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Abstract

In this paper, we introduce VACA, a novel class of vari-
ational graph autoencoders for causal inference in the ab-
sence of hidden confounders, when only observational data
and the causal graph are available. Without making any para-
metric assumptions, VACA mimics the necessary properties
of a Structural Causal Model (SCM) to provide a flexible
and practical framework for approximating interventions (do-
operator) and abduction-action-prediction steps. As a result,
and as shown by our empirical results, VACA accurately ap-
proximates the interventional and counterfactual distributions
on diverse SCMs. Finally, we apply VACA to evaluate coun-
terfactual fairness in fair classification problems, as well as to
learn fair classifiers without compromising performance.

Introduction
Graph Neural Networks (GNNs) are a powerful tool for
graph representation learning and have been proven to ex-
cel in practical complex problems like neural machine trans-
lation (Bastings et al. 2017), traffic forecasting (Derrow-
Pinion et al. 2021; Yu, Yin, and Zhu 2018) or drug discovery
(Gilmer et al. 2017).

In this work, we investigate to which extent the induc-
tive bias of GNNs–encoding the causal graph information–
can be exploited to answer interventional and counterfactual
queries. More specific, to approximate the interventional and
counterfactual distributions induced by interventions on a
casual model. To this end, we assume i) causal sufficiency–
i.e., absence of hidden confounders; and, ii) access to ob-
servational data and the true causal graph. We stress that
the causal graph can often be inferred from expert knowl-
edge (Zheng and Kleinberg 2019) or via one of the ap-
proaches for causal discovery (Glymour, Zhang, and Spirtes
2019; Vowels, Camgoz, and Bowden 2021). With this anal-
ysis we aim to complement the concurrent line of research
that theoretically studies the use of Neural Networks (NN)
(Xia et al. 2021), and more recently GNNs (Zečević et al.
2021), for causal inference.

To this end, we describe the architectural design con-
ditions that a variational graph autoencoder (VGAE)–as a
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density estimator that leverages a priori graph structure–
must fulfill so that it can approximate causal interventions
(do-operator) and abduction-action-prediction steps (Pearl
2009b). The resulting Variational Causal Graph Autoen-
coder, referred to as VACA, enables approximating the ob-
servational, interventional and counterfactual distributions
induced by a causal model with unknown structural equa-
tions. We remark that parametric assumptions on the struc-
tural causal equations are in general not testable, may thus
not hold in practice (Peters, Janzing, and Schölkopf 2017)
and may lead to inaccurate results, if misspecified. VACA
addresses this limitation by including uncertainty, i.e., a
probabilistic model, in the estimation of the causal-parent
relationships.

We show in extensive synthetic experiments that VACA
outperforms competing methods (Karimi et al. 2020; Khe-
makhem et al. 2021) on complex datasets at estimating not
only the mean of the interventional/counterfactual distribu-
tion (as in previous work), but also the overall distribution
(measured in terms of Maximum Mean Discrepancy (Gret-
ton et al. 2012)). Finally, we show a practical use-case in
which VACA is used to assess counterfactual fairness of dif-
ferent classifiers trained on the real-world German Credit
dataset (Dua and Graff 2019a), as well as to learn counter-
factually fair classifiers without compromising performance.

Related Work
Deep generative models are enjoying increasing attention
for causal queries in complex data (Moraffah et al. 2020;
Parafita and Vitria 2019a). Existing approaches for causal
inference focus on i) estimating the Average Treatment Ef-
fect (ATE)–a specific type of group-level causal queries–by
assuming a fixed causal graph that includes a treatment vari-
able (Kim et al. 2021; Louizos et al. 2017; Rakesh et al.
2018; Schwab, Linhardt, and Karlen 2018; Vowels, Camgoz,
and Bowden 2020; Zhang, Zhang, and Li 2020); ii) discover-
ing and intervening on the causal latent structure of the (e.g.,
image) data (Kim et al. 2021; Parafita and Vitria 2019a,b;
Shen et al. 2020; Yang et al. 2020); or iii) addressing in-
terventional and/or counterfactual queries by fitting a con-
ditional model for each observed variable given its causal
parents (Garrido et al. 2021; Karimi et al. 2020; Kocaoglu
et al. 2018; Parafita and Vitria 2020; Pawlowski, Coelho de
Castro, and Glocker 2020).
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Within the scope of causality, GNNs have predominantly
been used for causal discovery (Yu et al. 2019; Zhang et al.
2019) and only very recently, concurrent with us, exploited
to answer interventional queries (Zečević et al. 2021).

Khemakhem et al. (2021) propose CAREFL, an autore-
gressive normalizing flow for both causal discovery and in-
ference. The authors focus on (multi-dimensional) bi-variate
graphs, but their approach can be extended to more general
directed acyclic graphs (DAGs) using e.g., neuronal spline
flows (Durkan et al. 2019). However, causal assumptions
in a graph are modeled not only by the direction of edges,
but also the absence of edges (Pearl 2009a). For the task of
causal inference CAREFL is unable to exploit the absence
of edges fully as it reduces a causal graph to its causal or-
dering (which may not be unique). Further, the authors only
evaluate interventions in root nodes (which reduces to con-
ditioning on the intervened-upon variable).

Karimi et al. (2020) answer interventional queries by fit-
ting a conditional variational autoencoder (CVAE) to each
conditional in the Markov factorization implied by the
causal graph. As each observed variable is independently
fitted, the mismatch between the true and generated distri-
bution can cause errors that propagate to the distribution of
its descendants. This can be problematic, especially for long
causal paths. Pawlowski, Coelho de Castro, and Glocker
(2020) propose an approach similar to Karimi et al. (2020),
and additionally propose an approach based on normalizing
flows to approximate the causal parent-child effect.

In contrast, VACA leverages i) GNNs to encode the
causal graph information (inductive bias), ii) the GNN mes-
sage passing algorithm to approximate the effect of inter-
ventions (do-operator (Pearl 2009b)) in the causal graph,
and iii) jointly optimizes the observational distribution for
all observed variables to avoid error propagation along the
Markov factorization. We thoroughly evaluate the perfor-
mance of VACA and compare it with related work, at ap-
proximating both interventional and counterfactual distribu-
tions induced by interventions on both root and non-root
nodes in a wide variety of causal models.

Background
In this section, we first provide a brief overview on SCMs
and then introduce the main building block of VACA, i.e.,
variational graph autoencoders.

Structural Causal Models
An SCM M = (p(U), F̃) determines how a set of d en-
dogenous (observed) random variables X := {X1, . . . Xd}
is generated from a set of exogenous (unobserved) ran-
dom variables U := {U1, . . . Ud} with prior distribution
p(U) via the set of structural equations F̃ = {Xi :=

f̃i
(
Xpa(i), Ui

)
}di=1. Here Xpa(i) refers to the set of vari-

ables directly causing Xi, i.e., parents of i. Similarly to
(Karimi et al. 2020; Khemakhem et al. 2021; Pearl 2009a),
we consider SCMs that are associated with a directed acyclic
causal graph (although Section relaxes this assumption).
We here denote the causal graph by G := (V, E), where
each node i ∈ V corresponds to an endogenous variable

X1

X3X2

U1
U2

U3

(a) G without intervention

X1

X3α •

U1

U3

(b) G with intervention

Figure 1: triangle SCMM = {p(U), F̃}, U ∼ p(U) with
d = |X| = 3 endogenous variables where X1 := f̃1(U1),
X2 := f̃2(X1, U2), X3 := f̃3(X1, X2, U3) with (a) the cor-
responding causal graph G and (b) the causal graph corre-
sponding toMI after intervention do(X2 = α). Blue (red)
arrows highlight the direct (indirect) causal path from X1 to
X3 (via X2).

Xi. The set of directed edges (j, i) ∈ E represent the
causal parent-child relationship between endogenous vari-
ables (Pearl 2009a), i.e. Xj is a parent of Xi. E can be
represented by the adjacency matrix A ∈ {0, 1}d×d, such
that Aij = 1 if (j, i) ∈ E and Aij = 0, otherwise. We
also define the set of neighbors, a.k.a. parents, of node i as
pa(i) = Ni = {j}(j,i)∈E and pa∗(i) := pa(i) ∪ i.

Given an SCM, there are two types of causal queries of
general interest: interventional queries, e.g., “What would
happen to the population X, if variable Xi would be set
to a fixed value α?”, and counterfactual queries, e.g.,“What
would have happened to a specific factual sample xF , had
Xi been set to a value α?”. In more detail, interventional
queries aim to evaluate the effect at the population level
(rung 2) of a specific intervention on, or equivalently ma-
nipulations of, a subset of the endogenous variables I ⊆
[d] := {1, . . . , d}. Interventions on an SCM M are of-
ten represented with the do-operator do(Xi = αi) (Pearl
2009b) and lead to a modified SCM MI which induces
a new distribution over the set of endogenous variables
p(X | do(Xi = αi)), which is referred to as the interven-
tional distribution. In G an intervention removes incoming
edges to node i and sets Xi = α (see Figure 1b). A coun-
terfactual query for a given factual instance xF aims to esti-
mate what would have happened had XI instead taken value
α. This effect is captured by the counterfactual distribution
p(xCF | xF , do(XI = α)), which can be computed using
the abduction-action-prediction procedure by Pearl (2009b).
Refer to Section for further details on the computation of
the interventional and counterfactual distributions within our
framework.

Variational Graph Autoencoder and Graph Neural
Networks
Variational Autoencoders (VAEs). VAEs (Kingma and
Welling 2014) are powerful latent variable models based on
neural networks (NNs) for jointly i) learning expressive den-
sity estimators p(X) ≈

∫
pθ(X | Z)p(Z)dZ, where the

likelihood function (a.k.a. decoder) is parameterized using
a NN with parameters θ, and ii) performing approximate
posterior inference over the latent variables Z made possi-
ble via a variational distribution (a.k.a. encoder) qφ (Z | X)
parameterized using a NN with parameters φ. The parame-
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ters θ and φ can be learned by maximizing a lower bound on
the log-evidence (Burda, Grosse, and Salakhutdinov 2016;
Nowozin 2018; Rainforth et al. 2018; Tucker et al. 2018).

Variational Graph Autoencoders (VGAEs). Kipf and
Welling (2016) extend VAEs to account for prior graph
structure information on the data (Yu et al. 2019). VGAEs
define a (potentially multidimensional) latent variableZi per
observed variableXi, i.e., Z := {Z1, . . . , Zd}. Additionally,
VGAEs rely on an adjacency matrix A, which is used by two
GNNs, one for the encoder and one for the decoder, to en-
force structure on the posterior approximation qφ(Z | X,A)
and the likelihood pθ(X | Z,A). Hence, A–given as prior–
determines which variables Xi influence Zj ∀i, j ∈ [d].

Graph Neural Networks (GNNs). In its most general
form, a GNN is a composition of message passing layers
(Gilmer et al. 2017), where each layer updates the state of
each node in G. In particular, the state of node i at the output
of layer l, i.e., hli, is specified as:

hli = fu
(
hl−1i , fa

(
{ml

ij}j∈Ni

)
; θlu
)
. (1)

First, node i receives a message ml
ij =

fm(hl−1i ,hl−1j ; θlm) from each of its neighbors j ∈ Ni.
Then, these messages are aggregated via fa. Finally, hli is
computed as a function fu of the node’s previous state hl−1i
and the aggregated message. Note, if a GNN has Nh hidden
layers, then the output for node i depends not only on its
direct neighbors Ni, but also on its neighbors up to order
Nh + 1 (hops). For example, if Nh = 0 (Nh = 1) then the
output for each node only depend on its direct neighbors,
i.e., parents (2-hop neighbors, i.e., grand-parents). For a
detailed description of GNNs, please refer to Appendix A.

Observational, Interventional and
Counterfactual Distributions

In this section, we introduce the observational, interven-
tional and counterfactual distributions (triggered by any in-
tervention of the form do(XI = α)) that are induced by
an SCMM = {p(U), F̃}. Specifically, we summarize the
main properties of an SCM that will allow us to propose
a novel class of VGAEs, namely VACA, to compute ac-
curate estimates of these distributions using observational
data and a known causal graph. To this end, we assume
the absence of hidden confounders, i.e., we assume that
p(U) =

∏d
i=1 p(Ui).

Observational distribution. The SCM M determines
the observational distribution p(X) over the set of endoge-
nous variables X = {X1, . . . Xd}, which satisfies causal
factorization (Schölkopf 2019), i.e., p(X) =

∏d
i=1 p(Xi |

Xpa(i)).
That is, after marginalizing out the exogenous variables

U, the distribution of each endogenous variable Xi depends
only on its parents, i.e., Xpa(i). The observational distribu-
tion can alternatively be written only in terms of the exoge-
nous variables U as

p(X) = F#[p(U)], (2)

i.e., p(X) is the pushforward of P (U) through F. Here
F : U → X corresponds to the set of structural equa-
tions, which directly transform the exogenous variables U
into the endogenous variables X. This is equivalent to F̃,
which takes as input both the exogenous variable and the
parent (endogenous) variables of a target endogenous vari-
ables to compute its value.

Let us denote by an(i) the set of indexes of the ancestors
of i, and an∗(i) := an(i) ∪ {i}. Then, the causal factoriza-
tion induced byM leads to the following property of F(U):

Property 1 Each endogenous variableXi can be expressed
as a function of its exogenous variable Ui and the ones of all
its causal ancestors, i.e., F(U)={Xi = fi({Uj}j∈an∗(i))}.
This, together with the causal sufficiency assumption, im-
plies that Xi is statistically independent of Uj , ∀j /∈ an∗(i).

Interventional distribution. As stated in Section , inter-
ventions on a set of variables I can be performed using the
do-operator, which can be seen as a mapping do(XI = α) :

M 7→MI = (p(U), F̃I) where F̃I = {f̃i}i6∈I ∪ {αi}i∈I .
As above, we can represent the resulting set of intervened
structural equations as FI = {fi}i6∈I ∪ {αi}i∈I , and thus
write the interventional distribution as:

p(X | do(XI = α)) = FI#[p(U)]. (3)

Property 2 After an intervention do(XI = α) on M, all
the causal paths from Uj ∀j ∈ an∗(i) to Xi that include an
intervened-upon variable in XI (i.e., the causal paths where
XI is a mediator) are severed in FI , while the rest of causal
paths remain untouched.

The above property is illustrated in Figure 1, where we
can observe that after an intervention do(X2 = α), the indi-
rect causal path (in red) from X1, and thus from U1, to X3

via X2 is severed, while the direct path (in blue) remains.
Counterfactual distribution. Assuming the SCMM =
{p(U), F̃} to be known, the following three steps defined by
Pearl (2009a) allow to compute counterfactuals xCF :

i) Abduction: infer the values of the exogenous variables
U for a factual sample xF , i.e., compute p(U | xF ); ii)
Action: intervene with do(XI = α) : M 7→ MI =

(p(U), F̃I); and iii) Prediction: use the posterior distribu-
tion p(U | xF ) and the new structural equations F̃I to com-
pute p(xCF | xF ). The prediction step can alternatively be
computed using the new set of structural equations FI de-
fined in terms of the exogenous variables U, so that we can
write the counterfactual distribution as:

p(xCF | xF , do(XI = α)) = FI#[p(U | xF )]. (4)

Importantly, the posterior distribution p(U | xF ) satis-
fies:

Property 3 In the abduction step, statistical independence
implies that conditioned on the endogenous variables of the
factual sample xF , each exogenous variable Ui is indepen-
dent of the factual value xFj if j 6= i and the variable Xj is
not a parent of Xi, i.e., j 6∈pa∗(i).
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Variational Causal Autoencoder (VACA)
In this section, we present a novel variational causal graph
autoencoder (VACA) to approximate the observational (2),
interventional (3) and counterfactual (4) distributions. While
the underlying SCM M is unknown, we assume access to
the true causal graph G and observational data {xn}Nn=1, i.e.,
i.i.d. samples of the observational distribution induced byM
(in the absence of hidden confounders).

Definition 0.1 (VACA) . Given a causal graph G over a set
of endogenous variables X = {X1, . . . , Xd}, which estab-
lishes the set of parents pa(i) for each variable Xi (includ-
ing the i-th node), VACA is defined by:

• A causal adjacency matrix A, which is a d × d binary
matrix with elements Aij = 1 if j ∈ pa∗(i), i.e., when
i = j or j is a parent of i. Otherwise, Aij = 0.
• A prior distribution p(Z) =

∏
i p(Zi) over the set of la-

tent variables Z = {Z1, . . . , Zd}.
• A decoder pθ(X | Z,A), which is a GNN (parameter-

ized by θ) that takes as input the set of latent variables
Z and the causal adjacency matrix A, and outputs the
parameters of the likelihood pθ(X | Z,A).
• An encoder qφ(Z | X,A), which is a GNN (parameter-

ized by φ) that takes as input the endogenous variables X
and the causal adjacency matrix A, and outputs the pa-
rameters of the posterior approximation qφ(Z | X,A).

Next, we discuss how to design VACA such that it is able
to capture the observational, interventional, and counterfac-
tual distribution induced by an unknown SCM. Importantly,
we derive the necessary conditions on the design of both the
encoder and decoder GNNs such that VACA can mimic the
SCM properties introduced in Section .

Observational Distribution
VACA approximates the observational distribution in (2) us-
ing the generative model as

p(X) ≈
∫
pθ(X | Z,A)p(Z)dZ, (5)

where pθ(X | Z,A) =
∏d
i=1 pθ(Xi | Z,A). Figure 3a

depicts this generative process.
Relationship between Z and U. When comparing (5)

with the true observational distribution in (2), we observe
that the latent variables Z play a similar role to the exoge-
nous variables U, and the decoder pθ(X | Z,A) plays a
similar role to the structural equations F. We remark that Z
do not need to correspond to the true exogenous variables
(i.e., p(U) 6= p(Z)), and thus, the decoder does not aim
to approximate the causal structural equations. Yet, we as-
sume that there is one independent latent variable Zi for ev-
ery observed variableXi capturing all the information ofXi

that cannot be explained by its parents. Thus, since Xi is
in turn a (deterministic) function of its parents pa(i) and
its exogenous variable Ui, the posterior p (Zi | Xi, pa(i))
aims to capture the information that Ui contributes to Xi

(i.e., the information of Xi not contributed by its parents).
That is–similar to p (Ui | Xi, pa(i)), the (true) posterior

X1

X2

X3

Z1

Z2

Z3

•h1

•h2

•h3

(a) Original

X1

X2

X3

Z1

Z2

Z3

•h1

•h2

•h3

(b) Intervened

Figure 2: VACA decoder (a) without and (b) with interven-
ing onX2. Message passing in the GNN correspond to direct
(blue) and indirect (red) causal paths in Figure 1.

distribution–p (Zi | Xi, pa(i)) should depend only on Xi

and parents pa(i).
Observational noise. VACA has observational noise that

is not present in the true SCM, where an observed variable
is assumed to be a deterministic transformation of its exoge-
nous variables and parents via the structural equations (SEs).
As VACA does not have access to the true SEs (nor to the
true distribution of the exogenous variables), the noise of the
likelihood pθ(X | Z,A) can be interpreted as an estimate of
the uncertainty on the estimated observational distribution
(due to the uncertainty on the true SCM).

Here, we seek to ensure that the p(X) induced by VACA
complies with causal factorization (Property 1 in Section ).
To that end, the design of the decoder GNN must assure that
pθ(Xi | Z,A) = pθ(Xi | Zan∗(i)). That is, that Xi depends
only on Zj if j = i or Xj is an ancestor of Xi in the causal
graph.

Proposition 1 (Causal factorization). VACA satisfies
causal factorization, pθ(X | Z,A) =

∏
i pθi(Xi | Zan∗(i)),

if and only if the number of hidden layers in the decoder is
greater or equal than δ − 1, with δ being the length of the
longest shortest path between any two endogenous nodes.

The above proposition (proved in Appendix B) is based on
the fact that, in a GNN with Nh hidden layers (and Nh + 1
layers in total), the output for the i-th node depends on its
neighbors of up to Nh + 1 hops. As an example, consider
the following chain causal graph: X1 → X2 → X3, such
that δ = 2.

In the decoder, the first layer yields a hidden representa-
tion for the 3-rd node h13 := f(f(Z2), Z3) that only depends
on Z2 and Z3. Thus, we need a second layer for its output
h23 := f(h2, Z3) = f(f(f(Z1), Z2), Z3) to depend on Z1

(note that X1 is an ancestor of X3).

Interventional Distribution
VACA approximates the interventional distribution in (3) as
(illustrated Figure 2):

p(X | do(XI = α)) ≈
∫ ∫

pθ(X | Z̃, Z̃I ,AI)

× p(Z̃)qφ(Z̃I | AI ,XI)dZ̃dZ̃I ,
(6)

where Z̃I = {ZIi }i∈I is the subset of latent variables as-
sociated with the intervened-upon variables XI , and Z̃ =
{Zi}i6∈I denotes the subset of latent variables associated
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(a) Observational (b) Interventional (c) Counterfactual

Figure 3: VACA generation of (a) observational, (b) interventional, and (c) counterfactual samples. The ‘hat’ in X̂ and x̂CF

indicates that they are sample estimates of the true random variables.

with the rest of the observed variables. Importantly, here
the do-operator is performed on the causal adjacency ma-
trix as do(XI = α) : A 7→ AI = {Aij} ∀i6∈I,j ∪ {Aij =
0} ∀i∈I,j . This ensures that Xi for i ∈ I is independent of
Zj for all j 6= i. Note that in order for (6) to be able to
approximate the interventional distribution in (3), an inter-
vention on VACA should satisfy Property 2, i.e.:

Proposition 2 (Causal interventions). VACA captures
causal interventions if and only if the number of hidden
layers in its decoder is greater than or equal to γ − 1, with
γ being the length of the longest path between any two
endogenous nodes in G.

To illustrate this, Figure 2 depicts how messages are ex-
changed in a one-hidden-layer decoder GNN corresponding
to the causal graph G in Figure 1 (triangle with γ = 2),
both (a) without and (b) with an intervention on X2. We
highlight in blue the direct messages (sent via direct causal
path in G), and in red the indirect messages (sent via indirect
causal path in G) from Z1 to X3. Observe that, similarly to
Figure 1, in (a) there is an indirect path (via h2) from Z1

to X3; while in (b) this path is severed. Hence, the hidden
layer (h1, h2, h3) allows to distinguish between direct and
indirect paths and thus to capture interventional effects. As
the condition in Proposition 2 is more restrictive than the
one in Proposition 1, VACA is able to approximate the ob-
servational and interventional distributions (as empirically
validated in Appendix D) if:

Design condition 1 (necessary condition) The decoder
GNN of VACA has at least as many hidden layers as γ − 1,
with γ being the longest directed path in the causal graph G.

Counterfactual Distribution
VACA approximates the counterfactual distribution in (4) as
(illustrated in Figure 3c):

p(xCF | do(XI = α),xF ) ≈∫ ∫
pθ(X | Z̃F, Z̃I ,AI)qφ(Z̃

I | xI ,AI)︸ ︷︷ ︸
action

× qφ(Z̃F | xF ,A)︸ ︷︷ ︸
abduction

dZ̃IdZ̃F,

(7)

where xF represents a sample from X for which we seek
to compute the distribution over counterfactual xCF and

Z̃F = {ZFi }i6∈I . Note that two different passes of the en-
coder are necessary: one for the abduction step of the factual
instance qφ(Z̃F | xF ,A); and another one for the action
step (intervention) qφ(Z̃I | xI ,AI) with xIi = αi ∀i ∈ I
(we remark that the rest of the values in xI do not affect the
overall counterfactual computation).

We then evaluate the likelihood making sure that the re-
sulting counterfactual sample xCF only depends on the Z̃F

and Z̃I . Importantly, in order for VACA to be able to approx-
imate the counterfactual distribution, we need its abduction
(and action) step(s) to comply with Property 3, i.e.:

Proposition 3 (Abduction). The abduction step of an ob-
served sample x = {x1, . . . , xd} in VACA satisfies that
for all i the posterior of Zi is independent on the subset
{xj}j 6∈pa∗(i) ⊆ x, if and only if the encoder GNN has no
hidden layers.

The above result (proved in Appendix B) can be shown
by the message passing algorithm computed by the encoder
GNN, and leads to the second design condition of VACA:

Design condition 2 (necessary condition): The encoder
GNN of VACA has no hidden layers.

In other words, from the definition of the SCM, the pos-
terior distribution of Ui only depends on the parents, i.e
Ui | Xpa(i). In order for VACA to mimic this property,
the GNN that parameterized the encoder contains no hidden
layers: in the message passing algorithm, in the k-th itera-
tion (layer), a node depends on its k-hop ancestors; requiring
k = 1 in the encoder refers to a GNN without hidden lay-
ers. Note that while the above condition may look restrictive
and limiting the capacity of our encoder, we may choose ar-
bitrarily complex NNs for the message fm and update fu
functions, as well as one or more aggregation functions fa,
e.g., sum or max, to model the encoder (Corso et al. 2020).

Practical Considerations
Next, we briefly discuss practical implementation consider-
ations to handle complex causal models, which often appear
in real world applications (Dua and Graff 2019a,b) For fur-
ther details on VACA implementation, refer to Appendix C.

Heterogeneous causal nodes. So far, we have modeled
each endogenous variable Xi as a node in the causal graph
G, and thus in the VACA GNNs. Yet, in some application
domains the relationships between a subset of ki variables
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may be unknown, or they may be affected by hidden con-
founders. In such cases, we assume that set of ki variables
to be correlated and model them as one multidimensional
and potentially heterogeneous node Xi = {Xi1, . . . , Xiki}
that share the same latent random variable Zi. This allows
us to deal with a large variety of graphs in practice.

Heterogeneous endogenous variables. Heterogeneous
causal nodes require us to model different functions for each
node, i.e. nodes may now contain a mix of continuous/dis-
crete variables. In general GNNs are parametrized such that
the parameters of the message function fm and update func-
tion fu are shared for all the nodes and edges in the graph.
However, similar to the structural equations F, we can de-
fine a unique set of parameters θmij for each fmij (see (1)),
so that we can model a different function for every edge in
the causal graph. Further, we can also assume different up-
date functions fui for each node i, by introducing different
update parameters θui. As a result, VACA fulfills the con-
ditions to be a Neural Causal Model (NCM) Type 2 (Coll.
1 in Zečević et al. (2021)) and thereof can represent the ob-
servational, interventional, and counterfactual distributions
(Thm.1 and Thm. 3 in Xia et al. (2021)).

Non-identifiability. We highlight that certain counter-
factual queries are not identifiable from observational data
without making assumptions on the functional relationships
even under causal sufficiency (Pearl 2009a). Yet, we expect
(as confirmed by our empirical validation) that sufficiently
expressive GNNs will lead to accurate approximations of
counterfactual queries.

Evaluation
In this section, we evaluate the potential of VACA in approx-
imating the outcomes of causal queries and compare it to
two competing methods in synthetic experiments. The syn-
thetic setting allows us to have access the true SEs, which is
necessary to evaluate interventional distributions and espe-
cially counterfactuals. We consider interventions of the form
do(xi = αi) for several values of αi on both root and non-
root nodes. We compute all results over the same 10 ran-
dom seeds and report mean and standard deviation. Refer to
Appendix E for a complete description of the experimental
setup. Moreover, our code is publicly available at GitHub1.

Datasets. We consider 6 different synthetic causal graphs
that differ in the number of nodes d, diameter δ, and longest
path γ. Here, we report the results for i) the collider (d = 3,
δ = 1, γ = 1) with linear (LIN) and non-linear (NLIN)
additive noise SEs, ii) the loan from Karimi et al. (2020)
(d = 7, δ = 2, γ = 3), and iii) the adult (d = 11, δ = 2, γ =
3) graphs. Note that the two latter ones are synthetic versions
of the German Credit dataset (Dua and Graff 2019a) and
the Adult datasets (Dua and Graff 2019b), respectively. See
Appendix E for further details on the graphs and Appendix
E for the results with the remaining graphs.

Metrics. We evaluate the observational distribution us-
ing the Maximum Mean Discrepancy (MMD) (Gretton et al.
2012) as distance-measure between the true and estimated

1https://github.com/psanch21/VACA

distributions, i.e., the lower the MMD the better the distri-
butions match. For the interventional distribution, we addi-
tionally report the average estimation squared error of the
mean (MeanE) and of the standard deviation (StdE) over
all descendants of the intervened-upon variables. For the
counterfactual distribution we report the mean squared er-
ror (MSE) as well as the standard deviation of the squared
error (SSE) between the true and the estimated counterfac-
tual value. More details in Appendix E.

Baselines. We compare VACA with MultiCVAE (Karimi
et al. 2020) and CAREFL (Khemakhem et al. 2021) de-
scribed in Section . For a fair comparison, all model hyper-
parameters have been cross-validated using a similar com-
putational budget (see Appendix E). In Table 1, we report
for each model and SCM the best configuration according
to observational MMD. We also include a time-complexity
analysis in Appendix E.

Results. Table 1 summarizes the results. We observe that,
in general, MultiCVAE underperforms the other methods.
This may be explained by the fact that MultiCVAE trains
each node independently, and thus the discrepancy between
the true and generated distributions in one node may be am-
plified in its descendants.

Comparing VACA to CAREFL, we first observe that
VACA performs consistently better in terms of observational
MMD, i.e., VACA is able to generate observational samples
that better resemble the true ones. Second, regarding the in-
terventional distribution, CAREFL does a good job at fitting
the mean (i.e., low MeanE). However,VACA performs con-
sistently better both at approximating the standard deviation
(i.e., low StdE) and the true samples (i.e., low MMD). This
can be explained by VACA i) leveraging the causal graph
(contrary to CAREFL that relies on causal ordering), and ii)
optimizing the log-evidence in (5) jointly (contrary to the
sequential optimization of MultiCVAE). Thus, VACA ap-
proximates the distribution as a whole better, which is a de-
sirable property for studying interventions on a population-
level rather than just on average. Lastly, in the approxi-
mation of counterfactuals we observe that both CAREFL
and VACA exhibit similar performance in terms of MSE
and SSE. Note however that CAREFL performs exact in-
ference while VACA is built on approximate inference and
is trained on a lower bound on the log-evidence. Finding
tighter bounds could boost VACA performance.

Use Case: Counterfactual Fairness
We finally show two practical use-cases of our method: as-
sessing counterfactual fairness and training counterfactually
fair classifiers. We use the public German Credit dataset
(Dua and Graff 2019a) and rely on the causal model pro-
posed by Chiappa (2019) with the following random vari-
ables X: sensitive feature S = {sex}, and non-sensitive fea-
tures C = {age}, R = {credit amount, repayment history}
and H = {checking account, savings, housing}. Then, we
aim to predict the binary feature Y = {credit risk} from X.
See Appendix F for further details.

Counterfactual fairness. Let S ⊂ X be a sensi-
tive attribute (e.g., gender), then the counterfactual unfair-
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Obs. Interventional Counterfactuals

SCM Model MMD MMD MeanE StdE MSE SSE Num. params
co

lli
de

r L
IN

MultiCVAE 30.37±8.16 44.70±12.25 13.29±4.78 46.56±2.40 87.41±3.64 65.15±2.83 553
CAREFL 9.27±1.49 4.86±0.45 0.35±0.08 81.89±1.78 8.11±0.58 7.83±0.55 6420
VACA 1.50±0.67 1.57±0.41 0.75±0.31 41.99±0.30 9.86±0.74 7.06±0.38 5600

N
L

IN

MultiCVAE 28.03±9.12 41.60±12.62 10.49±4.12 46.48±2.43 82.32±2.61 62.05±1.87 553
CAREFL 10.38±2.00 4.69±0.38 0.19±0.07 80.68±2.08 6.93±0.40 7.15±0.64 4308
VACA 0.95±0.27 0.97±0.23 0.26±0.12 42.20±0.24 5.01±0.73 4.08±0.54 1805

lo
an

MultiCVAE 90.38±11.31 213.65±5.38 12.24±1.33 65.78±1.13 40.98±0.35 15.12±0.16 33717
- CAREFL 22.10±1.64 27.38±4.07 6.74±4.25 50.13±2.47 11.15±2.57 6.59±0.38 2880

VACA 2.22±0.25 6.87±0.66 4.35±0.35 3.83±0.08 10.30±0.40 6.41±0.11 30402

ad
ul

t MultiCVAE 140.15±6.37 155.52±5.93 12.18±2.36 63.52±4.05 39.96±0.36 16.37±0.65 6549
- CAREFL 31.31±1.58 34.31±5.77 12.54±3.17 41.26±3.44 1.23±0.17 3.55±0.90 127420

VACA 4.51±0.45 12.68±1.95 1.65±0.23 3.37±0.09 5.33±0.27 5.67±0.20 63432

Table 1: Performance of different methods at estimating the observational, interventional and counterfactual distribution of
different complex SCMs. Values are multiplied by 100. All models have been cross-validated with a similar computational
budget. The number of parameters of the best configuration is shown in the right column.

ness (Kusner et al. 2017) of a classifier h : X → Y is mea-
sured ∀xCF , α′ 6= α, y as:

uf =| P (h(xCF ) = y | do(S = α),xF )

− P (h(xCF ) = y | do(S = α′),xF ) |
(8)

A classifier is counterfactually fair (uf = 0), if, given a
factual xF with sensitive attribute S = α, had its sensi-
tive attribute been different S = α′, the classifier prediction
would remain the same. We can use VACA to generate coun-
terfactual estimates to audit the fairness level of a classifier.
Following (Kusner et al. 2017), we audit: i) a full model
hfull : X → Y that takes as input the complete variable set;
ii) an unaware model hunaw : X\S → Y that takes as in-
put all variables but the sensitive one; iii) and a fair model
hfair-x : {Xi|S 6∈an∗(i)} → Y that takes as input all non-
descendant variables of the sensitive attribute. Moreover, we
show that we can learn a fair classifier hfair-z : Z\ZS → Y ,
which takes as input the latent variables generated by the
VACA encoder without the one of the sensitive attribute ZS .

Fairness Auditing. Table 2 summarizes the unfairness
level and f1-score for a support vector machine (SVM) clas-
sifier. See Appendix F for results of a logistic regression
classifier. As we do not have access to the true data genera-
tion process, we evaluate the auditing task by the resulting
ranking of the different classifiers according to their unfair-
ness level. Based on the counterfactual generation by VACA
the full classifier is consistently less fair than the unaware
and the fair-x classifier, respectively. This ranking is consis-
tent with the one in (Kusner et al. 2017).

Fairness Classification Table 2 shows that for the fair-x
classifier fairness comes at the expense of accuracy com-
pared to the full classifier. On the contrary, even though
VACA has been trained for representation learning with-
out access to classification labels, fair-z is a fair classifier
(with comparable fairness level to the fair-x one) while keep-
ing the performance comparable to the unfair full classifier.

VACA, therefore also provides a practical approach to train
accurate and fair classifiers.

Conclusion, Limitations and Impact
In this work, we have proposed VACA, a variational causal
autoencoder based on GNNs that: i) is specially designed to
capture the properties of SCMs; ii) inherently handles het-
erogeneous data; and iii) provides good approximations of
interventional and counterfactual distributions as a whole for
SCMs of different complexities. As demonstrated by exten-
sive synthetic experiments, VACA provides accurate results
for a wide range of interventions in diverse SCMs leading
to more consistent results than competing methods (Karimi
et al. 2020; Khemakhem et al. 2021). Finally, we have ap-
plied VACA for counterfactually fair classification.

Practical limitations. The expressive power of VACA to
model complex structural equations, e.g., in domains such
as biology (Sachs et al. 2005), is limited by the GNN ar-
chitectures of the encoder and the decoder. As discussed in
the GNN literature (Corso et al. 2020), especially aggrega-
tion functions may limit expressiveness. We expect VACA to
benefit from advances in the field. Second, long causal paths
would require VACA to increase the number of layers in the
decoder (see Design condition 1). However, the GNNs per-
formance is known to deteriorate with depth (Gallicchio and
Micheli 2020; Gu et al. 2020; Li, Han, and Wu 2018).

Social impact. Trusting counterfactuals is of great impor-
tance for decision making, e.g. in the political or medical
domain. We thus encourage anyone who uses VACA (or any
other ML method for causal inference) to fully understand
the model assumptions and to verify (up to the possible ex-
tend) that they are fulfilled.

Future work. First, it would be important to evaluate
the sensitivity of VACA to errors in the assumed causal
graph, as well as to the presence of hidden confounders.
We plan to extend VACA to handle more complex causal
models including, e.g., hidden confounders and non-DAG
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Metric full unaware fair-x fair-z

↑ f1 71.67 69.49 59.50 70.79 ± 5.15
↓ uf 14.01 ± 2.26 13.27 ± 2.28 0.14 ± 0.02 0.51 ± 0.19

Table 2: Counterfactual unfairness (uf ) and f1-score (f1) of an SVM over 10 VACA seeds. Values multiplied by 100.

causal graphs. Second, it would be interesting to perform ab-
lation studies on the limitations of available GNNs architec-
tures (Wu et al. 2020) for the VACA encoder and decoder; as
well as on how the performance deteriorates as we increase
the length of the causal path and thus the required number
of hidden layers (Li, Han, and Wu 2018). Finally, it would
be intriguing to apply VACA to other causal questions such
as privacy-preserving causal inference (Kusner et al. 2016)
or explainable machine learning (Karimi et al. 2020).
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