
Online Apprenticeship Learning

Lior Shani1, Tom Zahavy2, Shie Mannor1,3

1 Technion – Israel Institute of Technology, Israel
2 Deepmind, UK

3 Nvidia Research, Israel
shanlior@gmail.com, tomzahavy@gmail.com, shie@ee.technion.ac.il

Abstract

In Apprenticeship Learning (AL), we are given a Markov
Decision Process (MDP) without access to the cost function.
Instead, we observe trajectories sampled by an expert that
acts according to some policy. The goal is to find a policy
that matches the expert’s performance on some predefined
set of cost functions. We introduce an online variant of AL
(Online Apprenticeship Learning; OAL), where the agent is
expected to perform comparably to the expert while interacting
with the environment. We show that the OAL problem can
be effectively solved by combining two mirror descent based
no-regret algorithms: one for policy optimization and another
for learning the worst case cost. By employing optimistic
exploration, we derive a convergent algorithm with O(

√
K)

regret, where K is the number of interactions with the MDP,
and an additional linear error term that depends on the amount
of expert trajectories available. Importantly, our algorithm
avoids the need to solve an MDP at each iteration, making
it more practical compared to prior AL methods. Finally, we
implement a deep variant of our algorithm which shares some
similarities to GAIL, but where the discriminator is replaced
with the costs learned by OAL. Our simulations suggest that
OAL performs well in high dimensional control problems.

1 Introduction
In Reinforcement Learning (Sutton and Barto 2018, RL) an
agent interacts with an environment by following a policy.
The environment is modeled as a Markov Decision Process
(Puterman 1994, MDP), where in each state, the agent takes
an action based on the policy, and as a result, pays a cost
and transitions to a new state. The goal of RL is to learn
an optimal policy that minimizes the long term cumulative
cost. This makes RL useful when we can specify the MDP
model appropriately. However, in many real-world problems,
it is often hard to define a cost which induces the desired
behaviour. E.g., an autonomous driver might suffer costs
when driving slowly or in a hazardous way. Yet, prescribing
these costs can be eluding.

A feasible solution to this problem is Imitation Learning
(IL). This setup introduces the notion of an expert, typically
a human, that provides us with a set of demonstrations. The
agent’s goal is to learn the optimal policy by imitating the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

expert’s decisions. Methods such as Behavioural Cloning
(BC) try to directly mimic the demonstrator by applying a
supervised learning (SL) algorithm to learn a mapping from
the states to actions. This literature is too vast to cover here
and we refer the reader to (Schaal 1997; Argall et al. 2009).

Apprenticeship Learning (Abbeel and Ng 2004, AL) aims
to address the same motivation using a different goal. Rather
than learning a cost, its goal is to find a policy whose per-
formance is close to that of the expert for any possible cost
in a known set. This keeps the state-action occupancy of
the agent and expert in proximity, requiring the AL agent to
find a path back to the expert trajectories in states that are
unobserved by the expert. This differs from BC, in which
the agent’s policy is undetermined in these unobserved states.
Prior works on AL (Abbeel and Ng 2004; Syed and Schapire
2008; Zahavy et al. 2020) mostly considered a batch RL set-
ting with the purpose of finding an ϵ-optimal solution, where
the transition model is typically known or can be extracted
from the data. However, in many real world applications, the
model is unknown, and the learner is inflicted costs when
performing poorly on the task, even if these costs are not
properly specified to serve as an objective. This leads us to
consider an online version of AL in which an agent should
perform as close as possible to the expert on any possible
cost, while it is learning. As a result, an online autonomous
driver would try to imitate the expert when learning in the
real-world, avoiding unnecessary costs.

AL is typically formulated as a min-max game between
a policy and a cost “players”. This problem was shown to
be convex in the cost and in the feature expectations of the
policy, but not in the policy itself. Abbeel and Ng (2004)
proposed the projection algorithm, in which the policy player
plays the best response and the cost player plays a follow-
the-leader (FTL) step by utilizing the convexity in the feature
expectations. Alternatively, in MWAL (Syed and Schapire
2008), the policy player applies a similar best response step
and the cost player replace the FTL step with Mirror Descent.
Unfortunately, this requires both algorithms to solve an MDP
in each iteration (see Section 2.2).

Instead, in the convex games setting, min-max games can
be approximately solved by simultaneously running two com-
peting no-regret algorithms, preventing the inefficiency of
finding the best response in each iteration (Abernethy and
Wang 2017). This result builds on the notion of stability found

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8240

in online convex optimization algorithms such as Mirror De-
scent (Beck and Teboulle 2003, MD). Interestingly, there has
been a recent body of papers connecting policy optimiza-
tion techniques and online convex optimization. Specifically,
in (Geist, Scherrer, and Pietquin 2019; Shani, Efroni, and
Mannor 2020), the authors prove global convergence for an
MD-based policy optimization algorithm. Moreover, in (Cai
et al. 2019; Efroni et al. 2020), the authors show that using
Mirror Descent policy optimization together with optimistic
exploration leads to no-regret policy optimization algorithms.

In this work, we take a similar approach and propose an
online AL algorithm (OAL, pronounced Owl) that minimizes
the AL regret: the difference between the agent’s cumulative
performance and that of the expert, for any possible cost. Our
algorithm performs a dual MD step in which, (1) the policy
is improved using one step of optimistic policy optimization
MD-based update, and (2) the cost is updated by a single MD
iteration. We show this leads to a sample efficient algorithm,
even when the model is unknown. Importantly, our algorithm
avoids solving an MDP in each iteration, making it more
practical than previous approaches. Finally, we conduct an
empirical study to verify the need for exploration in OAL.

To illustrate the benefits and practicality of our approach,
we implement a deep RL variant of OAL, based on the Mir-
ror Descent Policy Optimization (Tomar et al. 2020, MDPO)
algorithm. Our deep OAL variant holds connection to the
Generative Adversarial IL algorithm (Ho and Ermon 2016,
GAIL): both OAL and GAIL use a generative cost function
and take a single policy improvement step in each iteration.
Differently from GAIL which learns a probabilistic discrimi-
nation between the policy and expert, OAL aims to optimize
the value difference between the policy and expert, based on
the min-max formulation. This is closely related to GAIL
variants based on the Wasserstein distance (Xiao et al. 2019;
Chen et al. 2020). Our experiments on continuous control
tasks suggest that OAL is comparable to GAIL.

2 Preliminaries
In this work, we will deal with finite-horizon MDPs, de-
fined by a tupleM := (S,A, p, c,H), where S,A are the
state and action spaces, respectively, and H is the length of
an episode. ph(s′ | s, a) is transition kernel describing the
probability of transitioning to any state s′, given the current
state s and action a, for any h ∈ [H]. Similarly, ch(s, a)
is the cost of applying action a at state s, during the h-th
time-step. In adversarial MDPs, we allow the costs to change
arbitrarily between episodes. A policy πh : S → A is a map-
ping from state to action. The value function V π,p,ch (s) =

E
[∑H

t=h ch(s, a) | sh = s, π
]

is the cumulative expected
costs of the agent, following π from state s at time-step
h, over the MDP defined by the transition kernel p and
costs c. Similarly, we define the Q-function, Qπ,p,ch (s, a) =

E
[∑H

t=h ch(s, a) | sh = s, ah = a, π
]
. The occupancy mea-

sure dµ,π,ph (s, a) = Pr(sh = s, ah = a | µ, π, p) is the prob-
ability to reach state s and action a, at the h-th timestep,
following π and starting from the initial distribution µ. Here
throughout, we omit µ and assume without loss of general-

ity that there exists a single starting state. Also, we omit p
when clear from context. Notably, it holds for any π, that
Es∼µ[V π1 (s)] = ⟨c, dπ⟩, where ⟨c, dπ⟩ :=

∑H
h=1⟨ch, dπh⟩=∑

h,s,a ch(s, a)d
π
h(s, a). A mixed policy ψ over the set of all

deterministic policies Πdet is executed by randomly selecting
the policy πi ∈ Πdet at the beginning of an episode with
probability ψ(i), and exclusively following πi thereafter. Fi-
nally, the filtration Fk includes all events in the k-th episode.
We omit logarithmic factors when using the O(·) notation.

2.1 Mirror Descent in RL
The role of conservative updates in the convergence of policy
optimization algorithms has been extensively studied in RL,
going back to the analysis of the Conservative Policy Itera-
tion (CPI) algorithm (Kakade and Langford 2002). Though
sometimes motivated differently, the notion of conservative
or stable updates is deeply related to ideas and analyses found
in the convex optimization literature. Specifically, CPI can be
considered an RL variant of the Frank-Wolfe (FW) algorithm
(Scherrer and Geist 2014). Alternatively, the MD algorithm
was also studied and applied to MDPs, allowing to provide
theoretical guarantees for RL algorithms (Geist, Scherrer,
and Pietquin 2019; Shani, Efroni, and Mannor 2020).

MD (Beck and Teboulle 2003) is a framework for solving
convex optimization problems. At each iteration, the MD
procedure minimizes the sum of a linear approximation of
the current objective and a Bregman divergence term, aimed
to keep consecutive iterates in proximity. For a set fk of
convex losses, and a constraint set C, the k-th MD iterate is
xk+1 ∈ argminx∈C⟨∇fk(x)|x=xk , x− xk⟩+ tkBω (x, xk),
where Bω is a Bregman divergence and tk is a step size.
Finally, MD is known to be a no-regret online optimiza-
tion algorithm (Hazan 2019). More formally, Reg(K) :=

maxx
∑K
k=1 fk(xk)− fk(x) ≤ O(

√
K).

The stability of the MD updates is crucial to obtainO(
√
K)

regret in online optimization, where at each iteration the
learner encounters an arbitrary loss function (Hazan 2019).
This property was also exploited in RL to prove convergence
in Adversarial MDPs, where the costs can change arbitrar-
ily between episodes. Indeed, Neu, György, and Szepesvári
(2010) provided such guarantees when the transition model
is known. Recently, in (Cai et al. 2019; Efroni et al. 2020),
the authors provided convergent MD policy optimization al-
gorithms for adversarial MDPs when the model is unknown.
These algorithms perform an optimistic policy evaluation
step to induce exploration, followed by an MD policy update.

The benefits of MD in RL go beyond establishing conver-
gence guarantees. Shani, Efroni, and Mannor (2020) shows
that TRPO (Schulman et al. 2015), a widely used practical
deep RL algorithm is actually an adaptation of the MD al-
gorithm to MDPs. As a result, Tomar et al. (2020) derived
Mirror Descent Policy Optimization (MDPO), a closer-to-
theory deep RL algorithm based on the re-interpretation of
TRPO, with on-policy and off-policy variants.

2.2 Apprenticeship Learning
In AL, we assume the existence of an expert policy, denoted
by πE . We assume access to N experts’ trajectories sampled

8241

from πE over the MDP, from which we construct an estimate
of the occupancy measure dE , denoted by d̂E . While the cost
is unknown in AL, we assume it belongs to some set of costs
C. In the theoretical analysis, we focus on the following set:
Cb – Bounded costs: In this tabular case (Eq. (2.1)), the

costs are of the form ch(s, a) ∈ [0, 1], ∀h, s, a.
In our experiments, we will refer to the following sets:
Cl – Linear costs: The states are assumed to be associated

with features ϕ(s) ∈ [−1, 1]d, and Cl is the costs that are
linear in the features: i.e., c(s) = w · ϕ(s). For any w ∈ W ,
w is usually assumed to be the ℓ2 unit ball (Abbeel and Ng
2004) or the simplex (Syed and Schapire 2008). The feature
expectations of a policy π are Φπ := Edπϕ(s).
Cn – Non-linear costs: In this case the costs are some

general non-linear function (typically a DNN) of the state
features: c(s) = f(ϕ(s)), where f is bounded. We will also
consider the case that f is lipschitz continuous. In this case,
AL is related to minimizing the Wasserstein distance between
the agent and the expert (Zhang et al. 2020a,b).

The goal of AL is to find a policy π with good performance,
relative to the expert, for any possible cost within a set C,

AL: argmin
π

max
c∈C

⟨c, dπ⟩ − ⟨c, dE⟩. (2.1)

Previous works mostly focus on the space of mixed policies,
and linear costs (see Section D for a discussion on differences
between the tabular and linear setting). In this case, eq. (2.1)
is equivalent to argminψ∈Ψ maxw∈W

〈
w,Φψ

〉
−
〈
w,ΦE

〉
.

Abbeel and Ng (2004) analyzed this objective whenW is the
euclidean unit ball. In this setup, it is possible to compute the
best response for the cost (the maximizer overW), exactly,
for any ψ, and get that w = Φψ−ΦE

∥Φψ−ΦE∥ . Plugging this back
in the objective, we get that solving eq. (2.1) is equivalent
to Feature Expectation Matching (FEM), i.e., minimizing
∥Φψ − ΦE∥2. To solve the FEM objective, the authors pro-
pose the projection algorithm. This algorithm starts with an
arbitrary policy π0 and computes its feature expectations
Φπ0 . At step t they fix a cost wt = Φ̄t−1 − ΦE and find the
policy πt that minimizes it, where Φ̄t is a convex combina-
tion of the feature expectations of previous (deterministic)
policies Φ̄t =

∑t
j=1 αjΦ

πj . They show that in order to get
that

∥∥Φ̄T − ΦE
∥∥ ≤ ϵ, it suffices to run the algorithm for

O(dϵ2 log(
d
ϵ)) iterations (where d is features dimension).

Another type of algorithms, based on online convex opti-
mization, was proposed by Syed and Schapire (2008). Sim-
ilarly to the projection algorithm, the cost player plays a
no-regret algorithm and the policy player plays the best re-
sponse, i.e., it plays the policy πt that minimizes the cost at
time t. The algorithm runs for T steps and returns a mixed
policy ψ that assigns probability 1/T to each policy πt. In
(Syed and Schapire 2008), the authors prove their scheme is
faster than the projection algorithm (Abbeel and Ng 2004),
requiring only O(log(d)/ϵ2) iterations. This improvement
follows from the analysis of MD and specifically the Multi-
plicative Weights algorithm (Freund and Schapire 1997; Lit-
tlestone and Warmuth 1994), giving the algorithm its name,
Multiplicative Weights AL (MWAL).

Both types of AL algorithms we have described are based
on the concept of solving the min-max game when one of the

players plays the best response: the policy player in MWAL,
and the cost player in the projection algorithm. The main
limitation in implementing these algorithms in practice is
that they both require to solve an MDP in each iteration.

3 Online Apprenticeship Learning
In this work, we study an online version of AL where an agent
interacts with an environment with the goal of imitating an
expert. Our focus is on algorithms that are sample efficient
in the number of interactions with the environment. This is
different from prior batch RL work (Abbeel and Ng 2004;
Syed and Schapire 2008; Zahavy et al. 2020) which mostly
focused on PAC bounds on the amount of optimization it-
erations needed to find an ϵ-optimal solution and typically
assumed that the environment is known (or that the expert
data is sufficient to approximate the model). Our formulation,
on the other hand, puts emphasis on the performance of the
agent while it is learning, which we believe is important in
many real world applications.

Formally, we measure the performance of an online AL
algorithm via the regret of the learning algorithm w.r.t the
expert. In standard RL, when the costs are known, the regret
of a learner is defined as the difference between the expected
accumulated values of the learned policies and the value of
the optimal policy (Jaksch, Ortner, and Auer 2010). However,
in the absence of costs, the optimal policy is not defined.
Therefore, it is most natural to compare the performance of
the learner to the expert. With Eq. (2.1) in mind, this leads us
to introduce the regret in Definition 1, which measures the
worst-case difference between the accumulated values of the
learner and the expert, over all possible costs in C:

Definition 1 (Apprenticeship Learning Regret). The regret
of an AL algorithm is:

RegAL(K) := max
c∈C

K∑
k=1

[
V πk,c1 − V π

E ,c
1

]
, (3.1)

Definition 1 suggests a notion of regret from the
perspective of comparison to the expert as a refer-
ence policy. Instead, as an optimization problem, the
regret of (2.1) is measured w.r.t. to its optimal so-
lution, Reg(K) := maxc∈C

∑K
k=1⟨c, dπ

k − dE⟩ −
minπmaxc∈C

∑K
k=1

〈
c, dπ − dE

〉
. Importantly, in the fol-

lowing lemma, we show the two regret definitions coincide:

Lemma 1. The online regret of the AL optimization prob-
lem (2.1) and the AL regret are equivalent.

3.1 Online Apprenticeship Learning Scheme
In Algorithm 1, we present a scheme for solving the AL

problem using online optimization tools. Specifically, we
introduce a min-player to solve the minimization problem in
eq. (2.1). This min-player is an RL agent that aims to find the
optimal policy in an adversarial MDP in which a max-player
chooses the cost in each round. In Section 3.2, we show that
simultaneously optimizing both the policy and cost using
no-regret algorithms leads to a sample efficient no-regret AL
algorithm (see Definition 1). Our approach averts the need

8242

Algorithm 1: OAL Scheme

1: for k = 1, ...,K do
2: Rollout a trajectory by acting πk
3: # Evaluation Step
4: Evaluate Qπk using the current cost ck
5: Evaluate∇cL(πk, c;πE)|c=ck
6: # Policy Update
7: Update πk+1 by an MD policy update with Qπ

k

8: # Costs Update
9: Update ck+1 by an MD step on∇cL(πk, c)|c=ck

to solve an MDP in each iteration, as was typically done
in previous work (see the discussion in Section 2.2), and
therefore vastly reduces the computational complexity of the
algorithm and makes it more practical.

This is attained in the following manner. Each OAL itera-
tion consists of two phases: (1) evaluation phase, in which
the gradients of the objective w.r.t. the policy and costs are
estimated, and (2) optimization phase, where both the pol-
icy and cost are updated by two separated MD iterates (see
Section 2.1).To specify the updates, we need calculate the
gradient of the AL objective w.r.t. to the policy or cost, and
choose an appropriate Bregman divergence.

Policy update. Because V π
E ,ck does not depend on the

current policy, the optimization objective is just V π,c
k

, which
is the exactly the RL objective w.r.t. to the current costs.
Thus, the gradient of the AL objective w.r.t. policy is the Q-
function of the current policy and costs. The KL-divergence
is a natural choice for the Bregman term, when optimizing
over the set of stochastic policies (Shani, Efroni, and Mannor
2020). Using the stepsize tπk , the OAL policy update is

πk+1
h ∈ argmin

π
⟨Qπk,ckh , πh⟩+ tπkdKL(πh||πkh). (3.2)

Notably, this update only requires to evaluate the current
Q-function, and does not to solve an MDP.

Cost update. Denoting the cost AL objective L(π, c) :=
−(V π,c1 (s1) − V π

E ,c
1 (s1)), the gradient w.r.t. the cost is

∇cL(π, c)|c=ck . The preferable choice of Bregman depends
the cost set C. We use the euclidean norm, but other choices
are also possible. With stepsize tck, the OAL cost update is

ck+1 ∈ argmin
c

〈
∇cL(πk, c)|ck , c

〉
+
tck
2

∥∥c−ck∥∥2 . (3.3)

In the next section, we use the scheme of Algorithm 1 to
develop a no-regret AL algorithm.

3.2 Convergent Online Apprenticeship Learning
The updates of OAL in Eqs. (3.2) and (3.3) rely on the exact
evaluation of Qπk,ck and∇L(π, c;πE)|ck . However, in most
cases, the transition model is unknown, and therefore, assum-
ing access to these quantities is unrealistic. Nevertheless, we
now introduce Algorithm 2, an OAL variant which provably
minimizes the AL regret (see Definition 1) in the tabular set-
tings, without any restrictive assumptions. Intuitively, an AL
agent should try and follow the expert’s path. However, due

to the environment’s randomness and the possible scarcity
of expert’s demonstrations, it can stray afar from such path.
Thus, it is crucial to explore the environment to learn a policy
which keeps proximity to that of the expert (see the discus-
sion in Section 4). To this end, Algorithm 2 uses optimistic
UCB-bonuses to explore the MDP.

The policy player has access to the costs of all state-action
pairs, in each iteration. Thus, from the policy player per-
spective, it interacts with an adversarial MDP with full infor-
mation of the costs and unknown transitions. To solve this
MDP, at each iteration, Algorithm 2 improves the policy by
applying an MD policy update w.r.t. a UCB-based optimistic
estimation of the current Q-function (Line 15), relying on the
techniques of Cai et al. (2019). The UCB bonus, bk−1

h , added
to the costs, accounts for the uncertainty in the estimation of
the transitions, driving the policy to explore (Line 8).

The cost player update in the tabular setting is given by
∇cL(πk, c)|c=ck = dE − dπk , which can be evaluated using
the learned model. We use costs of the form c ∈ Cb, which
make the cost optimization in Eq. (3.3) separable at each time-
step, state and action. In this case, the euclidean distance is
a natural candidate for the choice of Bregman divergence,
reducing the MD update to (1) performing a gradient step
towards the difference between the expert’s and the agent’s
probability of encountering the specific state-action pair, and
(2) projecting the result back to [0, 1] (Lines 17 and 18). We
are now ready to state our main theoretical result:
Theorem 1. The regret of the OAL algorithm (Algorithm 2)
satisfies with probability of 1− δ,

RegAL(K) ≤ O
(√

H4S2AK +
√
H3SAK2/N

)
.

The regret bound in Theorem 1 consists of two terms. The
first term shows an O(

√
K) rate similar to the optimal regret

of solving an MDP. Perhaps surprisingly, the fact that we
solve the AL problem for any possible costs does not hurt
the sample efficiency of our algorithm. The second term is
a statistical error term due to the fact that we only have a
limited amount of expert data. This error is independent of
the AL algorithm used, and is a reminder of the fact we would
like to mimic the expert itself and not the data. In this sense,
it is closely related to the generalization bound in (Chen et al.
2020), discussed in Section 4. When expert data is scarce, it
could be hard to mimic the true expert’s policy, and the linear
error dominates the bound. Still, when the amount of experts’
trajectories is of the order of the number of environment
interactions, N ∝ K, the dominant term becomes O(

√
K).

Recall that previous AL results require to solve an MDP
in each update, and therefore, their bounds on the amount of
iterations refers to the amount of times an MDP is solved. In
stark contrast, Algorithm 2 avoids solving an MDP, and the
regret bound measures the interactions with the MDP.

In what follows we give some intuition regarding the proof
of Theorem 1. The full proof is found in Appendix A. In
the proof, we adapt the the analysis for solving repeated
games using Online Optimization (Freund and Schapire 1999;
Abernethy and Wang 2017) to the min-max AL problem. This
allows us to prove the following key inequality (Lemma 2,

8243

Appendix A), which bounds the AL regret:

RegAL(K)≤ Regπ(K︸ ︷︷ ︸
(i)

)+Regc(K︸ ︷︷ ︸
(ii)

)+2Kmax
c
|⟨c, dE−d̂E⟩|︸ ︷︷ ︸
(iii)

Algorithm 2: Online Apprenticeship Learning (OAL)

1: for k = 1, ...,K do
2: Rollout a trajectory by acting πk
3: Estimate d̂k using the empirical model p̄k−1

4: # Policy Evaluation
5: ∀s ∈ S, V kH+1(s)← 0
6: for ∀h = H, .., 1, s ∈ S, a ∈ A do
7: Qkh(s, a)← (ckh − b

k−1
h + p̄k−1

h V kh+1)(s, a)

8: Qkh(s, a)← max{Qkh(s, a), 0}
9: V kh (s)← ⟨Qkh(s, ·), πkh(· | s)⟩

10: # Update Step
11: for ∀h, s, a ∈ [H]× S ×A do
12: # Policy Update
13: πk+1

h (a | s) ∝ πkh(a | s) exp
(
−tπkQkh(s, a)

)
14: # Costs Update
15: ck+1

h (s, a)← ckh(s, a) + tck
(
d̂kh − d̂Eh

)
(s, a)

16: ck+1
h (s, a)← Clip

{
ck+1
h (s, a), 0, 1

}
17: Update counters and empirical model, nk, p̄k

Importantly, this decomposes the regret of the policy and
cost players, enabling the algorithm to perform the updates
in (3.2) and (3.3) separately. We address each of the terms:
Term (i). The regret of the policy player in the adversarial
MDP defined by the known costs {ck}Kk=1. By applying
the MD-based policy update (Eq. (3.2)) with an optimistic
Q-function in Algorithm 2, we follow the analysis in
(Cai et al. 2019; Efroni et al. 2020) to bound this term by
O
(√
H4S2AK

)
(Lemma 4, Appendix A).

Term (ii). The regret of the cost player,
maxc

∑K
k=1⟨c, dπk,p − d̂E⟩ −

∑K
k=1⟨ck, dπk,p − d̂E⟩.

Following MD updates in (3.3) w.r.t. the estimated occu-
pancy measure of the current policy, this term is bounded by
O
(√
H4S2AK

)
(Lemma 5, Appendix A).

Term (iii). This describes the discrepancy between the
expert’s data and the true expert. It is bounded using
Hoeffding’s inequality, leading to the linear regret part of
Theorem 1, O

(√
H3SAK2/N

)
.

4 Discussion and Related Work
The role of exploration in AL. A key component in our
analysis for proving Theorem 1, is using a UCB cost bonus to
induce exploration. But should the agent explore at all, if its
goal is to follow an expert? Indeed, with infinite amount of
expert trajectories, deriving a stochastic policy π̂E using d̂E
(which is equivalent to BC without function approximation),
allows for an exact retrieval of πE , leading to zero regret
without any exploration. Also, in a slightly different setting
where the model is unknown and the true costs are observed,
Abbeel and Ng (2005) provided a polynomial PAC sample
complexity guarantee for imitating an expert. In contrast to

(a) (b)

Figure 1: (a) Exploration and minimizing the AL regret.
(b) Comparison between BC and AL with BC initialization.

our approach, they argue there is no need to encourage the
algorithm to explore. Thus, intuitively, it might seem that
the exploration procedure used in OAL wastefully forces the
agent to explore unnecessary regions of the state-space.

However, when the number of expert trajectories is finite,
directly deriving π̂ from d̂π can often lead to states unseen
in the data, resulting in undetermined policies in these states
which can cause an unwanted behaviour. Instead, the goal of
AL is to learn policies which try to stick as close as possible
to the experts trajectories, even when unobserved states are
encountered. Still, when the expert trajectories are abundant,
the model can be accurately estimated in states that the ex-
pert can visit, mitigating the need for exploration. Indeed,
the guarantee in (Abbeel and Ng 2005) (only) holds in this
regime, when the number of trajectories is of the order of
O(1/ϵ3), where ϵ is the acceptable error.

In stark contrast, our bounds for AL do not rely on any as-
sumption on the number of expert trajectories. As a result, our
work suggests that when expert trajectories are scarce, one do
need exploration to learn the transition model efficiently, due
to the fact that the model cannot be accurately estimated even
in states that the expert policy might reach. Note that even in
the regime where expert data is abundant, the algorithm in
(Abbeel and Ng 2005) requires O(1/ϵ5) MDP interactions
to converge, which is roughly comparable to O(K4/5) regret.
In this sense, our algorithm achieves O(

√
K) regret, and

hence requires much less interactions, in the more intricate
AL setting and for any amount of trajectories.

To further address this discussion, we empirically tested
the necessity of exploration for different amounts of experts’
trajectories, by running Algorithm 2 with and without UCB
bonuses in a tabular MDP. A fixed amount of episodes was
used in all runs. For any number of trajectories, the plot was
averaged over 400 seeds, and the error bars represent 95%
confidence intervals. The full experimental details are found
in Section E. The results in Figure 1a show that the AL regret
is consistently lower when using optimistic bonuses. This
also holds when initializing the transition model in OAL by
estimating it using the expert trajectories. This suggests that
exploration is crucial to optimize the online performance
of OAL. Moreover, Figure 1a shows that when more expert
trajectories are available, the regret decreases down to a fixed

8244

value corresponding to the second term in Theorem 1.
Finally, Zhang et al. (2020b) elegantly proved PAC conver-

gence for an algorithm that resembles the updates in Eqs. (3.2)
and (3.3), using neural networks for approximation. In their
work, they assume bounded Radon-Nikodym derivatives,
which is similar to having finite concentrability coefficients
(Kakade and Langford 2002). This bypasses the need to ex-
plore by assuming the agent policies can always reach any
state that the expert reaches. By employing proper explo-
ration, we refrained from such an assumption when proving
the regret bound in Theorem 1 for the simpler tabular case.

On the generalization of OAL. Chen et al. (2020) ana-
lyzed the generalization of an AL-like algorithm in the av-
erage cost setting, which is defined as the gap between how
the learned policy performs w.r.t. the true expert and its per-
formance w.r.t the expert demonstrations. They show the
generalization error depends on O(

√
(logN)/N), where N

is the covering number of the cost class. Specifically, when
using Cb as in Algorithm 2, this becomes O(

√
HSA/N),

which matches the dependence on SA/N in the linear term
of Theorem 1. This result implies that even in the tabular
case, different cost classes can lead to improved generaliza-
tion. However, in cost classes other than Cb, the projection
required to solve Eq. (3.3) can be much harder. Still, it is
valuable to understand how different cost classes affects the
performance of OAL when the expert trajectories are limited.

Differences from BC. Instead of minimizing the value
difference directly, BC algorithms directly minimize the zero-
one or ℓ1 loss between the agent and expert policies. A main
caveat of this approach is that it fails to treat states unob-
served by the expert. In this case, an ϵ error can lead to a
value difference ofH2ϵ (Ross and Bagnell 2010). This can be
improved by further assumptions: Ross and Bagnell (2010)
assume that one can query the expert online; Brantley, Sun,
and Henaff (2019) add an external mechanism to attract the
agent towards the expert state-action distribution, and as-
sume the agent is concentrated around the expert. Concretely,
Rajaraman et al. (2020) shows that additional knowledge
of the transition model is required to avoid this compound-
ing error. Instead, learning a policy close to the state-action
distribution of the expert is a core built-in mechanism in
AL algorithms, exploiting the transition model to optimize
the value-difference directly for any possible cost. This pre-
vents the unwanted behaviour experienced in BC algorithms
without relying on any additional assumptions. Another dif-
ference between the two approaches, is that analyses of BC
algorithms focus on the performance difference between the
final learned policy and the optimal policy (Ross and Bagnell
2010). Yet, this does not capture the online performance of
the algorithm. Instead, our work uses the more common form
of regret which measures the difference between the online
performance of the agent and the best policy. Notably, many
BC algorithms do interact with the environment online (e.g.
(Ross and Bagnell 2010; Brantley, Sun, and Henaff 2019)),
and it could be useful to analyze them with a similar criterion.

Finally, note that the two paradigms can be used in a com-
plementary fashion. We ran an experiment to compare BC
and Algorithm 2 with BC initialization (See Section E for de-

tails). The results in Figure 1b show that using OAL together
with BC leads to an improved online regret. Yet, when expert
trajectories are abundant, BC is sufficient to learn the expert
policy, as discussed in the beginning of this section.

5 Deep Online Apprenticeship Learning
We now present a practical implementation of Algorithm 1
using Deep RL algorithms. We implement two separate mod-
ules, a policy and a generative costs module, both of which
are updated based on the MD updates in Eqs. (3.2) and (3.3).

For policy optimization, we use MDPO (Tomar et al. 2020),
an MD-based off-policy deep RL algorithm. To update the
policy, MDPO approximately solves (3.2) by performing
several SGD steps w.r.t. its objective, keeping the target pol-
icy fixed. This enforces the stability of the policy updates
required by Algorithm 1.

For the generative costs, we consider two modules. (1) A
linear costs generator based on Cl (see Section 2.2). Using
this set of costs, Eq. (3.3) can be solved in close-form. (2)
A neural network costs generator (see Cn in Section 2.2).
Note that any cost in this set must be bounded, so it can serve
as a cost of an MDP. In theory, this is easily achieved by the
projection step in Eq. (3.3), which corresponds to clipping
the cost to reside within the set. Yet, when using neural
networks, this clipping procedure can hurt the gradient flow.
Instead, we use different techniques to keep the cost bounded.
First, we penalize the network’s output to be close to zero,
to effectively limit the size of the costs. Second, we apply
the technique proposed in (Gulrajani et al. 2017) to enforce
a Lipschitz constraint on the costs. Specifically, we use a
convex sum of state-actions pairs encountered by the agent’s
policy and the expert as an input to the costs network, and
penalize the costs updates so that the gradient of the costs
w.r.t. to the input would be close to 1. Third, we perform
several gradient steps on Eq. (3.3) to force the updated costs
to be close to the old ones, instead of updating the costs using
gradient steps w.r.t. to the AL objective (this technique is
only applied in the on-policy case discussed in Section 5.1).
This prevents the costs from diverging too quickly. Finally,
the costs given to the policy player are clipped.

5.1 Experiments
(Ho and Ermon 2016) pioneered the idea of solving the AL
problem without solving an MDP in each step. To this end,
they propose GAIL, an AL algorithm inspired by generative
adversarial networks (GAN; Goodfellow et al. 2014). GAIL
uses a neural network, which learns to differentiate between
the policy and the expert using the GAN loss, as a surrogate
for the AL problem. In turn, the GAN loss is given as the cost
of the MDP. In this section, we demonstrate that it is possible
to directly solve the AL paradigm using either a linear or a
NN-based family of costs, by following the OAL scheme.

Experimental Setup. We evaluated deep OAL (Section 5)
on the MuJoCo (Todorov, Erez, and Tassa 2012) set of contin-
uous control tasks. To show the online convergence properties
of AL algorithms, we present the full learning curves. We
used 10 expert trajectories in all our experiments, roughly
the average amount in (Ho and Ermon 2016; Kostrikov et al.

8245

Figure 2: OAL vs. GAIL. Policy optimizer used: (Top) off-policy MDPO; (Bottom) on-policy TRPO.

2018). We tested OAL with both linear and neural costs (see
Section 5), and compared them with GAIL. The same policy
and cost networks were used for OAL and GAIL.

Our theoretical analysis dictates to optimize the policy
using stable updates. Thus, we used two policy optimization
algorithms applying the MD update: (1) on-policy TRPO,
which can be seen as a hard-constraint version of MDPO
(Shani, Efroni, and Mannor 2020). (2) off-policy MDPO,
which directly solves the policy updates in Eq. (3.2).

The experimental results in Figure 2 show that both the
linear (green) and neural (orange) versions of OAL are suc-
cessful at imitating the expert. We turn to analyze the results:

OAL vs. GAIL. The results in Figure 2 show both the
linear (green) and neural (orange) versions of OAL outper-
form GAIL (blue), implying it is not necessary to introduce
a discriminator in AL. This holds independently on the pol-
icy optimization algorithm. Note that the performance drop
of GAIL in “Humanoid” can be explained by the fact that
Ho and Ermon (2016) had to increase the amount of MDP
interactions and expert trajectories in this environment.

Neural vs. Linear. Surprisingly, the linear version (green)
of OAL performs almost as good as the neural one (orange).
This comes with the additional benefits that linear rewards
are more interpretable, they do not require to design and
tune an architecture, and are faster to compute. Our results
suggest that linear costs might be sufficient for solving the
AL problem even in complex environment, countering the
intuition and empirical results found in (Ho and Ermon 2016).
There, the authors argue that the main pitfall of AL is its
reliance on a predetermined structured cost, which does not
necessarily contains the true MDP cost. However, even if the
true cost cannot be perfectly represented by a linear function,
it might still be sufficient to obtain an optimal policy.

MDPO vs. TRPO. Inspecting Figure 2, one can see that
the off-policy MDPO version (top) significantly outperforms
the on-policy TRPO (bottom) on all three algorithms. This
can be attributed to two reasons: First, in our analysis, the MD
policy update in Eq. (3.3) is required for efficiently solving
the AL problem. MDPO is explicitly designed to optimize

this policy update and therefore closer to theory. Instead,
TRPO only implicitly solves this equation. Note that Ho and
Ermon (2016) motivated using TRPO in GAIL as preventing
noisy Q-function estimates. Our work suggests the need for
stable policy updates as an alternative motivation. Second, as
was reported in other works (Kostrikov et al. 2018; Blondé
and Kalousis 2019), using GAIL together with an off-policy
policy algorithm allows a significant boost in data efficiency.
Our results strongly imply a similar conclusion.

On Lipschitz Costs. In Figure 3, we study the dependence
on the Lipschitz regularization coefficient in the HalfCheetah-
v3 domain. Our results implies that restricting the cost to be
Lipschitz is important for OAL. Interestingly, in (Kostrikov
et al. 2018; Blondé and Kalousis 2019) the authors apply the
same regularization for GAIL, even though Lipschitzness is
not necessarily required in GAIL. Indeed, Figure 3 suggests
that enforcing this regularity condition increases the stability
of both GAIL and OAL. However, when used in GAIL, this
technique might hurt convergence speed. Interestingly, Xiao
et al. (2019) showed that solving the AL problem with Lip-
schitz costs is similar to GAIL with a Wasserstein distance
between the occupancy measures of the agent and expert.
They employ several regularizations to enforce Lipschitzness
and optimize the policy using TRPO. Deep OAL is different
from their implementation in the following ways: they focus
only on on-policy scenario using TRPO; they enforce Lips-
chitzness by L2-regularization, while we regularize the cost
network gradients as proposed in (Gulrajani et al. 2017).

Figure 3: The effect of the Lipschitz regularization.

8246

Acknowledgments
This research was partially supported by the ISF under con-
tract 2199/20.

References
Abbeel, P.; and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning, 1.
ACM.
Abbeel, P.; and Ng, A. Y. 2005. Exploration and apprentice-
ship learning in reinforcement learning. In Proceedings of
the 22nd international conference on Machine learning, 1–8.
Abernethy, J. D.; and Wang, J.-K. 2017. On Frank-Wolfe and
Equilibrium Computation. In NIPS, 6584–6593.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5): 469–483.
Beck, A.; and Teboulle, M. 2003. Mirror descent and nonlin-
ear projected subgradient methods for convex optimization.
Operations Research Letters, 31: 167–175.
Blondé, L.; and Kalousis, A. 2019. Sample-efficient imitation
learning via generative adversarial nets. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics,
3138–3148. PMLR.
Brantley, K.; Sun, W.; and Henaff, M. 2019. Disagreement-
regularized imitation learning. In International Conference
on Learning Representations.
Cai, Q.; Yang, Z.; Jin, C.; and Wang, Z. 2019. Provably
Efficient Exploration in Policy Optimization. arXiv preprint
arXiv:1912.05830.
Chen, M.; Wang, Y.; Liu, T.; Yang, Z. Y.; Li, X.; Wang, Z.;
and Zhao, T. 2020. On Computation and Generalization of
Generative Adversarial Imitation Learning. In International
Conference on Learning Representations.
Dann, C.; Lattimore, T.; and Brunskill, E. 2017. Unifying
PAC and regret: Uniform PAC bounds for episodic reinforce-
ment learning. In Advances in Neural Information Processing
Systems, 5713–5723.
Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert, M.;
Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; and Zhokhov,
P. 2017. OpenAI Baselines. https://github.com/openai/
baselines.
Efroni, Y.; Merlis, N.; Ghavamzadeh, M.; and Mannor, S.
2019. Tight regret bounds for model-based reinforcement
learning with greedy policies. In Advances in Neural Infor-
mation Processing Systems, 12203–12213.
Efroni, Y.; Shani, L.; Rosenberg, A.; and Mannor, S. 2020.
Optimistic Policy Optimization with Bandit Feedback. arXiv
preprint arXiv:2002.08243.
Freund, Y.; and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to boost-
ing. Journal of computer and system sciences, 55(1): 119–
139.
Freund, Y.; and Schapire, R. E. 1999. Adaptive game playing
using multiplicative weights. Games and Economic Behavior,
29(1-2): 79–103.

Geist, M.; Scherrer, B.; and Pietquin, O. 2019. A Theory of
Regularized Markov Decision Processes. In International
Conference on Machine Learning, 2160–2169.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. Advances in neural information
processing systems, 27: 2672–2680.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved training of wasserstein
gans. In Advances in neural information processing systems,
5767–5777.
Hazan, E. 2019. Introduction to online convex optimization.
arXiv preprint arXiv:1909.05207.
Hill, A.; Raffin, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.;
Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.;
Plappert, M.; Radford, A.; Schulman, J.; Sidor, S.; and Wu,
Y. 2018. Stable Baselines. https://github.com/hill-a/stable-
baselines.
Ho, J.; and Ermon, S. 2016. Generative adversarial imitation
learning. In Advances in Neural Information Processing
Systems, 4565–4573.
Jaksch, T.; Ortner, R.; and Auer, P. 2010. Near-optimal Regret
Bounds for Reinforcement Learning. Journal of Machine
Learning Research, 11(4).
Jin, C.; Yang, Z.; Wang, Z.; and Jordan, M. I. 2020. Provably
efficient reinforcement learning with linear function approx-
imation. In Conference on Learning Theory, 2137–2143.
PMLR.
Kakade, S.; and Langford, J. 2002. Approximately optimal
approximate reinforcement learning. In ICML, volume 2,
267–274.
Kostrikov, I.; Agrawal, K. K.; Dwibedi, D.; Levine, S.; and
Tompson, J. 2018. Discriminator-actor-critic: Addressing
sample inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925.
Littlestone, N.; and Warmuth, M. K. 1994. The weighted
majority algorithm. Information and computation, 108(2):
212–261.
Neu, G.; György, A.; and Szepesvári, C. 2010. The On-
line Loop-free Stochastic Shortest-Path Problem. In COLT,
volume 2010, 231–243. Citeseer.
Orabona, F. 2019. A Modern Introduction to Online Learning.
arXiv preprint arXiv:1912.13213.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep exploration via bootstrapped DQN. arXiv preprint
arXiv:1602.04621.
Puterman, M. L. 1994. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Rajaraman, N.; Yang, L.; Jiao, J.; and Ramchandran, K. 2020.
Toward the Fundamental Limits of Imitation Learning. Ad-
vances in Neural Information Processing Systems, 33.
Ross, S.; and Bagnell, D. 2010. Efficient reductions for imi-
tation learning. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 661–668.
Schaal, S. 1997. Learning from demonstration. In Advances
in neural information processing systems, 1040–1046.

8247

Scherrer, B.; and Geist, M. 2014. Local policy search in a
convex space and conservative policy iteration as boosted
policy search. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 35–50.
Springer.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889–1897.
Shani, L.; Efroni, Y.; and Mannor, S. 2020. Adaptive trust
region policy optimization: Global convergence and faster
rates for regularized mdps. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, 5668–5675.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Syed, U.; and Schapire, R. E. 2008. A game-theoretic ap-
proach to apprenticeship learning. In Advances in neural
information processing systems, 1449–1456.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A physics
engine for model-based control. In IEEE International Con-
ference on Intelligent Robots and Systems, 5026–5033.
Tomar, M.; Shani, L.; Efroni, Y.; and Ghavamzadeh, M.
2020. Mirror Descent Policy Optimization. arXiv preprint
arXiv:2005.09814.
Weissman, T.; Ordentlich, E.; Seroussi, G.; Verdu, S.; and
Weinberger, M. J. 2003. Inequalities for the L1 deviation of
the empirical distribution. Hewlett-Packard Labs, Tech. Rep.
Xiao, H.; Herman, M.; Wagner, J.; Ziesche, S.; Etesami, J.;
and Linh, T. H. 2019. Wasserstein adversarial imitation
learning. arXiv preprint arXiv:1906.08113.
Zahavy, T.; Cohen, A.; Kaplan, H.; and Mansour, Y. 2020.
Apprenticeship learning via frank-wolfe. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
6720–6728.
Zanette, A.; and Brunskill, E. 2019. Tighter Problem-
Dependent Regret Bounds in Reinforcement Learning with-
out Domain Knowledge using Value Function Bounds. In
International Conference on Machine Learning, 7304–7312.
Zhang, M.; Wang, Y.; Ma, X.; Xia, L.; Yang, J.; Li, Z.; and Li,
X. 2020a. Wasserstein Distance guided Adversarial Imitation
Learning with Reward Shape Exploration. arXiv preprint
arXiv:2006.03503.
Zhang, Y.; Cai, Q.; Yang, Z.; and Wang, Z. 2020b. Gener-
ative adversarial imitation learning with neural networks:
Global optimality and convergence rate. arXiv preprint
arXiv:2003.03709.

8248

