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Abstract

We study the problem of distributed training of neural
networks (NNs) on devices with heterogeneous, limited,
and time-varying availability of computational resources.
We present an adaptive, resource-aware, on-device learning
mechanism, DISTREAL, which is able to fully and efficiently
utilize the available resources on devices in a distributed man-
ner, increasing the convergence speed. This is achieved with
a dropout mechanism that dynamically adjusts the computa-
tional complexity of training an NN by randomly dropping
filters of convolutional layers of the model. Our main contri-
bution is the introduction of a design space exploration (DSE)
technique, which finds Pareto-optimal per-layer dropout vec-
tors with respect to resource requirements and convergence
speed of the training. Applying this technique, each device
is able to dynamically select the dropout vector that fits
its available resource without requiring any assistance from
the server. We implement our solution in a federated learn-
ing (FL) system, where the availability of computational re-
sources varies both between devices and over time, and show
through extensive evaluation that we are able to significantly
increase the convergence speed over the state of the art with-
out compromising on the final accuracy.

Introduction
Deep learning has achieved impressive results in a number
of diverse domains, such as image classification (Howard
et al. 2017; Tan and Le 2019), board and video games (Sil-
ver et al. 2016; Mnih et al. 2016), and is widely ap-
plied to distributed systems, such as mobile and sensor net-
works (Zhang, Patras, and Haddadi 2019), as we consider in
this paper. Centralized deep learning techniques, where the
training is performed in a single location (e.g., a data cen-
ter), is often costly, as data would need to be collected and
sent all over the network to that centralized entity (Shi et al.
2020), and might not be feasible/authorized if the training
uses users’ private data. FL (McMahan et al. 2017) emerged
as an alternative to such techniques, performing distributed
learning on each device with the locally available data.

FL has proven effective in large-scale systems (Bonawitz
et al. 2019; Liu, Wang, and Liu 2019; Chen et al. 2020b).
However, training of a deep NN model is resource-hungry
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in terms of computation, energy, time, etc. (You et al. 2018),
and it is rather unrealistic to assume that all devices in an FL
system can perform all types of training computations all the
time, especially if the training is distributed on edge devices,
e.g., as suggested for 6G systems.1 This is as the computa-
tional capabilities of devices participating in an FL system
may be heterogeneous, e.g., different hardware, different
generations (Bonawitz et al. 2019). More importantly, the
resources available on a device for training could change
over time. This could for instance be due to shared resource
contention (Dhar et al. 2019), where CPU time, cache mem-
ory, energy, etc. are shared between the learning and parallel
tasks. We illustrate this with the following two examples.

1) Edge computing has been employed in ML-based real-
time video analytics, where each edge device processes im-
ages from several camera modules (Ananthanarayanan et al.
2017). Currently, edge devices mostly perform inference,
but there is a clear trend towards additionally performing
distributed learning via FL (Zhou et al. 2019). The learning
task shares computational resources with the inference tasks.
The inference workload depends on the activity in the video
images and changes over time, as processing is skipped
for subsequent similar images to save resources (Anantha-
narayanan et al. 2017). These changes happen fast, i.e., in the
order of seconds (Zhang et al. 2017), while FL round times
may be minutes (Bonawitz et al. 2019). 2) Google GBoard
(Yang et al. 2018) trains a next-word-prediction model us-
ing FL on end users’ mobile phones. To avoid slowing down
user applications, and thereby degrading the user experi-
ence, training is performed only when the device is charging
and idle, and aborted when these conditions change. This in-
troduces a bias towards certain devices and users, degrading
the model accuracy (Yang et al. 2018). This can be resolved
by allowing training also when the device is in use, but only
using free resources. Smartphone workloads change within
seconds (Tu et al. 2014), which is faster than the GBoard
round time of several minutes. In both examples, the learn-
ing task is subject to fast-changing resource availability.

While several works study the problem of heterogeneity
across devices (Li et al. 2020a; Imteaj et al. 2020), time-

1EU’s Horizon Europe (European Commission 2021a,b) calls
for proposals, as well as 5GIA (5G Infrastructure Association) and
SRIA (Strategic Research and Innovation Agenda) reports (Bernar-
dos and Uusitalo 2021; NetWorld 2020) detail such a vision.
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varying resource availability has so far been neglected. In
this paper, we propose a distributed, resource-aware, adap-
tive, on-device learning technique, DISTREAL, which en-
ables us to fully exploit and efficiently utilize available re-
sources on devices for the training, dealing with all these
types of heterogeneity. Our objective is to maximize the
accuracy that is reached after limited training time on de-
vices, i.e., convergence speed. To fulfill this goal, we should
make sure that C1) The available resources on a device are
fully exploited. This requires fine-grained adjustability of the
training model on a device, and a method to instantly react to
changes; and C2) The available, limited, resources on a de-
vice are used efficiently, to maximize the accuracy improve-
ment and hence the overall convergence speed. Specifically,
we provide the following novel contributions:

• We introduce and formulate the problem of heteroge-
neous time-varying resource availability in FL.

• We propose a dropout technique to adjust the computa-
tional complexity (resource requirements) of training the
model at any time. Thereby, each device locally decides
the dropout setting which fits its available resources,
without requiring any assistance from the server, address-
ing C1. This is different from the state-of-the-art tech-
niques, such as (Caldas et al. 2018; Horváth et al. 2021;
Xu et al. 2019; Diao, Ding, and Tarokh 2021), where the
server is responsible for regulating resource requirements
of training for each device at the beginning of each train-
ing round, which may take several minutes.

• We show that using different per-layer dropout rates
achieves a much better trade-off between the resource re-
quirements and the convergence speed, compared to us-
ing the same rate at all layers as the state of the art (Cal-
das et al. 2018; Diao, Ding, and Tarokh 2021), address-
ing C2. We present a DSE technique to automatically find
the Pareto-optimal dropout vectors at design time.

We implement our solution DISTREAL in an FL system,
in which the availability of computational resources varies
both between devices and over time. We show through ex-
tensive evaluation that DISTREAL significantly increases the
convergence speed over the state of the art, and is robust to
the rapid changes in resource availability at devices, without
compromising on the final accuracy.

System Model and Problem Definition
System Model We target a distributed system, which com-
prises one server and N distributed devices that act as
clients. Each device i holds its own local training data Xi.
The system uses FL for decentralized training of an NN
model from the distributed data. We target a synchronous
coordination scheme, which divides the training into many
rounds. At the beginning of a round, the server selects n
devices to participate in the training. Each selected device
downloads the recent model from the server, trains it with its
local data, and sends weight updates back to the server. The
server combines all received weight updates to a single up-
date by weighted averaging. Updates from devices that take
too long to perform the training (stragglers) are discarded.

Device Resource Model The devices are subject to time-
varying limited computational resource availability for train-
ing. To which degree the availability of a certain resource af-
fects the training time of an NN depends on the NN and hy-
perparameters, but also on the deep learning library imple-
mentation and the underlying hardware (Chen et al. 2020c).
We abstract from such specifics of the hardware and soft-
ware implementation, and from the constrained physical re-
source to keep this work applicable to many systems by rep-
resenting the resource availability in the number of multiply-
accumulate operations (MACs) that a device can calculate
per time given its specifications and available resources.
MAC operations are the fundamental building block of NNs
(e.g., fully-connected and convolutional layers) and account
for the great majority of operations (Krizhevsky, Sutskever,
and Hinton 2012). In the appendix, we also provide exper-
imental evidence for the suitability of MACs/s as an ab-
stract metric. Resource availability varies between devices
and over time. Therefore, these resource availabilities ri(t)
depends on the device i, and the current time t. Resources
may change at any time, i.e., also within an FL round. Re-
sources are not required to be known ahead of time.

Objective Our objective is to maximize the convergence
speed of training, i.e., the reached accuracy after a number
of rounds, under heterogeneous (between devices and over
time) resource availability.

Related Work
Many works on resource-aware machine learning focus on
resource-aware inference (Tann et al. 2016; Yu et al. 2018;
Amir and Givargis 2018; Li et al. 2021a). These tech-
niques allow adapting the inference to dynamically chang-
ing availability of resources at run-time but are not applica-
ble to training. Resource-aware training is recently getting
increasing attention, mostly in the context of FL. Most at-
tention has so far been paid to limited communication re-
sources, leading to solutions, such as compression, quanti-
zation, and sketching (Shi et al. 2020; Thakker et al. 2019)
Importantly, these works do not reduce the computational
resources for training, as they are applied after local training
has finished. These works are complementary/orthogonal to
our work and can be adopted to our solution (see the sec-
tion on the run-time technique). Techniques on computation-
resource-aware training can be categorized into two classes:
techniques that always train the full NN on each device but
with fewer data/relaxed timing and techniques that train sub-
sets of the NN.

Train Full NNs FedProx (Li et al. 2020b) allows devices
participating in an FL system to deliver partial results to
the server by dropping training examples that could not be
processed with the available resources. Our previous work
(Rapp, Khalili, and Henkel 2020) studied multi-head net-
works where each device uses the head that fits its available
resources. Devices only synchronize the weights of the first
shared layers. However, this technique has low adaptabil-
ity as only a few resource levels can be supported. Asyn-
chronous variants of FL have been proposed that allow de-
vices to finish training at any time (Chen et al. 2020a; Xie,
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Koyejo, and Gupta 2020). However, asynchronous synchro-
nization may reduce the convergence stability (McMahan
et al. 2017; Xu et al. 2019). Techniques based on Federated
Distillation (Li and Wang 2019; Chang et al. 2019; Lin et al.
2020) synchronize knowledge between devices by exchang-
ing labels on a public dataset instead of exchanging NN
weights. Therefore, each device has the design flexibility to
use an NN model according to its constraints. However, Fed-
erated Distillation cannot cope with time-varying resources.

Train NN Subsets Several techniques perform training
only on a dynamic subset of the NN, to be able to fit the
resource requirements of training to the resource availabil-
ity on each device. FjORD (Horváth et al. 2021), Yu and Li
(2021), and HeteroFL (Diao, Ding, and Tarokh 2021) select
subsets of the NN for each device at the beginning of each
round. They select the subsets in a hierarchical way, where
smaller subsets are fully contained in larger subsets. Het-
eroFL introduces a shrinkage ratio s that defines the ratio
of removed hidden channels to reduce the resource require-
ments of the NN. The same parameter s is applied repeat-
edly to all layers to obtain several subsets with decreasing
resource requirements. Using hierarchical subsets restricts
the granularity of resource requirements, as increasing the
number of supported subsets reduces the achievable accu-
racy (Tann et al. 2016). This limitation can be avoided by
selecting subsets randomly, i.e., use different subsets in ev-
ery round. ELFISH (Xu et al. 2019) randomly removes neu-
rons before training on slow devices at the beginning of a
round. Graham, Reizenstein, and Robinson (2015) study the
suitability of dropout (Srivastava et al. 2014) to reduce re-
source requirements. They find that computations can only
be saved if dropout is done in a structured way, i.e., the same
neurons are dropped for all samples of a mini-batch. Feder-
ated Dropout (Caldas et al. 2018) has been originally pro-
posed to reduce the communication and computation over-
head of FL. They perform dropout at the server and train
a repacked smaller network on the devices. The dropout
masks are changed randomly in each round, which results in
all parts of the NN being trained eventually. However, they
use the same dropout rate for all devices and a single dropout
rate for all layers. All these works select the trained subset
at the server, which may reduce the communication volume,
but importantly does not allow to adapt to changing resource
availability on the devices within a round.

Resource-Aware Training of NNs
Our technique comprises two parts. At run time (online), we
dynamically drop parts of the NN using an adapted version
of dropout (Srivastava et al. 2014). The Pareto-optimal vec-
tors of dropout rates w.r.t. convergence speed and resource
requirements are obtained at design time (offline) using a
DSE. Before going into the details of our contribution, we
introduce dropout as the basis of our technique.

Dropout to Reduce Computations In Training Dropout
was originally designed as a regularization method to mit-
igate overfitting (Srivastava et al. 2014). It randomly drops
individual neurons during training with a certain probability

Layer i− 1 Layer i

. . . . . .

drop filter (randomly sampled)

Figure 1: Filter-based structured dropout in a convolutional
layer maintains regularity in the calculations while signifi-
cantly reducing the required computations.

(dropout rate). This results in an irregular fine-grained pat-
tern of dropped neurons. All major deep learning libraries
perform dropout by calculating the output of all neurons
and multiplying the dropped ones with 0 (Abadi et al. 2015;
Paszke et al. 2019). This wastes computational resources; it
would be more efficient to not calculate values that are going
to be dropped. However, convolutional and fully-connected
layers are implemented as matrix-vector or matrix-matrix
operations that are heavily optimized with the help of vector-
ization (Abadi et al. 2015; Paszke et al. 2019). Skipping the
calculation of individual values results in sparse matrix op-
erations, which breaks vectorization, increasing the required
resources instead of decreasing them (Song et al. 2019).

To reduce the number of computations, the dropout pat-
tern needs to show some regularity that still allows us-
ing vectorization of dense matrix operations. This can be
achieved by dropping contiguous parts of the computa-
tion (Graham, Reizenstein, and Robinson 2015). Modern
NNs consist of many different layer types such as convolu-
tional, pooling, fully-connected, activation, or normalization
layers. Many of these layers are computationally lightweight
(e.g., pooling), while some contain the majority of compu-
tations (convolutional and fully-connected layers). In state-
of-the-art convolutional NNs, the convolutional part requires
orders of magnitude more MACs than the fully-connected
part. (See the appendix for an experimental analysis.) We,
therefore, argue that a technique to save computations needs
to target convolutional layers. Fig. 1 depicts filter-based
structured dropout in a convolutional layer, as we apply in
this paper: instead of dropping individual pixels in the out-
put, whole filters are dropped stochastically. This approach
reduces the number of computations while allowing to keep
existing vectorization methods.

Fig. 2 depicts how the numbers MACs of the forward
pass evolve when we apply different vectors of per-layer
dropouts for DenseNet-40 (details in the experimental eval-
uation). We apply the DSE technique introduced in this pa-
per to determine these vectors and show in the x-axis the
resulting ratio of dropped filters2. We observe that the num-
ber of MACs decreases almost quadratically with this ratio.
We also report the training time of a single mini-batch on a
Raspberry Pi 4, which serves as an example for an IoT de-

2Multiple vectors may results in the same ratio of dropped fil-
ters, while providing different convergence / resource requirement
trade-offs, explaining why for some ratios we have multiple MACs.
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Figure 2: The number of MACs and mini-batch training time
decrease quadratically with the ratio of dropped filters.

vice, using an implementation of this structured dropout in
PyTorch (Paszke et al. 2019), which is publicly available3.
A training step (forward pass, backpropagation, and weight
updates) requires about ∼2× more MACs than the forward
pass alone (Amodei et al. 2018). The mini-batch training
time shows a similar trend as the number of MACs but with
an offset. This is because our implementation does not mod-
ify the backend of PyTorch to be aware of this dropout,
which results in copy operations of weight tensors to repack
them. As a consequence, the measured benefits are smaller
than what is theoretically achievable. Changing the backend
would get the benefits closer to the optimum but is not easily
doable because of closed sources (e.g., of CUDA). In sum-
mary, this experiment shows that structured dropout signifi-
cantly reduces the required computational resources.

The dropout rates also change the convergence speed. A
higher dropout rate in a layer means that in each training
update, a smaller fraction of the layer’s weights is updated,
thereby slowing down the training. As a consequence, the
dropout rate determines a trade-off between the resource
requirements and the convergence speed. The dropout rate
should always be selected as low as the available resources
allow. To cope with changing resource availability, we pro-
pose to dynamically change the dropout rate at run time. In-
ference uses always the whole model.

Design-Time DSE: Find Pareto-Optimal Dropout Vec-
tors The resource requirements (MACs) and convergence
speed both depend on the dropout rates of each layer. Prior
works restrict themselves to choosing a common dropout
rate for all layers (Caldas et al. 2018). Relaxing this restric-
tion opens up a larger design space, where each dropout rate
of each layer is adjusted towards a better trade-off between
resource requirements and training convergence. However,
this design space could be too large to be explored manually.
For example, DenseNet-100 has 99 convolutional layers that
each need to be assigned a dropout rate. Some works apply
simple parametric functions of the depth to similar problems
(Huang et al. 2016). However, this only works in case of a
homogeneous NN structure, where properties of layers (e.g.,
MACs) change monotonically. For instance, DenseNet lay-
ers alternate between computationally lightweight and com-
plex, rendering a simple parametric function sub-optimal.

3https://git.scc.kit.edu/CES/DISTREAL

This section describes the required automated DSE tech-
nique to efficiently explore such a large space. The DSE is
executed only once at design time (offline).

Specifically, the design space contains all combinations
of dropout values per layer. We select dropout values from
the continuous range [0, 0.5] because higher values reduce
the final achievable accuracy, as we observe in our experi-
ments, as well as indicated in previous studies (Srivastava
et al. 2014). For an NN with k convolutional layers, the de-
sign space is [0, 0.5]k. We have two objectives, the resource
requirements and the convergence speed.

Resource Requirements: As discussed in the device re-
source model, the number of MACs is an implementation-
independent representation of the resource requirements.
Dropout is a probabilistic process, i.e., the number of MACs
varies between different update steps. The resource require-
ments with a certain dropout vector is represented by the ex-
pectation value of the number of MACs of the forward pass.
This number can be analytically computed depending on the
layer topology, the dropout rate of this layer and preceding
layers. The appendix lists equations for different layer types.

Convergence Speed: The convergence speed with a cer-
tain dropout vector is measured by observing the accuracy
change when training. Exploring the search space takes too
long if a full training with every candidate dropout vector
is performed. Instead, we assess the accuracy change after
a short training, similar to learning curve extrapolation in
neural architecture search (Baker et al. 2017). We train for
64 mini-batches with batch size 64, which allows us to ex-
plore many candidate dropout vectors in a reasonable time.
This corresponds to the amount of data collected by very
few devices. To reduce the impact of random initialization,
the NN is not trained from scratch but from a snapshot after
partially training it on a distorted version of the dataset. For
instance, we reduced the brightness, contrast, and saturation
to 0.5 of the original value for CIFAR-10/100 datasets. The
DSE, therefore, does not require access to the devices’ data,
but only access to a small amount of similar (or even syn-
thetic) data. To further reduce the impact of random varia-
tions, we repeat this with three different random seeds. The
convergence speed is represented by the average accuracy
improvement.

Fig. 3 shows our DSE flow. The problem of find-
ing Pareto-optimal dropout vectors is a multi-objective
optimization. This is a well-studied class of problems
with many established algorithms. Evolutionary algorithms
have successfully been employed for neural architecture
search (Elsken, Metzen, and Hutter 2019), which is related
to the problem studied in this section. Note that we are
not searching for an architecture, but tune parameters of a
given architecture. The output of the DSE is the Pareto-
front of dropout vectors. To have a large variety of op-
tions to chose from at run time, but also keep a low num-
ber of vectors to be stored, the Pareto-front should be ap-
proximately equidistantly represented. We use the NSGA-
II (Deb et al. 2002) genetic algorithm from the pygmo2 li-
brary (Biscani and Izzo 2020). NSGA-II explores the search
space by crossover (combining parts of two dropout vec-
tors) and mutation (random changes) of good dropout vec-
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Figure 3: Efficient resource-aware training comprises the
DSE to find Pareto-optimal vectors of dropout rates per layer
and resource-aware training on each device at run time.

tors w.r.t. the objective function, and is designed to obtain
dropout vectors that are equidistantly distributed across the
Pareto-front. Thereby, an individual is one dropout vector
containing the per-layer dropout rates. For our largest stud-
ied NN, DenseNet-100, this is 99 float values between 0 and
0.5. A population is a set of individuals. We use a population
size of 64. A generation performs one optimization step on
the population with the goal to find the Pareto-front. The op-
timization minimizes the following two-dimensional fitness
function f(d) for a dropout vector d, which normalizes the
values of the resource requirements MACs(d) and conver-
gence speed ∆Acc(d) to the range [0, 1]:

f(d) =

 MACs(d)−MACs({0.5,...,0.5})
MACs({0,...,0})−MACs({0.5,...,0.5})

∆Acc({0,...,0})−∆Acc(d)
∆Acc({0,...,0})−∆Acc({0.5,...,0.5})

 (1)

Fig. 4 shows the evolving population of dropout vectors
for DenseNet-40. The initial population comprises random
dropout vectors. We add two samples to the initial popu-
lation (all dropout values are 0 / 0.5) to accelerate the ex-
ploration of the Pareto-front (leverage the crossover oper-
ation). After 50 generations of NSGA-II, the Pareto-front
has fully evolved and shows a continuous trade-off between
resource requirements and convergence speed. Importantly,
the Pareto-front found by DSE provides a significantly better
trade-off between resource requirements and convergence
speed compared to using the same dropout rate for all layers.

Run Time: Resource-Aware Training of NNs After find-
ing the Pareto-optimal dropout vectors, they are stored in a
lookup table (LUT) D, along with the corresponding num-
ber of MACs. The LUT is small in size (e.g., 25 kB for
DenseNet-100 for storing 64 dropout vector of 99 dropout
values and the number of MACs, each in 32-bit format) and
stays constant for all rounds. At run time, a device selects
the dropout vector d that best corresponds to its resource
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Figure 4: The evolving Pareto-front for DenseNet-40 signif-
icantly outperforms setting the same rate for all layers.

Algorithm 1: Each Selected Device i (Client)
Require: D: LUT of Pareto-optimal dropout vectors (from DSE)

receive θinit from server
θ ← θinit, c← 0
for each b ∈ Xi do . iterate over mini-batches from local data

r ← ri(t) . current resource availability
d← D[r] . resource-aware dropout vector
Update dropout values of local NN with d
θ ← θ − η ∂

∂θ
L(b; θ) . update step

c← c+ MACs(d) . accumulate computations
send (θ−θinit, c) to server . weight update and computations

availability. If resource availability changes at the device, the
dropout vectors can be adjusted to these changes at almost
zero overhead before every mini-batch. No weight copies,
recompilation, repacking of weights, etc. are required for
adapting the resource requirements.

In an FL setting, each device selects its dropout vector
at run time according to its resource availability, as shown
in Algorithm 1. This is done at the granularity of single
mini-batches, i.e., devices can quickly react to changes. Ad-
ditionally, the server does not need to know the resource
availability at each device at the beginning of the round, re-
ducing signaling overhead, and avoiding the requirement to
know resource availability ahead of time. This is important
to maintain scalability with the number of devices. At the
end of each round, the devices report back the weight up-
dates and the computational resources they put into training
(number of MACs, as stored in the LUT). The server (Al-
gorithm 2) performs a weighted averaging of the received
updates w.r.t. the devices’ reported computational resources.
Thereby, updates from devices that have trained with lower
dropout rates, are weighted stronger. This is an extension of
FedAvg (McMahan et al. 2017), which performs weighted
averaging only based on the number of mini-batches. In the
case of constant and same resource availability on all de-

8066



Algorithm 2: Server
θ0 ← random initialization
for each round t = 1, 2, . . . do

K ←select n devices
broadcast θt−1 to selected devices K
receive (dθi, ci) from devices i ∈ K
C ←∑

i∈K ci . tot. computations
dΘ←∑

i∈K ci·dθi . weighted sum
dθ ← dΘ/C . weighted average
θt ← θt−1 + dθ

FEMNIST CIFAR-10 CIFAR-100

#Devices 3,550 100 100
#Samples/device 181±70.7 500 500
Devices/round 35 10 10
Resources var. 3× 4× 4×

Table 1: System configuration for FL.

vices, our coordination technique behaves the same as Fe-
dAvg. As we do not change the type of data exchanged
between the devices and the server, compared to FedAvg,
we can still apply and adopt techniques that mitigate com-
munication aspects, such as compression and sketched up-
dates (Shi et al. 2020).

Experimental Results
This section demonstrates the benefits of DISTREAL with
heterogeneous resource availability in an FL system.

Experimental Setup We study synchronous FL as de-
scribed in the system model. We report the classification ac-
curacy of the synchronized model at the end of each round.
Our main performance metric is the convergence speed, i.e.,
the accuracy achieved after a certain number of rounds, but
we also report the final accuracy after convergence.

The three datasets used in our experiments are Feder-
ated Extended MNIST (FEMNIST) (Cohen et al. 2017)
with non-independently and identically distributed (non-
iid) split data, similar to LEAF (Caldas et al. 2019), and
CIFAR-10/100 (Krizhevsky and Hinton 2009). FEMNIST
consists of 641,828 training and 160,129 test examples, each
a 28×28 grayscale image of one out of 62 classes (10 dig-
its, 26 upper- and 26 lower-case letters). CIFAR-10 con-
sists of 50,000 training and 10,000 test examples, each a
32×32 RGB image of one out of 10 classes such as airplane
or frogs. CIFAR-100 is similar to CIFAR-10 but uses 100
classes. Table 1 summarizes the configurations.

For FEMNIST, we use a similar network as used in Fed-
erated Dropout (Caldas et al. 2018), with a depth of 4 lay-
ers, requiring 4.0 million MACs in the forward pass. We use
DenseNet (Huang et al. 2017) for CIFAR-10 and CIFAR-
100 with growth rate k = 12 and depth of 40 and 100,
respectively. This results in 74 million MACs for CIFAR-
10 and 291 million MACs for CIFAR-100 in the forward
pass. The DSE for these NNs takes around 15, 270, and 330
compute-hours, respectively, on a system with an Intel Core

i5-4570 and an NVIDIA GeForce GTX 980. More details
about the NN configurations and the computational com-
plexity of the DSE are presented in the appendix.

We compare DISTREAL to four baselines:

1. Full resource availability. All devices have the full re-
sources to train the full NN in each round. This is a theo-
retical baseline, which serves as an upper bound.

2. Small network. The NN complexity is reduced to fit the
weakest device. Thereby, each device can train the full
(reduced) NN in each round with FedAvg. For CIFAR-10
and CIFAR-100, we reduce the depth of DenseNet to 19
and 40, respectively. Because the network of FEMNIST
already has only a few layers, we reduce the number of
filters of the convolutional layers.

3. Federated Dropout as in (Caldas et al. 2018). Similar
to our technique, it uses dropout to reduce the compu-
tational complexity. However, the same dropout rate is
used for all layers. To have a fair comparison, we extend
the technique of Caldas et al. (2018) to allow for differ-
ent dropout rates for different devices according to the re-
source availability. The rates are determined by the server
at the start of each round as in the original technique.

4. HeteroFL as in (Diao, Ding, and Tarokh 2021). It uses
a shrinking ratio 0<s<1. The NN is divided into several
levels p = 1, 2, . . ., where level p reduces the width of
each hidden channel to a fraction sp−1. This is done on
the server at the beginning of each round. (Diao, Ding,
and Tarokh 2021) provides no details on how to set s. We
use s=0.7, as it shows the best performance.

Heterogeneity Across Devices We first study heterogene-
ity across devices, i.e., devices have different resource avail-
ability but for now, there are no changes over time. We se-
lect the resource availability at each device randomly and
uniformly from a range with the upper bound being selected
such that training the full NN without dropout is possible.
The variability in the resource availability, i.e., ratio of up-
per to lower bound in the range, is reported in Table 1. We
repeat every experiment three times and report the average
and standard deviations of the classification accuracy.

Fig. 5 shows the accuracy results for the three datasets.
FEMNIST uses a simple network. We observe that the small
network baseline has the lowest convergence speed, with all
other techniques showing similar performance. The varying
quantity (see Table 1) and distribution of local data on the
devices make the training noisy. Nevertheless, DISTREAL
is not more sensitive to non-iid data than other solutions
and reaches the same convergence speed and final accu-
racy. With CIFAR-10, DISTREAL achieves a significantly
higher convergence speed than Federated Dropout or Het-
eroFL and reaches the accuracy of the theoretical baseline
after 2,000 rounds. The simple baseline that uses a smaller
network on all devices initially converges faster but saturates
early. We also evaluate the final accuracy, where we train
with each technique for 7,500 rounds. This ensures that all
techniques have fully converged. DISTREAL and Federated
Dropout reach the highest final accuracy, similar to the up-
per bound of full resource availability. Similar observations
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Caldas 2018 86.9±0.3 84.2±0.3 65.3±0.5

(b) Final accuracy (after 7,500 rounds)

Figure 5: Convergence during FL on heterogeneous de-
vices. DISTREAL improves the convergence speed, while
still reaching the same or a higher final accuracy than others.

can be made with CIFAR-100.
As the resources are not changing over time, the main

contributions of DISTREAL in this scenario are the applica-
tion of the DSE, which enable devices to efficiently utilize
the available resources and the fact that DISTREAL applies a
probabilistic approach and drops different filters in different
mini-batches, allowing to support a large number of resource
levels. It, therefore, outperforms Federated Dropout in terms
of convergence speed, which uses the same dropout rates
over all the layers, and HeteroFL, which supports only a few
resource levels and removes the filters in always the same or-
der, as DISTREAL fully utilizes the available resources, and
uses these resources more efficiently w.r.t. convergence. Be-
sides, deeper is the trained model, higher is the relative gain.

Heterogenity Across Devices and Over Time This sec-
tion studies a fully heterogeneous FL system, i.e., resource
availability varies between devices and for each device over
time. As discussed in the introduction, this for instance due
to shared resource contention between the learning task and
other tasks. The available resources for learning may change
at any time (workload changes happen in the order of sec-
onds (Tu et al. 2014)), i.e., also in the middle of a round.

As these changes stem from changes in the environment,
they may be unpredictable to the device (Duc et al. 2019).
We model them as random, with the time between changes
following an exponential distribution with rate parameter λ.
The absolute resource availability levels are sampled from
the same range as in the previous section, i.e., also according
to Table 1. Thereby, the average resource availability across
all devices and over time is the same as in the previous sec-
tion. We study four different values of λ ∈ {0.5, 1, 2, 4}, to
simulate a range of slowly to rapidly changing scenarios.

Figs. 6a and 6b show the convergence speed for CIFAR-
10 and CIFAR-100, respectively. We also plot the conver-
gence speed with constant resources (previous results from
Fig. 5a) for reference. We observe that for both datasets, the
convergence speed with DISTREAL is not dependent on the
rate of resource changes and almost matches the results of
the previous section. In contrast, the convergence speeds of
HeteroFL and Federated Dropout significantly degrade with
higher λ. In addition, DISTREAL reaches the highest final
accuracy (Figs. 6c and 6d), independently of λ. The base-
lines with full resource availability and small model perform
the same as in Fig. 5, therefore are not shown again.

HeteroFL and Federated Dropout both select the trained
model subsets on devices at the server at the start of a round.
The devices train on the assigned subset for the whole round
and hence cannot react to potential unpredictable changes
in the resource availability during a round. An increase in
resource availability results in underutilization of available
resources, as training finishes early and the device is idle
until the end of the round. A decrease in resource availability
results in the training not finishing in time (i.e., the device
becomes a straggler), leading to the device being dropped
from the round. In contrast, DISTREAL adjusts the resource
requirements of training at run-time by selecting a different
dropout vector when a change occurs, finishing the training
in time and fully utilizing the available resources.

These results show the importance of tackling the chal-
lenges discussed in the introduction, to fully and efficiently
utilize available resources on each device. Our technique
achieves this by performing dropout at the devices, enabling
them to react fast to the changes in a fine-grained manner.
This enables to fully utilize all available resources, making
convergence robust to changes in the resource availability.
Furthermore, the DSE enables us to efficiently utilize the
available resources by finding Pareto-optimal dropout vec-
tors w.r.t. resource requirements and achieved convergence
speed. These gains in convergence speed do not come at the
cost of a lower final accuracy.

Conclusion
We addressed the problem of distributed training of
NNs under heterogeneous resource availability, proposing
DISTREAL. Our results show that DISTREAL significantly
improves the convergence speed in a heterogeneous FL sys-
tem, where resources vary both between devices and over
time without compromising on the final accuracy. This is as
our solution provides each device the capability to adjust the
training in a fine-grained manner, enabling it to fully and ef-
ficiently utilize its available, but limited, resources.
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λ = 0.5 λ = 1 λ = 2 λ = 4

DISTREAL 86.3±0.3 86.0±0.2 85.1±0.3 85.9±0.4
Diao 2021 82.6±0.2 81.9±1.3 81.7±0.5 81.3±0.3

Caldas 2018 83.4±0.6 83.2±0.4 82.4±0.4 82.7±0.6

(c) CIFAR-10: Final accuracy (after 7,500 rounds)

λ = 0.5 λ = 1 λ = 2 λ = 4

DISTREAL 65.4±0.4 65.5±0.9 64.7±0.3 64.7±0.3
Diao 2021 57.2±0.4 56.8±1.0 56.5±1.0 56.6±1.0

Caldas 2018 65.0±0.3 64.5±0.2 64.5±0.3 64.5±0.3

(d) CIFAR-100: Final accuracy (after 7,500 rounds)

Figure 6: Convergence with CIFAR-10 and CIFAR-100 on heterogeneous devices where resources availability changes ran-
domly over the time with varying rate parameter λ. DISTREAL achieves a higher convergence speed than the state of the art,
and the highest final accuracy, independently of λ. Experiments with full resource availability or with a small network are not
repeated as they perform the same as in Fig. 5.
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