β = 1 in (7). Thus, the ex-
pected number of attacks and the expected amount of con-
tamination are O(log T ).

A small criticism to the attack strategy (6) might be that
it pulls down the reward “too much”. This turns out to be
fixable. In Appendix ??, we prove that a different type of
attack that pulls the reward of any action i 6= iA down by an
estimated gap ∆ = 2 max{µi−µiA , 0} (similar to the ACE
algorithm in (Ma et al. 2018)) will also succeed. However,
the number of attacks now will be inversely proportional to
mini6=iA |µi − µiA |β+1, while not µβ+1

iA
as in Proposition 1.

4 Verification Based Algorithms
In this section we explore the idea of using verifications to
rescue our bandit model from reward contaminations. In par-
ticular, we first investigate the case when the amount of veri-
fication is not limited, and therefore our main goal is to min-
imize the number of verifications (along with aiming to re-
store the order-optimal logarithmic regret bound). We then
discuss the case when the number of verifications is bounded
above by a budget B (typically of o(T )).

4.1 Saving Bandits with Unlimited Verifications
In this setting we assume that the number of verifications is
not bounded above, and therefore, our goal is to minimize
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the number of verifications that is required to restore the
logarithmic regret bound. To do so, we first show that any
successful verification based algorithm (i.e., they can restore
the logarithmic regret) would require Ω(log T ) verifications.
In particular, the following theorem establishes that for all
consistent learning algorithm‡ A and sufficiently large T ,
if the algorithm A uses O((log T )1−α) verifications with
0 < α < 1, then the expected regret is Ω((log T )β) with
β > 1 in the MAB setting with verification.
Theorem 2. Let KL(i1, i2) denote the KL divergence be-
tween the distributions of actions i1 and i2. For all 0 < α <
1, 1 < β and all consistent learning algorithm A, there
exists a time t∗ and an attacking strategy such that for all
T ≥ 2t∗ satisfying (log T )1−α + β log(4 log T ) ≤ log T, if
the total number of verifications Ns

T until round T is

Ns
T < (log T )1−α/ min

i1,i2∈[K]
KL(i1, i2), (10)

then the expected regret of A is at least Ω((log T )β).

Theorem 2 establishes that Ω(log T ) verifications are nec-
essary to obtain O(log T ) regret. Here, we assume that the
number of verifications is bounded above almost surely.
Nevertheless, if instead the expected number of verifications
is bounded, we shall obtain the following similar bound.
Corollary 2. For all 0 < α < 1, 1 < β, all
consistent learning algorithm A and sufficiently large T
such that the requirements in Theorem 2 are satisfied,
there exists an attacking strategy such that if the expected
number of verifications Ns

T until round T is E[Ns
T ] <

(log T )1−α/mini1,i2∈[K]KL(i1, i2), then the expected re-
gret of A is at least Ω((log T )β).

We now move to design an algorithm that matches this
optimal number of verifications. Our algorithm is based on
the following simple idea: Contamination is only effective
when the contaminated reward is used for estimating the
mean reward value of the arms, and therefore, influencing
the learnt order of the arms. As such, any algorithm that
do not need these estimates for most of the time would not
suffer much from the contamination if the remaining pulls
(when the observed rewards are used for mean estimation)
is properly secured via verification. This idea naturally lends
us to the explore-then-commit (ETC) type of bandit algo-
rithms (Garivier, Lattimore, and Kaufmann 2016), where in
the first phase, the algorithm aims to learn the optimal arm
by solving a best arm identification (BAI) problem (explo-
ration phase), and in the second (commit) phase, it just re-
peatedly pulls the learnt best arm (Kaufmann, Cappé, and
Garivier 2016). It is clear that if the first phase is fully se-
cured (i.e., every single pull within that phase is verified),
then we can learn the best arm with high probability, and
thus, can ignore the contaminations within the second phase.
The choice of the BAI algorithm for the exploration phase is
important though. In particular, any BAI with fixed pulling

‡A learning algorithm is consistent (Kaufmann,
Cappé, and Garivier 2016) if for all t, the action it+1

(a random variable) is measurable given the history
Ft = σ(i1, r

o
1(i1), i2, r

o
2(i2) . . . , it, r

o
t (it)).

budget would not work here, as they cannot guarantee log-
arithmic regret bounds (Garivier, Lattimore, and Kaufmann
2016). On the other hand, BAI with fixed confidence will
suffice. In particular, we state the following:

Observation 1. Any ETC algorithm, where the exploration
phase uses BAI with fixed confidence δ = 1

T and every single
pull in that phase is verified, enjoys an expected regret bound
of O

(∑
i6=i∗ log T/∆i

)
. In addition, the expected number

of verifications is bounded above by O
(∑

i6=i∗ log T/∆2
i

)
.

We refer to the ETC algorithm enhanced with verifica-
tion described in the above observation as Secure-ETC. The
proof of Observation 1 is simple and hence omitted from
the main paper. Note that this result, alongside with The-
orem 2, show that Secure-ETC uses order-optimal number
of verification, and enjoys an order-optimal expected regret,
irrespective of the attacker’s strategy.

The main drawback of Secure-ETC algorithms is that
there is positive probability that the algorithm may keep ex-
ploring until the end time T . While such small probability
event turns out to not be an issue regarding its expected re-
gret, one might prefer another type of algorithm which prop-
erly mix the exploration and exploitation. For such inter-
ested readers, we propose another algorithm, named Secure-
UCB (for Secure Upper Confidence Bound), which inte-
grates verification into the classical UCB algorithm, and
also enjoys similar order-optimal regret bounds and order-
optimal expected number of verifications. Due to space lim-
itations, we defer both the detailed description of Secure-
UCB and its theoretical analysis to the appendix (see Ap-
pendix ?? for more details). However, for the sake of com-
pleteness, we state the following theorem below.

Theorem 3. For all T such that T ≥
c2 log T/mini6=i∗ ∆2(i), Secure-UCB performs O(log T )
number of verification in expectation, and the expected
regret of the algorithm is O(log T ) irrespective of the
attacker’s strategy. Namely,∑

i∈[K]

E[Ns
T (i)] ≤ c3

(∑
i6=i∗

log T/∆2(i)
)
, (11)

R(T ) ≤ c4
(∑
i6=i∗

log T/∆(i)
)
, (12)

where Ns
T (i) is the total number of verifications for arm i

until round T and c2, c3 and c4 are numerical constants
(concrete values can be found in the appendix).

It is worth noting that due to the sequential nature of
UCB, designing a UCB-like algorithm with verification is
far from trivial and therefore its technical analysis is signifi-
cantly more involved.

4.2 Saving Bandits with Limited Verifications
While unlimited verification can completely restore the orig-
inal regret bounds, we will show next that this is unfortu-
nately not the case if the number of verification are bounded.
In particular, we state this negative result.
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Algorithm 1: Secure-BARBAR
1: Input: confidences β, δ ∈ (0, 1), time horizon T , veri-

fication budget B
2: Set nBi =

⌊
B/K

⌋
, T0 = B, ∆0

i = 1 for all i ∈ [K],

and λ = 1024 ln( 8K
δ log2 T )

3: for epochs m = 1, 2, . . . do
4: Set nmi = λ(∆m−1

i )−2 for all i ∈ [K], Nm =∑K
i=1 n

m
i , and Tm = Tm−1 +Nm

5: for t = Tm−1 to Tm do
6: choose arm i with probability nmi /Nm and pull it
7: if nBi > 0 then verify the pull (i.e., observe the true

reward), and reduce nBi by 1
8: end for
9: Let Smi be the total observed rewards from pulls of

arm i within epoch m (including both verified and
unverified ones)

10: If all the pulls of arm i were verified in epoch m
then rmi = Smi /n

m
i

11: Else if Smi /n
m
i ≥ µBi then rmi =

min
{
Smi /n

m
i , µ

B
i +

∆m−1
i

16 +
√

ln 2/β
2nB

}
12: Else rmi = max

{
Smi /n

m
i , µ

B
i −

∆m−1
i

16 −
√

ln 2/β
2nB

}
13: Set rm∗ = maxi{rmi − ∆m−1

i /16}, ∆m
i =

max{2−m, rm∗ − rmi }
14: end for

Theorem 4. Consider an attacker with unlimited contam-
ination budget. For any T , K ≥ 2 and Ns

T ≥ K, if the
total number of verifications performed until round T is at
mostNs

T , then there exists a distribution over the assignment
of rewards such that the expected gap-independent regret of
any learning algorithm is at least

R(T ) ≥ cT
√
K/Ns

T . (13)

where c is a numerical constant. In addition, for any T ,
K ≥ 2, andNs

T ≥ K, there exists a distribution over the as-
signment of rewards such that the expected cost, defined as
the sum of expected regret and the number of verifications,
of any learning algorithm is at least Ω(T 2/3).

We remark that the goal of Theorem 4 is to demonstrate
that, unlike the unlimited verification case in subsection 4.1,
here it is impossible to fully recover from the attack — in
the sense of achieving order optimal regret bounds as in the
original bandit setting without attacks — if B ∈ o(T ), and
this motivates our following study (Theorem 5) of develop-
ing regret bounds that scale with the budget B. For this pur-
pose, it suffices to have a gap-independent lower bound as
in Theorem 4. Nevertheless, we acknowledge that an inter-
esting research question is to see whether one can achieve a
gap-dependent lower bound. This is out of the scope of our
current paper and is an independent open question.

Now, this impossibility result relies on the assumption
that the attacker has an unlimited contamination budget (or
amount of contamination). One might ask what would hap-
pen if the attacker is also limited by a contamination bud-

get C as typically assumed in the relevant literature (Gupta,
Koren, and Talwar 2019; Bogunovic et al. 2020; Lykouris,
Mirrokni, and Paes Leme 2018).

We now turn to the investigation of this setting in more
detail where contamination budget is at most C. To start
with, we assume for now that the attacker can only place the
contamination before seeing the actual actions of the bandit
algorithm. We refer to this type of attackers as weak attack-
ers, as opposed to the ones we have been dealing with in
this paper (see Section 5 for a comprehensive comparison
of different attacker models). We describe an algorithm that
addresses this case in a provably efficient way. In particular,
we introduce Secure-BARBAR (Algorithm 1), which is built
on top of the BARBAR algorithm proposed by (Gupta, Ko-
ren, and Talwar 2019). The key differences are: (i) Secure-
BARBAR sets up a verification budget nBi for each arm i
and verify that arm until this budget deplets (lines 6 − 7);
and (ii) use these reward estimate to adjust the estimates (
lines 9− 13). By doing so, we achieve the following result:

Theorem 5. With probability at least 1−δ−β, the regret of
Secure-BARBAR against any weak attackers with contami-
nation budget C is bounded by

O

(
K min

{
C,
T log 2

β ln( 8K
δ log2 T )√

B/K

}
+
∑
i6=i∗

log T

∆i
log
(K
δ

log T
))

.

(14)

The regret bound is of Õ
(

min
{
C, T log (2/β)/

√
B
})

,

which breaks the known Ω(C) lower bound of the non-
verified setting if C is large (Gupta, Koren, and Talwar
2019).

A note on efficient verification schemes against strong
attackers. In the case of strong attackers, with a careful
combination of the idea described in Secure-BARBAR to in-
corporate the verified pulls into the estimate of the average
reward at each round (lines 9 − 12 in Algorithm 1), and the
techniques used in the proof of Theorem 1 from (Bogunovic
et al. 2020) §, we can prove the following result: With proba-
bility at least 1−δ−β, we can achieve a regret upper bound

of Õ
(

min
{
C, T log (2/β)/

√
B
}

log T

)
. This can be done

by modifying the Robust Phase Elimination (RPE) algo-
rithm described in (Bogunovic et al. 2020) with the verifica-
tion and estimation steps from Algorithm 1. The drawback
of this approach is that it only works when the contamination
budget C is known in advance. Although (Bogunovic et al.
2020) have also provided a method against strong attackers
with unknown contamination budget C, their method can
only achieve Õ(C2) under some restrictive constraints (e.g.,
C has to be sufficiently small). In addition, it is not clear how
to incorporate our ideas introduced for Secure-BARBAR to

§The key step is to replace Lemma 1 from (Bogunovic et al.
2020) with a verification aware version, using similar ideas applied
in the proof of Theorem 5.
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that approach in an efficient way (i.e., to significantly reduce
the regret bound from Õ(C2)). Given this, it remains future
work to derive an efficient verification method against strong
attackers with unknown contamination budget C, which can
yield regret bounds better than Õ(C2).

5 Comparison of Attacker Models
This section provides a more detailed comparison between
the different attacker models from the (robust bandits) litera-
ture and their corresponding performance guarantees. In par-
ticular, at each round t, a weak attacker has to make the con-
tamination before the actual action is chosen. On the other
hand, a strong attacker can observe both the chosen actions
and the corresponding rewards before making the contami-
nation. From the perspective of contamination budget (or the
amount of contamination), it can either be bounded above
surely by a threshold, or that bound only holds in expecta-
tion. We refer to the former as deterministic budget, while
we call the latter as expected budget. To date, the following
three attacker models have been studied: (i) weak attacker
with deterministic budget; (ii) strong attacker with determin-
istic budget; and (iii) strong attacker with expected budget.

Weak attacker with deterministic budget. For this at-
tacker model, (Gupta, Koren, and Talwar 2019) have pro-
posed a robust bandit algorithm (called BARBAR) that prov-
ably achieves O(KC + (log T )2) regret against a weak at-
tacker with (unknown) deterministic budget C. They have
also proved a matching regret lower bound of Ω(C). These
results imply that in order to successfully attack BARBAR
(i.e., to force a Ω(T ) regret), a weak attacker with determin-
istic budget would need a contamination budget of Ω(T ).

Strong attacker with deterministic budget. (Bogunovic
et al. 2020) have shown that there is a phased elimination
based bandit algorithm that achieves O(

√
T + C log T ) re-

gret if C is known to the algorithm, and O(
√
T +C log T +

C2) if C is unknown. Note that by moving from the weaker
attacker model to the stronger one, we suffer an extra loss
in terms of achievable regret (i.e., from O(C) to O(C2)) in
case of unknown C. While the authors have also proved a
matching regret lower bound of Ω(C) for the known budget
case, they have not provided any similar results for the case
of unknown budget. Nevertheless, their results show that in
order to successfully attack their algorithm, an attacker of
this type would need a contamination budget of Ω(T ) for
the case of known contamination budget, and Ω(

√
T ) if that

budget is unknown.

Strong attacker with expected budget. Our Proposi-
tion 1 shows that this attacker can successfully attack any
order-optimal algorithm with a O(log T ) expected contam-
ination budget (note that (Liu and Shroff 2019) have also
proved a similar, but somewhat weaker result). We have also
provided a matching lower bound on the necessary amount
of expected contamination budget against UCB. It is worth
noting that if the rewards are unbounded, then the attacker
may use even less amount contamination (e.g., O(

√
log T ))

to achieve a successful attack (Zuo 2020).

Saving bandit algorithms with verification. The above
mentioned results also indicate that if an attacker uses a con-
tamination budget C (either deterministic or expected), the
regret that any (robust) algorithm would suffer is Ω(C). A
simple implication of this is that if an attacker has a bud-
get of Θ(T ) (e.g., he can contaminate all the rewards), then
no algorithm can maintain a sub-linear regret if they can
only rely on the observed rewards. Secure-ETC, Secure-
UCB, and Secure-BARBAR break this barrier of Ω(C) re-
gret with verification. In particular, the former two still en-
joy an order-optimal regret of O(log T ) against any attacker
(even when they have Θ(T ) contamination budget) while
only using O(log T ) verifications. The latter, when playing
against a weak attacker, still suffers a swift increase in the
regret as C is increased. But this increase is not linear in C
as in the non-verified setting.

6 Conclusions
In this paper we introduced a reward verification model for
bandits to counteract against data contamination attacks. In
particular, we contributions can be grouped as follows: We
first revisited the analysis of strong attacker and proved the
first attack lower bound of Θ(log T ) expected number of
contaminations for a successful attack. This lower bound
is shown to be tight with our oblivious attack scheme, the
contamination of which matches the lower bound. We then
move to verification based approaches with unlimited verifi-
cation, where we first provided two algorithms, Secure-ETC
and Secure-UCB, which can recover any attacks with loga-
rithmic number of verifications. We also provided a match-
ing lower bound on the number of verifications. For the case
of limited verifications, we first showed that full recovery is
impossible if the attacked has unlimited contamination bud-
get, unless the verification budget B = Θ(T ). In case the
attacker is also limited by a budget C, we proposed Secure-
BARBAR, which achieves a regret lower than the Θ(C) re-
gret barrier, if used against a weak attacker.

For future research, when facing a strong attacker with
contamination budget C, we briefly discussed how a simi-
lar idea from Secure-BARBAR with limited verification can
be used to achieve a regret bound better than O(C log T ).
However, this idea requires that C is known in advance. It is
an open question whether for the case of unknown C we can
get a similar regret bound that is better than the regret we
can achieve for the non-verified case. Second, since bound-
ing the contamination in expectation and almost surely leads
to different results (see Section 5), it would be interesting to
study the setting where number of verifications is bounded
almost surely. Third, another interesting extension is a par-
tial feedback verification model, where the learner can only
request a feedback about whether the observed reward is cor-
rupted or not but cannot see the true reward. Finally, extend-
ing our study to RL is an intriguing future direction.
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