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Abstract
Deep neural networks are extremely vulnerable to malicious
input data. As 3D data is increasingly used in vision tasks
such as robots, autonomous driving and drones, the internal
robustness of the classification models for 3D point cloud
has received widespread attention. In this paper, we pro-
pose a novel method named SPGA (Shape Prior Guided At-
tack) to generate adversarial point cloud examples. We use
shape prior information to make perturbations sparser and
thus achieve imperceptible attacks. In particular, we propose
a Spatially Logical Block (SLB) to apply adversarial points
through sliding in the oriented bounding box. Moreover, we
design an algorithm called FOFA for this type of task, which
further refines the adversarial attack in the process of break-
ing down complicated problems into sub-problems. Com-
pared with the methods of global perturbation, our attack
method consumes significantly fewer computations, making
it more efficient. Most importantly of all, SPGA can generate
examples with a higher attack success rate (even in a defen-
sive situation), less perturbation budget and stronger transfer-
ability.

Introduction
In recent years, deep learning algorithms have made signif-
icant and rapid progress in solving a number of tasks in-
volving complex raw data. It has achieved promising per-
formance in speech recognition (Wang et al. 2020), ob-
ject detection (Kong et al. 2020), image segmentation (Kir-
illov et al. 2020), etc. However, neural networks have been
verified to be vulnerable to adversarial attacks (Nguyen,
Yosinski, and Clune 2015; Cisse et al. 2017). Even slight
changes in the input data can result in a huge deviation in
the output results, although these minor changes are indis-
tinguishable to the human perception. The research of neu-
ral network vulnerability stems from the work of Szegedy
et al. (2013) on 2D RGB images. Goodfellow, Shlens, and
Szegedy (2014) proposed the concept of adversarial exam-
ple for the first time, and pointed out that the vulnerability
of deep model to adversarial example is mainly the existence
of internal linear part.

The current popular methods of attacking point cloud
classifiers are based on 2D image conversion. However, their
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Figure 1: Illustration of attaching adversarial perturbation to
clean point clouds to fool the classifiers. The left part is a
clean point cloud. The upper part on the right comes from
one of the previous popular works. Our method generates
sparser perturbations in the bottom right.

performance is not satisfactory on sensitive indicators, such
as perturbations budget and time consumption. Xiang, Qi,
and Li (2019) proposed the point cloud attack algorithm
named 3D-Adv firstly. They conducted attacks on point
cloud by generating adversarial points or adversarial point
perturbation. In fact, the earliest work 3D-Adv used an ad-
versarial point cloud example to attack the objective model
(the victim model) when the success rate is close to 99%.
Later, Hamdi et al. (2020) presented a data-driven adversar-
ial point cloud example generation method named AdvPC,
and for the first time studied the transferability of adversarial
point cloud examples.

As mentioned above, most of the previous works are
model-specific, yet the problem that we should also take into
account is the budget of perturbations and the consumption
of time. These important factors have received little atten-
tion in earlier works. The existence space of these perturba-
tion points is just too big. In fact, this space can be reduced
even further. Moreover, there is no acceleration algorithm
specially designed for the extremely sparse structure of point
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cloud.
In view of the irregular shape of the point cloud and the

observation of varying cardinality, it is challenging to effec-
tively limit its perturbation space while ensuring the effec-
tiveness of the attack. The Lp norm of 2D images cannot
be simply applied to 3D point clouds, and the smoothness
of point cloud adversarial examples is more difficult to en-
sure than in 2D images. When previous methods are used
to attack critical points, perturbations are easily gathered
in the local space, making it very hard to obtain perturba-
tion sparsity. Furthermore, the generation process of point
cloud adversarial examples is time-consuming, and there is
no solution to speed up the task. In addition, enhancing the
transferability while retaining a low perturbation budget is a
problem that has yet to be solved.

To handle the above-mentioned problems, this paper pro-
poses a novel attack method with shape prior guided and
sparser perturbations, named SPGA. Different from previ-
ous methods, we limit the budget of perturbations, and it will
not exceed 5% of the total number of initial points (this set-
ting guarantees both success rate and imperceptibility). As
shown in Fig. 1, the adversarial example generated by our
SPGA needs fewer perturbations. SPGA utilizes Spatially
Logical Block (SLB) to slide in the oriented bounding box
of the point cloud, and selectively applies adversarial points.
In particular, we propose Target Loss and Logical Structure
Loss to further limit the distortion. In addition, we present
an accelerated algorithm named Fast Optimization for At-
tacking (FOFA) to optimize this kind of task. FOFA can de-
compose a complex problem into several sub-problems and
speed up the solution. We test the performance of SPGA on
a much broader range of point cloud classifiers, which are
more comprehensive than previous attacks and are partic-
ularly persuasive against transferability. Experiments show
that our method has a higher success rate (even under de-
fense), higher transferability and less time consumption.

Related Work
Point Cloud Classification Point cloud classification mod-
els usually first learn the embedding of each point, and then
use an aggregation method to extract global shape features
from the entire point cloud. Usually the global is embed-
ded in several fully connected layers to achieve the classi-
fication goal. PointNet (Qi et al. 2017a) directly took the
point cloud as the input, and realized the permutation invari-
ance through the symmetric function. It learned the features
of the points independently by inputting the MLP (Multi-
layer Perceptron) layer, and then extracted the global fea-
tures through max-pooling. Further, PointNet++ (Qi et al.
2017b) captured the fine geometric structure from the field
of each point, and learned features from the local geomet-
ric structure. Based on PointNet++, PointWeb (Zhao et al.
2019) used the context of the local domain to improve the
feature of the point through Adaptive Feature Adjustment
(AFA). ConvPoint (Boulch 2020) and A-CNN (Komarichev,
Zhong, and Hua 2019) are methods based on convolution.
The former divided the convolution kernel into a spatial part
and a feature part to work, while the latter defined a circu-
lar convolution to learn the relationship between neighbor

points in a local subset. In DensePoint (Liu et al. 2020),
the feature learning is to make full use of the context in-
formation by connecting the features of all the previous lay-
ers. DGCNN (Wang et al. 2019) constructed a graph in the
feature space, which is dynamically updated once through
each layer, and performs channel-wise symmetric aggrega-
tion on the edge features associated with the neighbors of
each point. View-GCN (Wei, Yu, and Sun 2020) used a di-
rected graph and treated multiple views as Graph nodes to
achieve point cloud classification.

In this paper, we conduct attack tests on the point cloud
classifiers that are divided into three different strategies:
Pointwise MLP methods, Convolution-based methods and
Graph-based Methods.

Standard Attack Algorithms The adversarial attack can
be classified into two categories, namely targeted attack and
untargeted attack. On the other hand, based on the under-
standing of the model, it can also be divided into two cate-
gories, i.e., white-box attack and black-box attack. Szegedy
et al. (2013) proposed a bounded constrained L-BFGS algo-
rithm to generate adversarial examples. Goodfellow, Shlens,
and Szegedy (2014) designed the Fast Gradient Notation
Method (FGSM) to generate adversarial examples. Xu et al.
(2019) proposed the concept of structured adversarial attack
on 2D images, which inspires us to improve on 3D point
clouds. Kurakin, Goodfellow, and Bengio (2016) redesigned
the calculation method against interference and achieved rel-
atively high accuracy and faster speed. Miyato et al. (2018)
used the two-norm normalization result of the gradient as
the added anti-interference, and also achieved a higher at-
tack rate.

Compared with the previous attack methods, the opti-
mization algorithm FOFA used in the background of our
SPGA has higher speed and fewer perturbations.

Attack on Point Cloud Classification The adversarial
examples for point clouds, which were first proposed by Xi-
ang, Qi, and Li (2019), can be divided into two routes to
generate adversarial examples, i.e., the perturbation of the
adversarial point and the generation of adversarial points.
Hamdi et al. (2020) put forward a data-driven adversarial
attack against 3D point cloud networks, which can make ad-
versarial examples migrate between different 3D object de-
tection models. Tu et al. (2020) proposed a method to gener-
ate general 3D adversarial objects to fool LiDAR detectors.
By preventing an opposing object on top of any target vehi-
cle, the car can be prevented from being detected by LiDAR.
Liu, Yu, and Su (2020) explored three feasible shape pertur-
bations to attack point cloud classification. Tsai et al. (2020)
proposed an attack named KNN to add K-Nearest Neighbor
loss to the point cloud to make the point cloud attack eas-
ier to implement physically. Zhou et al. (2020) proposed a
label-guided adversarial network LG-GAN for real-time and
flexible attack point cloud classification model. By inputting
the original point cloud and the target label into LG-GAN,
the point cloud can be deformed with only one forward pass,
thereby identifying the point cloud as a wrong specific label.
Kim et al. (2021) attacked the point cloud classifiers while
maintaining the perceptibility and the application of a min-
imum number of perturbation points. Imposing fewer per-
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Figure 2: Overview of SPGA pipeline. Given a clean point cloud example, first attach perturbation points around the original
point through SLB sliding within the oriented bounding box, and then retain influential perturbation points through FOFA
algorithm. The relevant loss function can guarantee the fidelity against the point cloud and the effectiveness of targeted attacks.

turbations on the point cloud is a hot topic because it keeps
the perturbation imperceptible. Therefore, we explored the
sparse perturbation of the point cloud.

Methodology
In this section, we introduce the pipeline of SPGA (as shown
in Fig. 2) and the implementation details of the FOFA opti-
mization algorithm.

Spatial Feature Aggregation Can we fool the advanced
point cloud classification methods by changing the logical
structure inside the point cloud? To get the answer, we di-
vide a point cloud into several sub-groups of points, and
then punish the corresponding structure sparsity. As a result,
non-dense adversarial point sets can be generated, which en-
code the sparser adversarial effect in the local structure of
the original point cloud.

Given a point cloud X , we set its point set coordinates
as (uX , vX , wX). In order to reduce the cost of adversar-
ial search, we first drop the point cloud into a 3D grid
G ∈ RH×W×P . G is used to obtain a count feature. Note
that this step is only for the improvement of calculation ef-
ficiency, and will not affect the size of the perturbation and
the success rate of the attack. We will prove this through
experiments later. For each point Xi whose coordinate is
(uXi , vXi , wXi), we add 6 points around it respectively.
These 6 points are located at the center of the 6 faces of
the unit cube, and Xi is in the geometric center of the unit
cube. We use a trilinear weight to add these 6 points:

G(ui, vi, wi) =
∑
r

(1− ∥ur − uXi∥)(1− ∥vr − vXi∥)

(1− ∥wr − wXi∥)
(1)

where r ∈ N (uXi , vXi , wXi) is the index of the 6 points
around (uXi , vXi , wXi).

Structure Sparsity We define the attached perturba-
tion as δ, and the coordinate of the perturbation point as
(uδ, vδ, wδ). We regard the oriented bounding box of the
original point cloud as the effective space for attack. In or-
der to describe the local characteristics of perturbation δ, we
introduce the Spatial Logical Block (SLB) with size l×l×C,
and step size S. The number of SLB sliding unit blocks can
be controlled by S. By adjusting the step size S and the
size l of the SLB, different spatially sparse group splitting
schemes can be obtained. It should be noted that in the non-
original point area, SLB (without the original point as the
center and using the classic point cloud attack method as the
positioning guide) has a low probability of imposing pertur-
bations there.

SLB can decompose δ into a set of groups {δΥa,b,e
} for

a ∈ [A], b ∈ [B] and e ∈ [E], where A = (H − 1)/S + 1,
B = (W −1)/S+1 and E = P −C+1. [n] denotes an in-
teger set {1, 2, · · · , n}. Given group {δΥa,b,e

}, the structure
sparsity can be described by the following formula:

Φ(δ) =
E∑

e=1

A∑
a=1

B∑
b=1

∥δΥa,b,e
∥2 (2)

where {δΥa,b,e
} represents the set of adversarial points δ in-

dexed by Υa,b,e and ∥·∥2 is the L2 norm.

Distortion Function
We design the distortion function L, which consists of two
loss functions, namely Target Loss (Ltar) and Logical Struc-
ture Loss (Lls). We use the standard cross-entropy loss func-
tion as the Target Loss (Ltar). Formally:

Ltar = −[t
′
logV(X

′
) + (1− t

′
) log(1− V(X

′
))] (3)
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where V denotes the victim models, t
′

is the targeted label,
and V(X ′

) represents the output of the victim models when
we input the adversarial point cloud example.

In order to make the attacked point cloud possess the
smaller distortion in the spatial logic, we design the Logi-
cal Structure Loss (Lls). Formally:

Lls =
∑

Xi∈X0

∑
Xr∈N (Xi)

∥△Xi −△Xr∥22 (4)

where △Xi = X
′

i −Xi denotes the displacement from the
original point position to the adversarial point position, and
N (Xi) represents the 6 points located at the center of the 6
faces of the cube centered on Xi.

In general, the combined loss is defined as:

Ldis = λ1Ltar + λ2Lls (5)

where λ1 and λ2 are hyperparameters to balance the weights
of the two losses.

Shape Prior Guided Attack
Generating the above-mentioned perturbations gives rise to
optimization problems. Existing optimizers such as FISTA
(for EDA attack (Chen et al. 2018)) and Adam (for C&W
attack (Carlini and Wagner 2017)) are arduous to solve the
problem of finding sparse adversarial points. We are in-
spired by stochastic/online ADMM (Ouyang et al. 2013)
and linearized ADMM (Boyd, Parikh, and Chu 2011) to
solve shared problems in linearization technology, that is,
the positioning and searching of spatially sparse group and
sparse logical points in this research. In order to take into
account the decomposability and the convergence properties
of the optimization algorithm, we propose an optimization
algorithm called FOFA, which can effectively find spatially
sparse adversarial points.

Assuming that the initial point cloud is X0 ∈ RN×3, the
adversarial cloud points after being disturbed is denoted as
X

′
= X0 + δ. The true label is defined as t, and the target

label is t
′
. By solving the optimization problem of this form,

a better point cloud perturbation can be obtained:

min
δ

L(X
′
, t

′
) + αLdis + βΦ(δ)

s.t. ∥δ∥∞ ≤ ϵ
(6)

where Ldis is a distortion function. The definition of Φ(δ)
has been given in Eq. (2). In Eq. (6), strict constraints can
ensure that the created adversarial points effective. α and β
are non-negative regularization parameters. They can guide
us to focus the attack on the distortion of adversarial ex-
amples and the logic of sparse space. We will discuss the
ablation experiments of α and β in the experimental section.

Eq. (6) provides a general guidance for the generation of
adversarial examples. If we remove the constraints of Ldis

and L∞, Eq. (6) represents a C&W attack. In this paper, we
design the loss function of Eq. (6) as follows:

L(X
′
, t

′
) = max(max

i̸=t′
(F (X

′
)i)− F (X

′
)t′ + σ, 0) (7)

where F (X
′
)i is the i− th element of the logarithm F (X

′
),

which represents the output from the last Softmax layer, and
σ is a confidence parameter used to adjust the attack trans-
ferability of the adversarial example.

Fast Optimization for Attacking
To adapt Eq. (6) to FOFA, we rewrite it as follows:

min
δ

L(X0,x) + αLdis + β
ABE∑
i=1

∥yΘi
∥2 + g(z)

s.t. δ = x,y = x, z = x

(8)

where x, y and z are newly introduced variables for solv-
ing optimization problems. To facilitate counting, we let
Θ(b−1)A+a+e = Υa,b,e. g(z) be an indicator function,
which is defined as follows:

g(z) =

{
0 if ∥z∥∞ ≤ ϵ

∞ otherwise
(9)

The optimization problem of FOFA can be transformed
into finding the minimum of an augmented Lagrangian prob-
lem. For the sake of simplicity, it can be equated to being
decomposed to find the following sub-problems:

min
δ

αLdis +
d

2
∥δ − c1∥22

min
z

g(z) +
d

2
∥z − c2∥22

(10)

where c1 = xk − (ok/d) and c2 = xk − (pk/d). We also
need to solve the minimum value of the following problem:

min
y

β
ABE∑
i=1

∥yΘi
∥2 +

d

2
∥y − c3∥22 (11)

where c3 = xk − (qk/d). o, p and q used here are all La-
grangian Multipliers, and k is an iteration index. d(d > 0)
is a penalty parameter. The key to FOFA is that the solution
to Eq. (8) can be determined in parallel and accurately.

The SPGA attack needs to obtain the gradient of the loss
function L. We add the Bregman divergence term µk

2 ∥x −
xk∥22. Then, we get the following question:

min
x

(∇L(xk +X0))
T (x− xk) +

µk

2
∥x− xk∥22

+
d

2
∥x− c1∥22 +

d

2
∥x− c2∥22 +

d

2
∥x− c3∥22

(12)

where 1
µk > 0 is a given decaying parameter, and the Breg-

man divergence stabilizes the convergence of the z to mini-
mization step. Eq. (12) belongs to a quadratic programming
problem with a closed solution.

In summary, our proposed FOFA optimization algorithm
obtains a closed solution in the following form:
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xk+1 =
µkxk + dc1 + dc2 + dc3 −∇L(xk +X0)

µk + 3d
(13)

Compared with the current optimization solution methods
(such as C&W (Carlini and Wagner 2017), Zoo (Chen et al.
2017)), the two main advantages of FOFA are the efficiency
of the solution and the generalization of the attack. We will
go through this in detail on attacking different point cloud
classification models in the experimental section. In other
words, the calculation of each step has been executed more
effectively, and FOFA can be employed in other attack algo-
rithms.

Experiment
Datasets
We use two public datasets, 3D MNIST 1 and the aligned
ModelNet40 2 (Wu et al. 2015). The former contains 6000
original point clouds generated by 2D MNIST. The numbers
of training set and test set are 5000 and 1000, respectively.
Each point cloud has approximately 20,000 points. The lat-
ter possesses 12311 CAD models from 40 categories, and
the numbers of training set and test set are 9,743 and 2,468,
respectively. In the experiment, we randomly sample 2048
points on the surface of each object.

Implementation Details
In our implementation, we divide the attacks on all point
cloud classification models into untargeted attack and tar-
geted attack. The modifications of SPGA to the original
point cloud are divided into moving points, attaching pertur-
bation points and dropping original points. We also imple-
ment two variants of SPGA: SPGA-AT and SPGA-DR. The
names suffixed with AT and DR indicate that SPGA is cur-
rently allowed to attach and drop points, respectively. The
two hyperparameters of λ1 and λ2 are 0.3 and 0.7, respec-
tively. The values of the two parameters α and β are both
0.5.

Qualitative Comparison
We carry out targeted attacks on different point cloud clas-
sifiers. As shown in Fig. 3, we select a slice of adversar-
ial point cloud examples. The black text is the real label,
and the brown text represents the target label. The origi-
nal point cloud is attached, dropped or moved by points,
all of which can achieve the goal of fooling the point cloud
classifiers. Previous methods will generate clustered point
cloud patches. By contrast, our method mainly generates
sparse logical adversarial points. In these cases, the adver-
sarial points do not seem to be overwhelmingly clustered.
Most of the adversarial points are merged into the original
normal points, so that the point cloud defense method can-
not distinguish between the adversarial points and the nor-
mal points.

1https://www.kaggle.com/daavoo/3d-mnist/version/13
2http://modelnet.cs.princeton.edu/

3 4 5 5 7

7 2 3 9 1

airplane plant car guitar chair

piano sofa bowl door guitar

Figure 3: Illustration of the targeted adversarial examples
generated by SPGA. The first and third rows represent the
original point clouds, and the second and fourth rows denote
the corresponding adversarial examples.

The goal of separating the two variants (SPGA-AT and
SPGA-DR) is to analyze whether the addition and deletion
of points will affect the efficiency of the attack, and in which
way the perturbation is smaller in the senses. As shown in
Fig. 4, the first column represents clean point cloud exam-
ples, and the next two columns are point cloud counter ex-
amples. Generally speaking, the perturbation points gener-
ated by the two variant methods are relatively few, but it is
obvious that the operation of reducing the points is sensorily
closer to the original example.

Quantitative Comparison
The number of perturbed points We complete the experi-
ment of the number of sparse logical adversarial points. The
results are shown in Fig. 5, where 3D MNIST and Mod-
elNet 40 are with suffixes 3M and M40, respectively. RN
stands for Random Noise, which means randomly attaching
noise points according to Gaussian sampling. Experimen-
tal results demonstrate that merely attaching random noise
does not significantly reduce the recognition accuracy of the
model. In contrast, on 3D MNIST dataset, when the number
of adversarial points generated by SPGA reaches about 100,
the recognition accuracy is close to 0%. On ModelNet40
dataset, when the number of perturbation points reaches
about 90, the model can no longer accurately classify ob-
jects.

Transferability We also conduct experiments on the at-
tack transferability of SPGA. It should be noted that the
transferability between the same models is 100%. Among
the 8 point cloud classifiers, based on the migration per-
formance between the 3 models PointNet, PointNet++ and
DGCNN, we list the best results of the previous works, as
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Methods PointNet PointNet++ DGCNN A-CNN PointWeb DensePoint ConvPoint View-GCN

RO RS RO RS RO RS RO RS RO RS RO RS RO RS RO RS
3D-Adv 53.4 55.3 57.1 58.4 61.2 63.4 64.7 71.2 60.7 57.6 64.6 62.0 51.5 57.4 52.1 52.2
KNN 64.8 65.1 62.8 67.7 66.4 68.2 72.0 80.1 65.5 61.6 80.0 73.4 62.7 59.3 63.1 60.8
AdvPC 64.1 73.3 63.0 72.0 72.4 76.6 77.5 82.6 68.2 66.2 84.5 80.7 66.5 67.4 76.2 73.3
ASP 86.8 89.5 87.3 84.5 85.5 81.3 86.2 82.9 85.7 80.3 84.0 82.5 85.4 83.1 83.2 78.1

SPGA-AT 83.2 85.4 84.8 83.3 84.5 80.4 81.1 78.0 85.6 76.3 81.8 78.8 82.6 83.3 83.0 77.5
SPGA-DR 85.3 86.5 85.8 85.3 84.3 81.5 83.0 81.8 84.4 77.8 83.6 81.4 85.8 86.2 82.1 76.2
SPGA 87.5 88.6 86.4 86.7 85.7 82.9 84.3 83.0 86.9 81.2 85.7 82.8 86.3 87.5 84.6 79.3

Table 1: Different attack methods generate untargeted adversarial examples for 8 point cloud classifiers. Note that these point
cloud classification models have taken defensive measures, which are represented by RO (Remove Outliers) and RS (Remove
Salient), respectively. Results in bold and underlined indicate the best and the second-best. The experiments are conducted on
ModelNet40 dataset.

Original Point 
Cloud

SPGA-AT SPGA-DR

range hood stairs stairs

table tent

6 0 0

tent

Figure 4: Illustration of the targeted attack performance of
two variants of SPGA: SPGA-AT and SPGA-DR.

shown in Fig. 6. The transferability of the other 5 point cloud
classification models is not comparable to previous work.
It can be seen from Fig. 6 that the success rate of SPGA
transferability between different models can exceed 50% in
a multitude of cases, which is sufficient to prove the success-
ful performance of transferability.

Perturbation budget We conduct untargeted attacks on
the same point cloud classifier without defensive measures
on ModelNet40 dataset. We compare the perturbation bud-
gets between 3D-Adv and AdvPC attack algorithms. As
shown in Table 2, SPGA w/o FOFA means that SPGA uses
other optimization algorithms and the main structure re-
mains unchanged. Table 2 reveals that SPGA can achieve
the goal of the attack with a perturbation budget of less than
5%.

Attack Success Rate and Distortion
SPGA attacks can achieve a 100% success rate on any tar-
get label. Compared with other methods, the distortion of
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SPGA-DR/3M
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Figure 5: Illustration of the influence of the number of ad-
versarial points on the accuracy of point cloud classification.

the point cloud is smaller. It is worth mentioning that on
ModelNet40 dataset, the example quality of SPGA is better.
We conduct tests on 3D MNIST and ModelNet40 datasets
to study the relationship between the amount of disturbance
and the attack success rate. In Fig. 5, we plot the relationship
between the number of changed points and the classification
accuracy.

Comparison with the State-of-the-arts
We compare our methods with 3D-Adv (Xiang, Qi, and Li
2019), KNN (Tsai et al. 2020), AdvPC (Hamdi et al. 2020)
and ASP (Liu, Yu, and Su 2020), which use different strate-
gies and perform well. Since Kim et al. (2021) does not have
open source code, we cannot make a fair comparison with it
under the same experimental background. We carry out de-
fensive attacks against different point cloud models on Mod-
elNet40 dataset. Considering that when the previous attack
methods meet those victim models, the attack success rate is
close to 99%, consequently we change the traditional route
to test the success rate of an attack and adopt certain de-
fensive measures. Table 1 shows the performance of these
attack methods when attacking 8 point cloud classification
models. There are two types of defense used, Remove Out-
liers (RO) and Remove Salient (RS) (Liu, Yu, and Su 2019).
Salient points are identified and deleted based on the cal-
culated significance. As shown in Table 1, SPGA outper-
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PointNet PointNet++ DGCNN A-CNN PointWeb DensePoint ConvPoint View-GCN

PointNet

PointNet++

DGCNN

A-CNN

PointWeb

DensePoint

ConvPoint

View-GCN

M
od

el
s

100.0 41.3 37.1 34.2 31.6 37.2 42.7 28.3

23.2 100.0 37.0 41.9 45.6 41.9 37.5 39.4

43.5 58.4 100.0 52.3 56.8 55.1 47.0 50.7

45.2 60.3 41.5 100.0 52.3 61.2 57.9 41.9

46.9 57.2 43.9 36.7 100.0 45.7 41.5 55.3

49.3 47.1 50.8 54.2 61.7 100.0 44.3 52.6

40.8 56.4 36.2 49.0 63.1 58.0 100.0 60.8

42.1 63.5 53.7 56.2 57.9 60.2 61.4 100.0

Transferability of SPGA
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Figure 6: Adversarial examples transferability of SPGA be-
tween different point cloud classifiers. The red font results
come from the best performance in previous works.

Models 3D-Adv AdvPC w/o FOFA SPGA
PointNet 7.64 5.29 4.82 4.36
PointNet++ 6.21 5.03 4.65 4.12
DGCNN 7.38 4.87 4.43 3.85
A-CNN 6.92 5.63 5.27 4.50
PointWeb 7.16 5.74 5.59 4.73
DensePoint 7.05 5.31 4.78 4.09
ConvPoint 6.74 4.80 4.67 3.82
View-GCN 5.82 4.45 3.84 3.67

Table 2: The average perturbation budgets (%) of different
attack methods when conducting untargeted attacks.

forms state-of-the-arts in most cases. This is attributed to the
sparse logic of the adversarial points generated by SPGA,
and SPGA has a positive attack performance in front of most
defense methods. As an example, in the Random Outliers
defense method, the sparse adversarial points generated by
SPGA are closer to the original point cloud on the surface of
the point cloud, and will not produce a large outlier effect.

Interaction Object and Standard Attack
To some extent, the existence of interaction objects will
worsen the performance of classifiers. Sometimes we can
even use interaction objects to classify objects into specified
labels. As shown in Fig. 7, we attach additional interaction
objects (512 sampling points) to the clean point cloud ex-
amples to make them misclassified. We compare the adver-
sarial point cloud with the attached interaction objects and
the adversarial examples generated by SPGA. Through ex-
periments, we find that the conditions for interaction objects
to effectively interfere with the point cloud are harsh, and
sometimes only when they are placed in a specific location
can they enjoy an effective attack effect. Furthermore, when
the number of sampling points of the interaction object is
small, the attack effectiveness is relatively not so good.

Ablation Study
Table 3 shows an ablation study for the acceleration of FOFA
(measured in seconds), where w/o FOFA and w/ FOFA de-
note that FOFA is substituted and is working, respectively.

Original Point 
Cloud

Add Object SPGA

airplane

bookshelf

mantel

tent curtain

radiopiano

personchair

Figure 7: Illustration of the interaction objects that are at-
tached to the original point clouds.

SPGA-AT SPGA-DR SPGA
w/o FOFA 24.47 24.03 23.87
w/ FOFA 18.63 18.15 18.09

Table 3: Ablation study of FOFA acceleration.

When FOFA is used, the speed of generating adversarial
samples is accelerated by about 31.8%.

We conduct ablation experiments on λ1, λ2, α and β in-
volved. Firstly, we fix the values of λ1 and λ2, and then test
the combination of α and β. In the experiment, we found
that the best combination of λ1 and λ2 is 0.3 and 0.7, re-
spectively.

Conclusion
In this paper, we presented a novel method of attacking point
cloud classifiers called SPGA. We utilized the point cloud
shape prior information to obtain the sparse logical adver-
sarial points within the oriented bounding box. Particularly,
we proposed the Spatial Logical Block (SLB), novel loss
functions and FOFA optimization algorithms. Furthermore,
the FOFA optimization algorithm can decompose complex
problems into multiple sub-problems to be solved, which
can be applied to other attack tasks. Experiments demon-
strate that the perturbations of SPGA are fewer than previ-
ous works, and the attack success rate and the performance
of transferability are improved. SPGA also has strong attack
abilities in the face of point cloud classification models with
defensive measures. In conclusion, our method achieves the
state-of-the-art performance on public 3D MNIST and Mod-
elNet40 datasets.
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