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Abstract
The similarity of feature representations plays a pivotal role
in the success of problems related to domain adaptation. Fea-
ture similarity includes both the invariance of marginal dis-
tributions and the closeness of conditional distributions given
the desired response y (e.g., class labels). Unfortunately, tra-
ditional methods always learn such features without fully tak-
ing into consideration the information in y, which in turn may
lead to a mismatch of the conditional distributions or the mix-
up of discriminative structures underlying data distributions.
In this work, we introduce the recently proposed von Neu-
mann conditional divergence to improve the transferability
across multiple domains. We show that this new divergence
is differentiable and eligible to easily quantify the functional
dependence between features and y. Given multiple source
tasks, we integrate this divergence to capture discriminative
information in y and design novel learning objectives assum-
ing those source tasks are observed either simultaneously or
sequentially. In both scenarios, we obtain favorable perfor-
mance against state-of-the-art methods in terms of smaller
generalization error on new tasks and less catastrophic for-
getting on source tasks (in the sequential setup).

Introduction
Deep learning has achieved remarkable successes in di-
verse machine learning problems and applications (Pouyan-
far, Sadiq et al. 2018). However, most of deep learning appli-
cations are limited to a single or isolated task, in which a net-
work is usually trained from scratch based on a large scale
labeled dataset (Donahue, Jia et al. 2014). As a result, the
training of deep neural networks becomes frustrating when
labeled data is scarce or expensive to obtain. In these scenar-
ios, the efficient transfer of information from one or multi-
ple tasks to another and the prevention of negative transfer
amongst all tasks become fundamental techniques for the
successful deployment of a deep learning system (Yosinski
et al. 2014; Riemer et al. 2019).

Different problems arise depending on the number of
tasks and how tasks arrive (e.g., concurrently or sequen-
tially). These problems range from the standard domain
adaptation from a single source domain to a target do-
main (Pan et al. 2010), up to the continual learning
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which trains a single network on a series of interrelated
tasks (Parisi, Kemker et al. 2019; Delange et al. 2021), with
the goal of improving positive transfer and mitigating nega-
tive interference (Riemer et al. 2019).

Tremendous efforts have been made to improve trans-
ferability across multiple domains (Ganin, Ustinova et al.
2016; Zhao, Zhang et al. 2018; Zhao et al. 2019). Most of
the works aim to learn domain-invariant features t without
the knowledge of class label or desired response y. Com-
mon techniques to match feature marginal distributions in-
clude the maximum mean discrepancy (MMD) (Pan et al.
2010; Zhu, Zhuang, and Wang 2019), the moment match-
ing (Zellinger et al. 2017), the H divergence (Zhao, Zhang
et al. 2018), the Wasserstein distance (Wang et al. 2019),
etc. For classification, p(y|t) can be modeled with a multi-
nomial distribution (Pei et al. 2018; Zhao, Gong et al. 2020).
However, it is still an open problem to explicitly capture the
functional dependence between t and y for regression.

Let us consider a network that consists of a feature extrac-
tor fθ : X → T (parametrized by θ) and a predictor hφ :
T → Y (parameterized by φ); the similarity of latent repre-
sentation t includes two aspects: the invariance of marginal
distributions (i.e., p(fθ(x))) across different domains and
the functional closeness of using t to predict y. The pre-
dictive power of hφ can be characterized by the conditional
distribution p(y|t). From an information-theoretic perspec-
tive, the conditional entropy H(y|t) = −E(log(p(y|x)))
also measures the dependence between y and t.

Our main contributions are summarized as follows:

• We introduce the von Neumann conditional divergence
DvN (Yu et al. 2020) to the problems of domain adap-
tation. This new divergence can easily quantify the func-
tional dependence between latent features t and the de-
sired response y, in both classification and regression.

• We show the utility of DvN in a standard domain adap-
tation setup in which multiple source tasks are observed
either simultaneously (a.k.a., multi-source domain adap-
tation) or sequentially (a.k.a., continual learning).

• For multi-source domain adaptation (MSDA),

– Given a hypothesis set H and the new loss function
induced by DvN , we define a new domain discrepancy
distance DM-disc(P,Q) to measure the closeness of two
distributions P and Q.
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– By generating a weighted source domain Dα

with probability Pα =
∑K

i=1 wiPsi (subject to∑K
i=1 wi = 1), in which Psi denotes the distribution

of the i-th source domain, we derive a new generaliza-
tion bound based on DM-disc for MSDA.

– We design a new objective based on the derived bound
and optimize it as a min-max game. Compared to
four state-of-the-art (SOTA) methods, our approach re-
duces the generalization error and identifies meaning-
ful strength of “relatedness” from each source to the
target domain.

• For the problem of continual learning (CL),

– We show that the functional similarity of latent fea-
tures t to the desired response y is able to quan-
tify the importance of network parameters to previous
tasks. Based on this observation, we develop a new
regularization-based CL approach by network modu-
larization (Watanabe, Hiramatsu, and Kashino 2018).

– We compare our approach with the baseline elas-
tic weight consolidation (EWC) (Kirkpatrick, Pas-
canu et al. 2017) and three other SOTA methods on
five benchmark datasets. Empirical results demon-
strate that our approach reduces catastrophic forgetting
and is less sensitive to the choice of hyper-parameters.

Background Knowledge
Problem Setup
Let X and Y be the input and the desired response (e.g., class
labels) spaces. Given K source domains (or tasks) {Di}Ki=1,
we obtain Ni training samples {xj

i , y
j
i }

Ni
j=1 in the i-th source

Di, which follows a distribution Pi(x, y) (defined over X ×
Y).

In a typical (unsupervised) domain adaptation setup, the
goal is to generalize a parametric model learned from data
samples in {Di}Ki=1 to a different, but related, target domain
DK+1 following a new distribution PK+1(x, y), in which
we assume no access to the true response y in the data sam-
pled from PK+1(x, y), i.e., minimizing the objective

E(x,y)∼DK+1
[ℓ(w;x, y)] , (1)

where ℓ(w;x, y) : W → R is the loss function of w associ-
ated with sample (x, y), and W ⊆ Rd is the model parame-
ter space.

In an online scenario where tasks arrive sequentially, life-
long learning searches for models minimizing the population
loss over all seen (K + 1) tasks, where access to previous
tasks {Di}Ki=1 is either limited or prohibited:

K+1∑
i=1

E(x,y)∼Di
[ℓ(w;x, y)]. (2)

Obviously, this poses new challenges, as the network is
required to ensure positive transfer from {Di}Ki=1 to DK+1,
and, at the same time, avoid negative interference to its per-
formance on {Di}Ki=1.

In this work, we consider multi-source domain adaptation
for regression (i.e., y ∈ R) and a standard continual learn-
ing setup on image classification (i.e., y contains m unique
categories {c1, . . . , cm}).

von Neumann Conditional Divergence
Let us draw N samples from two joint distributions P1(x, y)
and P2(x, y), i.e., {xi

1, y
i
1}Ni=1 and {xi

2, y
i
2}Ni=1. Here, y

refers to the response variable, and x can be either the raw
input variable or the feature vector z = fθ(x) after a feature
extractor fθ : X → Z parameterized by θ.

Yu et al. (Yu et al. 2020) define the relative divergence
from P1 (y|x) to P2 (y|x) as:

D(P1(y|x)∥P2(y|x)) = DvN (σxy∥ρxy)−DvN (σx∥ρx),
(3)

where σxy and ρxy denote the sample covariance matri-
ces evaluated on {xi

1, y
i
1}Ni=1 and {xi

2, y
i
2}Ni=1, respectively.

Similarly, σx and ρx refer to the sample covariance matri-
ces evaluated on {xi

1}Ni=1 and {xi
2}Ni=1, respectively. DvN

is the von Neumann divergence (Nielsen and Chuang 2002;
Kulis, Sustik, and Dhillon 2009), DvN (σ∥ρ) = tr(σ log σ−
σ log ρ− σ + ρ), which operates on two symmetric positive
definite (SPD) matrices, σ and ρ. Eq. (3) is not symmetric.
To achieve symmetry, one can simply take the form:

D(P1(y|x) : P2(y|x)) =
1

2
(D(P1(y|x)∥P2(y|x))

+ D(P2(y|x)∥P1(y|x))).
(4)

As a complement to (Yu et al. 2020), we additionally pro-
vide the convergence behavior analysis of the matrix-based
von Neumann divergence on sample covariance matrix to
the true distributional distance (see supplementary material),
although this is not the main contribution of this work.

Note that, aligning distributions or conditional distribu-
tions always plays a pivotal role in different domain adap-
tation related problems. Before our work, the MMD has
been extensively investigated. However, there is no univer-
sal agreement on the definition of conditional MMD (Park
and Muandet 2020), and most of existing operator-based ap-
proaches on conditional MMD depend on stringent assump-
tions which are usually violated in practice (e.g., (Ren et al.
2016)). This unfortunate fact urges the need for exploring
the possibility of a new divergence measure that is both sim-
ple to compute and differentiable. Moreover, compared to
MMD that relies on a kernel function with width σ which is
always hard to tune in practice, Eqs. (3) and (4) defined over
sample covariance matrix are hyper-parameter free.

Interpreting the von Neumann Conditional
Divergence as a Loss Function

In case P1(x, y) and P2(x, y) have the same marginal dis-
tribution P (x) or share the same input variable x (i.e.,
σx = ρx), the symmetric von Neumann conditional diver-
gence (Eq. (4)) reduces to:

D(P1(y|x) : P2(y|x)) =
1

2
tr ((σxy − ρxy) (log σxy − log ρxy)).

(5)

8232



Figure 1: The geometry of loss L : Sp++ × Sp++ → R+:
our

√
JvN searches for an “optimal” predictor f̂ that mini-

mizes the discrepancy between the two covariance matrices
σx,f(x) and σx,f̂(x).

We term the r.h.s. of Eq. (5) as the Jeffery von Neumann
divergence on σxy and ρxy , and denote it as JvN (σxy : ρxy).

Taking X = σx,f(x) and Y = σx,f̂(x),√
JvN (σx,f(x) : σx,f̂(x)) can be interpreted and used

as a loss function to train a deep neural network. Here, x
refers to the input variable, f : x → y is the true labeling or
mapping function, f̂ is the estimated predictor, f(x) = y

is the true label or response variable, and f̂(x) = ŷ is the
predicted output. σx,f(x) and σx,f̂(x) denote the covariance

matrices for the pairs of variables {x, f(x)} and {x, f̂(x)},
respectively. Fig. 1 depicts an illustrative explanation.

Before presenting our methodology in both multi-source
domain adaptation and continual learning, we show three
appealing properties associated with

√
JvN (see supplemen-

tary material for proofs and empirical justifications1):
•
√
JvN has an analytical gradient and is automatically dif-

ferentiable;
• Compared with the mean square error (MSE) loss,√

JvN (σx,f(x) : σx,f̂(x)) enjoys improved robustness.

• Compared with the cross-entropy (CE) loss,√
JvN (σx,f(x) : σx,f̂(x)) satisfies the triangle

inequality. That is, given three models f1, f2
and f3, we have:

√
JvN (σx,f1(x) : σx,f2(x)) ≤√

JvN (σx,f1(x) : σx,f3(x))+
√
JvN (σx,f3(x) : σx,f2(x)).

MSDA by Matrix-based Discrepancy Distance
Bounding the von Neumann Conditional
Divergence in Target Domain
Motivated by the discrepancy distance Ddisc (Cortes and
Mohri 2014) based on a loss function L : Y ×Y → R+, we
first present our matrix-based discrepancy distance DM-disc
to quantify the discrepancy between two distributions P and

1Supplementary material is available in our Arxiv version https:
//arxiv.org/abs/2108.03531

Q over X based on our new loss L : Sp++ × Sp++ → R+

(i.e.,
√

JvN (σx,f(x) : σx,f̂(x))).

Definition 1. The matrix-based discrepancy distance
(DM-disc) measures the longest distance between two do-
mains (with respect to the hypothesis space H) in a metric
space equipped with the square root of Jeffery von Neumann
divergence JvN as a distance function. Given domains Ds

and Dt and their corresponding distributions Ps and Pt, for
any two hypotheses h, h′ ∈ H, DM-disc takes the form:

DM-disc(Ps, Pt) = max
h,h′∈H

∣∣∣√JvN (σs
x,h(x) : σ

s
x,h′(x))

−
√

JvN (σt
x,h(x) : σ

t
x,h′(x))

∣∣∣, (6)

with a ∈ {s, t} and g ∈ {h, h′}, the matrix σa
x,g(x) is the

covariance matrix for the pair of variable x, g(x) in domain
Da.

Same to the notable H∆H divergence in binary classi-
fication (Ben-David et al. 2010), DM-disc reaches the maxi-
mum value if a predictor h′ is very close to h on the source
domain but far on the target domain (or vice-versa). When
fixing h, DM-disc(Ps, Pt;h) simply searches only for h′ ∈ H
maximizing Eq. (6). The following theorem presents a new
generalization upper bound for the square root of JvN on the
target domain with respect to that of multiple sources.
Theorem 2. Let S = {Ds1 , . . . , DsK} be the a set of
K source domains, and denote the ground truth map-
ping function in Dsi as fsi . Assign the weight wi to
source Dsi (subject to

∑K
i=1 wi = 1) and generate a

weighted source domain Dα, such that the source distribu-
tion Pα =

∑K
i=1 wiPsi and the mapping function fα : x →(∑K

i=1 wiPsi(x)fsi(x)
)
/
(∑K

i=1 wiPsi(x)
)

. For any hy-
pothesis h ∈ H, the square root of JvN on the target domain
Dt is bound in the following way:√

JvN (σt
x,h(x) : σ

t
x,ft(x)

) ≤
K∑
i=1

wi

(√
JvN (σsi

x,h(x) : σ
si
x,fsi (x)

)
)

+DM-disc(Pt, Pα;h) + ηQ(fα, ft),
(7)

where ηQ(fα, ft) = minh∗∈H
√
JvN (σt

x,h∗(x) : σ
t
x,ft(x)

)+√
JvN (σα

x,h∗(x) : σ
α
x,fα(x)) is the minimum joint empiri-

cal losses on the combined source Dα and the target Dt,
achieved by an optimal hypothesis h∗.

The result presented in Theorem 2 can be interpreted
as bounding the square root of JvN on the target domain
Dt by quantities controlled by (i) a convex combination
over the square root of JvN in each of the sources, i.e.,√

JvN (σsi
x,h(x) : σ

si
x,fsi (x)

); (ii) the mismatch between the

weighted distribution Pα and the target distribution Pt, i.e.,
DM-disc(Pt, Pα;h); and (iii) the optimal joint empirical risk
on source and target, i.e., ηQ(fα, ft). The last term is irrel-
evant to the optimization and is expected to be small (Zhao
et al. 2019). Notice that ηQ is constant and only depends on

8233



h∗ in the case of a single source. For multiple source do-
mains, the quantity ηQ does include the weights w, yet it is
constant for a given w.

Optimization by Adversarial Min-Max Game
Similar to the notable Domain-Adversarial Neural Net-
works (DANN) (Ganin, Ustinova et al. 2016) that implicitly
performs distribution matching by an adversarial min-max
game, we explicitly implement the idea exhibited by Theo-
rem 2 and combine a feature extractor fθ : X → T and a
class of predictor H : T → Y in a unified learning frame-
work:

min
fθ,h∈H
||w||1=1

max
h′∈H

(
K∑
i=1

wi

√
JvN (σsi

x,h(fθ(x))
: σsi

x,y)

+
∣∣∣√JvN (σt

fθ(x),h(fθ(x))
: σt

fθ(x),h′(fθ(x))
)

−
K∑
i=1

wk

√
JvN (σsi

fθ(x),h(fθ(x))
: σsi

fθ(x),h′(fθ(x))
)
∣∣∣) . (8)

The first term of Eq. (8) enforces h to be a good predictor on
all source tasks2; the second term is an explicit instantiation
of our DM-dist(Pt, Pα). The general idea is to find a feature
extractor fθ(x) that for any given pair of hypotheses h and
h′, it is hard to discriminate the target domain Pt from Pα,
the weighted combination of the source distributions.

We term our method the multi-source domain adaptation
with matrix-based discrepancy distance (MDD) (pseudo-
code in the supplementary material). We also noticed that
a similar min-max training strategy has been used in (Pei
et al. 2018; Saito, Kim et al. 2019; Richard et al. 2020).

Comparison with State-of-the-Art Methods
We evaluate our MDD on four real-world datasets (i) Ama-
zon review dataset,3 (ii) TRANCOS which is a public bench-
mark for extremely overlapping vehicle counting, (iii) the
YearPredictionMSD data (Bertin-Mahieux et al. 2011), and
(iv) the relative location of CT slices on the axial axis
dataset (Graf et al. 2011).

The following six methods are used for comparison: (1)
DANN (Ganin, Ustinova et al. 2016) is used by merging all
sources into a single one; (2) MDAN-Max and (3) MDAN-
Dyn, where MDAN refers to the multisource domain ad-
versarial networks by (Zhao, Zhang et al. 2018). It also
applies a weighting scheme to all sources. (4) Adversar-
ial Hypothesis-Discrepancy Multi-Source Domain Adapta-
tion (AHD-MSDA) (Richard et al. 2020) and its baseline (5)
AHD-1S that merges all sources into one and then applies
AHD-MSDA between the single combined source and the
target domain. (6) Domain AggRegation Network (DARN)
(Wen, Greiner, and Schuurmans 2020) after implementing
the automatically differentiable maximum eigenvalue com-
putation for the discrepancy computation.

2In practice, one can replace the JvN loss with the root mean
square error (RMSE) loss.

3https://www.cs.jhu.edu/∼mdredze/datasets/sentiment/

In the first experiment, following (Richard et al. 2020), we
employ a shallow neural network with two fully-connected
hidden layers of size 500 with ReLU activation, and a
dropout rate of 10%. The Adam optimizer is used with learn-
ing rate lr = 0.001, and batch size of 300. We use 30 train-
ing epochs, and perform 5 independent runs. Each domain
is used once as target and the remaining as sources.

The Amazon review dataset is introduced in (Blitzer,
Dredze, and Pereira 2007); it contains review texts and rat-
ings of bought products. Products are grouped into cate-
gories. Following (Zhao, Zhang et al. 2018; Richard et al.
2020), we perform tf-idf transformation and select the top
1, 000 frequent words. Ratings are used as the target labels.

The TRaffic ANd COngestionS (TRANCOS) (Guerrero-
Gómez-Olmedo et al. 2015) dataset is a public benchmark
dataset for extremely overlapping vehicle counting with
1, 244 images and 46, 700 manually annotated vehicles via
the dotting method (Lempitsky and Zisserman 2010). It con-
tains images that were collected from 11 video surveillance
cameras. We apply hierarchical clustering to formulate five
domains over the cameras. The hourglass network (Newell,
Yang, and Deng 2016) is used such that the encoder plays
the role of the feature extractor, and the predictor and dis-
criminator follow the decoder design. The predicted vehi-
cle count is computed by integrating over the predicted den-
sity map after applying the ground truth mask, thereafter, the
mean absolute error is computed on the predicted count. The
quantitative results on these two datasets are summarized in
Table 1 and Table 2, respectively. Our MDD always achieves
the smallest mean absolute error on all target domains, ex-
cept for ”Dom2” of the counting problem. It is worth men-
tioning that DARN fails to generalize on source domains of
TRANCOS and, hence, performs poorly on the target do-
main, as discussed in the supplementary material.

We also analyse the weights w learned by our MDD
(plots and discussion in supplementary material). In gen-
eral, our learned weights reflect the strength of relatedness
from each source to the target. Moreover, we observe that
our weights are much more stable across training epochs,
whereas the weights learned by DARN always oscillate and
are less linked in successive epochs.

Visualizing Domain Importance in Synthetic Data
We further evaluate the ability of MDD to discover the cor-
rect strength of relatedness from each source on a synthetic
data, in which the “ground truth” of relatedness is known.
We construct a synthetic data set with six domains each with
features from x ∈ [−1, 1]12, and the Friedman target func-
tion (Friedman 1991) y(x) = 10 sin(πx1x3) + 20(x5 −
0.5)2 + 10x7 + 5x9 + ϵ, ϵ ∼ N (0, 1). The six generated
domains are equally distributed in the diagonal of the space
[−1, 1]12. To this end, each domain si ∈ {s1, . . . , s6} is
sampled from N (µ(i),Σ(i)), such that µ(i) = ci112, where
ci = (−1 + (2i − 2)/5) and 112 is the the all-one vector of
size 12. The element of the covariance matrix Σ(i) are set
to zero except for Σ(i)

2i−1,2i = Σ
(i)
2i,2i−1 = 0.1, Σ(i)

2i,2i+1 =

Σ
(i)
2i+1,2i = 0.07 if i < 6, Σ(i)

2i−1,2i−2 = Σ
(i)
2i−2,2i−1 = 0.07

if i > 1, and Σ
(i)
2k−1,2k = Σ

(i)
2k,2k−1 = 0.5 where k = i−1 or

8234



AHD DANN AHD- DARN MDAN MDD
-1S -1S MSDA -Max -Dyn

ba 0.627 (.003) 2.9 (1.3) 0.586 (.003) 0.755 (.001) 0.591 (.015) 0.711 (.006) 0.581 (.003)
be 0.614 (.003) 1.1 (.2) 0.608 (.005) 0.69 (.001) 0.628 (.003) 0.656 (.004) 0.588 (.003)
ca 0.559 (.003) 1.0 (.1) 0.534 (.006) 0.643 (.002) 0.522 (.005) 0.598 (.006) 0.508 (.003)
co 0.617 (.005) 2.2 (.8) 0.61 (.004) 0.665 (.001) 0.682 (.016) 0.829 (.055) 0.584 (.003)
el 0.669 (.002) 0.7 (.01) 0.657 (.002) 0.776 (.000) 0.654 (.001) 0.670 (.003) 0.65 (.001)
go 0.585 (.002) 0.9 (.3) 0.566 (.003) 0.639 (.002) 0.552 (.003) 0.553 (.003) 0.537 (.003)
gr 0.543 (.003) 1.5 (.8) 0.527 (.002) 0.627 (.002) 0.519 (.002) 0.538 (.003) 0.513 (.009)

Table 1: Performance comparison in terms of mean absolute error (MAE) over five iterations on the Amazon rating data (with
standard error in brackets). The best performance is marked in boldface. The categories are abbreviated as follows, ba:baby,
be:beauty, ca:camera&photo, co:computer&video-games, al:electronics, go:gourmet-food, gr:grocery.

AHD DANN AHD- DARN MDAN MDD
-1S -1S MSDA -Max -Dyn

Dom1 46.87 (12.89) 16.19 (0.42) 57.19 (22.93) — 32.17 (7.98) 29.35 (3.96) 14.73 (0.52)
Dom2 27.39 (4.8) 21.7 (0.86) 33.8 (6.51) — 18.02 (0.34) 14.34(0.24) 15.27 (0.92)
Dom3 63.69 (31.62) 28.43 (5.63) 63.27 (24.77) — 38.5 (11.77) 26.81 (4.61) 24.67 (3.43)
Dom4 23.02 (3.71) 21.54 (5.64) 88.07(52.72) — 19.89 (3.83) 22.86 (1.04) 14.25 (1.64)
Dom5 65.89 (22.71) 57.12 (29.74) 38.02 (11.7) — 57.28 (36.24) 22.73(4.72) 17.34 (1.43)

Table 2: Performance comparison in terms of mean absolute error (MAE) over three iterations on TRANCOS data (with
standard error in brackets). The best performance is marked in boldface. DARN fails to generalize on the source domains,
hence, performs very poorly on the target domains.

i+1. This way, the neighboring domains will have a gradual
covariate shift in terms of both mean and covariance.

The distribution of the first two dimensions of x is de-
picted in Fig. 2a and the covariance matrix Σ(i) for domain
i is illustrated in Fig. 2b. Fig. 2c to 2e show the weights
learned by DARN, AHD-MSDA and MDD, respectively.
The value in the (i, j)-th entry is the weight from source j,
when the target is domain i. As can be seen, our MDD learns
an almost symmetric weight matrix with high weights cen-
tered around the diagonal and smoothly fading weights in
the anti-diagonal direction. AHD-MSDA seems to learn uni-
form weights. DARN learns sparse weights while often fails
in ranking the sources in agreement with the ground truth.

Continual Learning by Representation
Similarity Penalty

We demonstrate, in this section, that the von Neumann
conditional divergence is also suitable to alleviate nega-
tive backward transfer or catastrophic forgetting in continual
learning (CL). We exemplify our argument by proposing a
new regularization-based CL approach.

Elastic Weight Consolidation (EWC) and its
Extensions
Regularization approaches mitigate catastrophic forgetting
by imposing penalties on the updates of the important neu-
ral weights (to previous tasks) (Parisi, Kemker et al. 2019;
Delange et al. 2021). As a notable example in this cate-
gory, EWC (Kirkpatrick, Pascanu et al. 2017) consists of a
quadratic penalty on the difference between the parameters θ

for the old and the new tasks. The objective to be minimized
when observing task TB after learning on task TA is:

L(θ) = LB(θ) +
∑
i

λ

2
Fθi(θi − θ∗A,i)

2, (9)

LB(θ) is the loss for task TB , λ is the regularization
strength, {θ∗A,i} is the set of parameters after learning on
task A, and Fθ is the diagonal Fisher information matrix
(FIM). The i-th diagonal element of Fθ is computed as
Fθi = E[( ∂L

∂θi
)2]. The supplementary material shows the

derivation of Eq. (9).
EWC assumes all weights in θ are independent, which

leads to a diagonal FIM. To make this assumption more
practical, R-EWC (Liu et al. 2018) takes a factorized rota-
tion of parameter space that leads to the desired diagonal
FIM. (Chaudhry et al. 2018) reformulates the objective of
EWC by KL-divergence in the Riemannian Manifold and
suggests an efficient and online version of EWC. As an alter-
native to computing FIM, synaptic intelligence (SI) (Zenke,
Poole, and Ganguli 2017) measures each parameter’s impor-
tance by its accumulative contribution to the loss changes.

Measuring Weight Significance by Representation
Similarity
In this section, we introduce a new form of regularization
that measures the significance of a group of weights (rather
than individual ones) to TA by the (dis)similarity of lo-
cal representations between TA and TB induced by these
weights. Our method’s essence comes from observing that
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(a) Data (b) Submatrix of Σ(i) (c) DARN (d) AHD-MSDA (e) MDD

Figure 2: (a) The data used for the weight learning over synthetic data. (b) The submatrix of the covariance matrix Σ(i) of
domain i. Figures (c), (d), and (e) show heatmaps of the learned weights of DARN, AHD-MSDA, and MDD, respectively. The
rows and columns represent the target and source domains, respectively.

tasks with similar representations are more prone to over-
write or negatively affect each other. A similar observa-
tion has been recently discovered by (Ramasesh, Dyer, and
Raghu 2020).

Specifically, in the d-th hidden layer, suppose we iden-
tified K groups of neurons (gd1 , g

d
2 , · · · , gdK) that are func-

tionally mutually independent. Each group can be viewed
as a module that operates independently. Therefore, changes
to parameters belonging to the same module should be reg-
ularized together taking into account (i) their relatedness to
the different tasks (through the von Neumann conditional di-
vergence), and (ii) the parameter’s interdependence through
the network modularization. Taking these two aspects into
consideration, we define a new regularization-based CL ob-
jective as:

L(θ) = LTB
(θ) +

∑
TA∈T\{TB}

∑
k,d

rAk,d
∑
θi∈gd

k

(θi − θ∗TA,i)
2,

(10)

rAk,d =
1

Z

λ

2
exp(−D(PTA

(y|gdk(x)) : PTB
(y|gdk(x)))).

(11)

Objective (10) iterates over each group gdk (second sum), and
computes the representation similarity (11), induced by the
sub-network associated by the group of neurons gdk , between
the current task TB and each previous task TA ∈ T \ {TB}.
This similarity takes the form of the softmax of the nega-
tive divergence with Z being the normalization term, and D
is the symmetric von Neumann conditional divergence, i.e.,
Eq. (4). Based on this similarity, the change in the parame-
ters of each group gdk is penalized by the representation indif-
ference between the two tasks caused by that group. Hence,
we call our method representation similarity penalty (RSP).
For an architecture with R layers, RSP computes the groups
for layers d ∈ {2, . . . , R − 1}, which leaves the parameters
and bias of the first layer without assigned groups; for these
parameters the Fisher index is used to weight the penalty.

Implementation Details and Empirical Evaluation
RSP employs the modularization strategy in (Watanabe, Hi-
ramatsu, and Kashino 2018) to construct groups of neurons
in each layer that are mutually independent. In our experi-
ments, we fix the number of groups to be Kd = 20.

Setting, Datasets and Performance Measures The fol-
lowing empirical evaluations follow the continual learning
setting described in (Riemer et al. 2019), where each sample
of each task is observed in a single pass sequence. As for
the neural network architecture, we use a single head fully-
connected neural network with two hidden layers, each with
100 neurons, a 28× 28 input layer, and an output layer with
a single head with 10 units. This architecture is similar to
the one used in (Lopez-Paz and Ranzato 2017). The hidden
layers employ the ReLU activation, and SGD is used to min-
imize the softmax cross-entropy on the online training data.

We evaluate on the following datasets: (i) MNIST Per-
mutations (mnistP) (Kirkpatrick, Pascanu et al. 2017), (ii)
MNIST Rotations (mnistR) (Lopez-Paz and Ranzato 2017),
(iii) Permuted Fashion-MNIST (fashionP) (Han, Kashif,
and Roland 2017), and (iv) Permuted notMNIST (notm-
nistP).4 All these datasets contain images of size 28 × 28
pixels. Additionally, we also perform a comparison on the
Omniglot dataset (Lake et al. 2011) using the first ten al-
phabets and a convolutional neural network; the setting and
results are explained in the supplementary material.

To measure the learnability and resistance to forgetting,
we compute the performance measures: (i) Learning accu-
racy (LA): the average accuracy on each task after learning
it. (ii) Retained accuracy (RA): the average performance on
all tasks after observing the last one. (iii) Backward trans-
fer (BT): the loss in performance due to forgetting, i.e., the
difference between LA and RA (Chaudhry et al. 2018).

Comparison Protocol and Results We compare the per-
formance of our RSP against that of EWC, R-EWC, and
two popular replay-based CL methods, namely the Aver-
aged Gradient Episodic Memory (AGEM) (Chaudhry et al.
2019), and the Meta-Experience Replay (MER) (Riemer
et al. 2019). A grid-based hyperparameter search is carried
on for each method on each dataset as explained in the sup-
plementary material. The ten datasets form a stream of ten
tasks, each of which contains a sequence of only 1000 sam-
ples. Every time an evaluation is performed on a task, it is
done on its test data of 10, 000 samples.

We employ the online setting with a restricted memory
budget of ten samples per task. Table 3 shows that RSP out-

4http://yaroslavvb.blogspot.com/2011/09/notmnist-
dataset.html
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AGEM MER R-EWC EWC RSP
RA LA BT RA LA BT RA LA BT RA LA BT RA LA BT

D1 66.6 78.5 -12 50.6 55.1 -4.6 69.8 83.8 -14 68.7 81 -12 72.3 79.5 -7.2
(1.5) (0.6) (1.5) (0.7) (0.8) (0.7) (0.5) (0.1) (0.5) (0.3) (0.1) (0.2) (0.3) (0.1) (0.2)

D2 59.5 65.4 -5.9 53.3 61.2 -7.8 58.5 64.0 -5.4 42.2 56.2 -14 62.5 66.6 -4.2
(0.5) (0.3) (0.5) (0.1) (0.8) (0.9) (0.8) (0.1) (0.7) (2.1) (1.4) (0.8) (0.3) (0.1) (0.3)

D3 75.0 85.6 -11 81.2 81.3 -0.2 60.9 87.8 -27 62.1 85.6 -24 62.9 83.6 -21
(0.3) (0.1) (0.3) (0.2) (0.2) (0.2) (0.8) (0.1) (0.8) (0.3) (0.1) (0.3) (0.2) (0.1) (0.2)

D4 67 78.7 -12 68.9 75.9 -7.0 64.8 79.1 -14 66.1 77 -12 71.8 80.8 -9
(0.4) (0.3) (0.6) (0.3) (0.2) (0.3) (0.5) (0.2) (0.4) (1.9) (0.7) (1.3) (0.2) (0.1) (0.2)

Table 3: Performance comparison between RSP, AGEM, MER, R-EWC and EWC. D1: not-mnistP, D2: fashionP, D3: mnistR,
D4: mnistP. BT is rounded to the nearest integer when it is larger than 10.

performs all other methods in terms of RA on all data sets,
except for mnistP. RSP shows the highest LA on fashionP
and mnistP. Only on mnistR, RSP performs worse than MER
on RA, and worse than R-EWC on LA.

Compared only to EWC, RSP improves RA by 20% on
the fashionP, and around 6% and 4% on notmnistP and
mnistP, respectively. In terms of LA, both methods perform
similarly on notmnistP and mnistR, whereas RSP shows
substantial improvement on fashionP and mnistP. This result
indicates that RSP performs better than EWC in encouraging
positive forward transfer under the circumstances of limited
memory. The gain in both LA and RA that our modification
causes to EWC is accompanied by less negative backward
transfer (BT) on all datasets. Under the setting adopted in
this experiment, R-EWC performs similarly or slightly bet-
ter than EWC, but it is still worse than RSP in most cases.

Related Work
Multi-Source Domain Adaptation (MSDA) Existing do-
main adaptation methods mainly focus on the single-source
scenario. (Mansour, Mohri, and Rostamizadeh 2009) as-
sumes that the target distribution can be approximated by
a mixture of given source distributions, which also par-
tially motivated our MDD. There are other theoretical anal-
yses to the design of MSDA methods, with the purpose of
either developing more accurate measures of domain dis-
crepancy or deriving tighter generalization bounds (Redko
et al. 2019; Zhao et al. 2020). Most existing bounds are
based on the seminal work (Blitzer et al. 2007; Ben-David
et al. 2010). For example, (Zhao, Zhang et al. 2018) ex-
tends the generalization bound in (Blitzer et al. 2007) to
multiple sources. (Li et al. 2018) considered the relationship
between pairwise sources and derived a tighter bound on
weighted multi-source discrepancy based on a Wasserstein-
like metric. Calculating such pairwise weights can be com-
putationally demanding when the number of sources is
large. Recently, (Wen, Greiner, and Schuurmans 2020) ex-
tends the upper-bound on the target domain loss, devel-
oped by (Cortes, Mohri, and Medina 2019), to MSDA. The
new bound depends on the discrepancy distance between
two domains (Mansour, Mohri, and Rostamizadeh 2009).
(Richard et al. 2020) uses the hypothesis distance for regres-
sion (Cortes and Mohri 2014) and derives a similar bound.

Distinct from these methods, our discrepancy measure
does not align the distribution of feature p(t). Rather, it aims
to match the dependence between t and y across domains,
such that the conditional distributions p(y|t) remain similar.
To the best of our knowledge, we are also the first to de-
rive a new generalization bound based on the matrix-based
divergence (Kulis, Sustik, and Dhillon 2009; Yu et al. 2020).

Regularization-based Continual Learning and Net-
work Modularizaton The general idea and popular
regularization-based continual learning methods have been
discussed in the previous section. Recently, network modu-
larization is becoming a popular paradigm for efficient net-
work training (Hadsell et al. 2020; Duan, Yu, and Prı́ncipe
2021). Indeed, biological brains are modular, with distinct
yet interacting subsystems. Introducing modularization to
prevent forgetting dates back to (Pape et al. 2011) on the
training of deep belief networks (DBN) (Hinton, Osindero,
and Teh 2006). Recently, (Veniat, Denoyer, and Ranzato
2021) suggests a modular solution by identifying the trained
modules (groups of neurons) to be re-used and extending the
network with new modules for each new task.

Conclusion
We introduced von Neumann conditional divergence DvN to
align the dependence between latent representation t and re-
sponse variable y across different domains and exemplified
this idea in domain adaptation, assuming multiple source
tasks are observed either simultaneously or sequentially.
For the former, we consider multi-source domain adaptation
(MSDA) and developed a new generalization bound as well
as a new learning objective based on the loss induced by
DvN . For the latter, we focus on continual learning (CL)
and demonstrated that such dependence can be formulated
as a penalty to regularize the changes of network parame-
ters. Empirical results justify the superiority of our methods.

Our point of departure is how learning, in general, can
benefit from the conditional von Neumann divergence. At
the same time, more than promoting a specific method, we
aim at investigating a suitable distance measure for aligning
representations. The perfect testbed for this is MSDA and
CL. While the techniques we propose are deeply rooted and
shaped by these domains, we hope them to be seen as an
example of how the divergence can be beneficial.
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