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Abstract

Novelty detection aims to automatically identify out-of-
distribution (OOD) data, without any prior knowledge of
them. It is a critical step in data monitoring, behavior anal-
ysis and other applications, helping enable continual learn-
ing in the field. Conventional methods of OOD detection per-
form multi-variate analysis on an ensemble of data or fea-
tures, and usually resort to the supervision with OOD data
to improve the accuracy. In reality, such supervision is im-
practical as one cannot anticipate the anomalous data. In
this paper, we propose a novel, self-supervised approach that
does not rely on any pre-defined OOD data: (1) The new
method evaluates the Mahalanobis distance of the gradients
between the in-distribution and OOD data. (2) It is assisted
by a self-supervised binary classifier to guide the label selec-
tion to generate the gradients, and maximize the Mahalanobis
distance. In the evaluation with multiple datasets, such as
CIFAR-10, CIFAR-100, SVHN and TinyImageNet, the pro-
posed approach consistently outperforms state-of-the-art su-
pervised and unsupervised methods in the area under the re-
ceiver operating characteristic (AUROC) and area under the
precision-recall curve (AUPR) metrics. We further demon-
strate that this detector is able to accurately learn one OOD
class in continual learning.

Introduction
Deep neural networks (DNNs) have achieved high accu-
racy in many fields, such as image classification, natural
language processing, and speech recognition. Their success
is built upon carefully handcrafted DNN architectures, big
data collection and expensive model training. A well-trained
model promises high inference accuracy if the input falls
into the distribution of the training data. However, in many
real-world scenarios, there is no guarantee that the input
is always in the distribution. The encounter with out-of-
distribution (OOD) input is inevitable due to the difficulty in
data collection, unforeseeable user scenarios, and complex
dynamics.

To manage the emergence of OOD data at the first mo-
ment, it is vitally important to have an accurate novelty de-
tector that continuously evaluates the data stream and alarms
the system once OOD data arrives. Upon the detection of
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OOD arrival, the system can then manage the situation with
three possible methods: (1) It can rely on the OOD detec-
tor to collect new data and send them back to the data cen-
ter, such that OOD data can be combined with previous in-
distribution data (IDD) to re-train the model; (2) It can tem-
porally utilize the detector as a one-class classifier to rec-
ognize the new class of OOD, in addition to existing IDD
classes; and (3) It can activate a continual learning method
at the edge to adapt the model in the field, such as the multi-
head method with the assistance of the OOD detector. In all
three cases, the accuracy and robustness of the novelty de-
tector guard the success of continual model adaptation and
knowledge update.

In this work, we propose a self-supervised approach
which generates a set of OOD data from unsupervised sta-
tistical analysis, instead of supervised labeling. This set of
OOD data is then combined with IDD to train a binary clas-
sifier, which in turn, helps boost the performance of the un-
supervised detector that collects more OOD data for train-
ing. As this mutual process continues, our novelty detector
achieves higher and higher confidence in OOD detection.
The contributions of this paper are as follows:

• Gradient-based novelty detection that employs the Ma-
halanobis distance as the metric to differentiate in-
distribution and OOD input. The gradients are generated
from a pre-trained classifier for IDD only, without any
pre-knowledge of OOD.

• A self-supervised binary classifier. As previous works
demonstrated, the availability of a binary classifier helps
boost the accuracy. Yet distinguished from them, we
don’t rely on any labelled OOD data to train the clas-
sifier. The training set is initialized by the gradient-
based detector. In turn, the binary classifier pre-screens
OOD and IDD, and guides the selection of labels in the
gradient-based detector to maximize the distance calcu-
lation. Through such mutual assistance, our approach is
unsupervised and continually improves the accuracy.

• High accuracy in OOD detection and one-class classifi-
cation. We evaluate our methodology in a comprehen-
sive set of benchmarks. As shown in Fig. 1, our self-
supervised method consistently achieves higher AUROC
than other supervised and unsupervised results, confirm-
ing the advantages in gradient-based novelty detection.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8370



Figure 1: Comparison of AUROC between our proposed
method and other state-of-the-art methods.

Background
Current OOD detectors usually use the information ex-
tracted from either the data itself or features projected by
the feedforward path in the IDD engine. (Hendrycks and
Gimpel 2016) demonstrated that the softmax score of the
outlier tended to be higher compared with IDD and thus,
thresholding inputs based on this score is feasible to detect
the OOD. (Liang, Li, and Srikant 2017) improved this idea
by introducing input preprocessing and temperature scal-
ing. (Lee et al. 2018) proved that the in-distribution sam-
ples formed a multivariate Gaussian distribution in the high
dimensional feature space, and proposed to use the Maha-
lanobis distance to measure how far an outlier is away from
this in-distribution. There also exist autoencoder based OOD
detectors (Abati et al. 2019; Chen et al. 2017; Hawkins
et al. 2002; Kwon et al. 2020; Sakurada and Yairi 2014;
Zhou and Paffenroth 2017) which use the reconstruction loss
from the decoder to characterize the novelty. These data or
activation-based methods demonstrated the value in OOD
detection. On the other side, they have not explored one
important step in the development of DNNs, the gradients
back-propagated from the classification layer. These gradi-
ents present the first-order derivative to adapt the model and
improve the separation of multiple classes. They contain a
rich body of information to differentiate OOD from IDD.

To collect the gradients from the classifier that is prepared
for the IDD, a label is required for cross-entropy loss and
back-propagation. However, one challenge in the gradient-
based approach is that labels of OOD data are not available
in the process of novelty detection. To address this issue,
a recent work by (Lee and AlRegib 2020) introduced the
confounding label, which only triggers small gradients for
the IDD input. The gradients of the OOD input would be
larger since they introduce many new features that are dif-
ferent from IDD. (Kwon et al. 2020) explored the gradient-
based representations of the novelty but they avoid the label
issue by proposing a directional gradient constraint to the
loss function so that the gradient direction of the OOD in-
put does not align with the ones of the IDD. However, this
method requires re-training of the model. In contrast, in this
work, we utilize the gradient-based approach and the pre-

trained model without any modification. In addition, we only
use the training labels to collect the gradient.

Note that to boost the accuracy in novelty detection, many
prior approaches utilize supervised training. They adopted a
small amount of OOD samples to pre-train the novelty de-
tector. For example, (Lee et al. 2018) trained a logistic re-
gression detector to estimate the weights for feature ensem-
ble. (Lee and AlRegib 2020) trained a binary detector to
distinguish the gradient representation of the in-distribution
and OOD input. However, this type of supervised training re-
quires the availability of labelled OOD data up front, which
restricts its application in reality.

Methodology
The overarching goal of our methodology is to accurately
identify OOD data from IDD. A successful OOD detection
is equivalent to correctly classify the OOD input as one new
class (i.e., one-class classification). For IDD inputs, they will
be classified to the previous known classes. To achieve this
goal, we propose a closed-loop methodology that interleaves
the unsupervised ODD detector based on the Mahalanobis
distance, with a binary IDD/OOD classifier. Fig. 2 illustrates
our methodology, consisting of these two main components:

• A gradient-based novelty detector: Distinguished from
previous works that analyzed either the input data or the
features, our detector exploits the gradients propagated
backward from the classification layer for statistical anal-
ysis. The classifier in this step is designed for IDD only
and all labels are from the IDD classes. To maximize the
Mahalanobis distance between OOD and IDD classes,
we select the appropriate class to label the OOD data,
which is predicted by a binary classifier, as in Fig.2.

• A self-supervised binary classifier. This classifier is de-
signed to pre-screen IDD and OOD data, in order to assist
label selection to generate the gradients. While the struc-
ture of this binary classifier is similar as that in (Goodfel-
low et al. 2014), the training does not rely on any labeled
data, but from a balanced set that is selected by the de-
tector based on the Mahalanobis distance.

Overall, the mutual assistance between these two compo-
nents helps accomplish OOD detection without the need of
external supervision. In the following subsections, we first
introduce our main processing path in OOD detection: the
Mahalanobis distance in the gradient space. We then intro-
duce the binary classifier as a necessary assistant to boost the
performance of the main path, as well as the self-supervised
training of it. Finally, we describe how these two compo-
nents mutually assist each other with a thorough case study.

Gradient-Based Novelty Detector
Our approach starts from a given dataset of in-distribution
data (IDD), and a deep neural network (DNN) based classi-
fier trained by this IDD dataset. Note that at this step, only
labels for IDD classes are accessible. In our examples of
the image classification task, previous works have demon-
strated that such a DNN is capable of separating the man-
ifolds of each in-distribution class and achieve high clas-
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Figure 2: The flow of our self-supervised OOD detector. (1) A DNN-based classifier is first prepared for IDD data. (2) The
binary classifier predicts IDD or OOD. If the result is OOD, then in the IDD classifier, it selects the appropriate label to
maximize the distance. (3) Based on the selected label, gradients are generated by the IDD classifier for the calculation of
Mahalanobis distance. (4) From each patch of data, a balanced set of IDD and OOD data is selected based on the Mahalanobis
distance. (5) This balanced IDD/OOD data set is used to continuously train the binary classifier.

sification accuracy. After the training of the DNN is com-
pleted, the gradients of each in-distribution sample, which
is back-propagated from its ground-truth label, is distributed
within a small range around the manifold of its predicted
class, forming class-specific distributions that correspond to
each individual manifold.

When an OOD data is given to this pre-trained DNN, it
will lie far away from any manifold of IDD. Without any
knowledge about this OOD data, if we still perform gradient-
based training supervised by the IDD label, the DNN model
will experience much larger gradients which force the model
to reconstruct itself toward the OOD data. In this context,
the distribution of gradients will generate different charac-
teristics for IDD and OOD, paving a promising path toward
novelty detection. Therefore we propose to utilize the Maha-
lanobis distance in the gradient space as the statistical metric
to separate the outliers from the in-distribution ones.

The Mahalanobis distance is defined by the following:

Mx = (∇cf(x)− µ̂c)
T Σ̂−1(∇cf(x)− µ̂c) (1)

where µ̂c is the gradient mean of the in-distribution sam-
ples Xin of the class c and Σ̂−1 is the tied precision matrix of
all the known(training) classes. We use the equations below
to estimate these two parameters:

µ̂c =
1

Nc

∑
i:yi=c

∇cf(x
in
i ) (2)

Σ̂ =
1

N

∑
c

∑
i:yi=c

(∇cf(x
in
i )− µ̂c)(∇cf(x

in
i )− µ̂c)

⊤ (3)

where Nc is the amount of the IDD samples in the class c,
N is the amount of the entire IDD training dataset.

We use Equations (2) and (3) to characterize the gradient
distribution of the IDD by using the same training dataset of
the DNN. After this class-specific distributions estimation is
done, we use equation (1) to measure how the gradient of
the new input deviates from these estimated distributions.

Figure 3: The distribution of the Mahalanobis distance of in-
distribution data using predicted label (highlighted in red),
and OOD using both predicted label (highlighted in blue)
and selected label (highlighted in green). By using the se-
lected label for all the outliers, their novelty score distribu-
tion shifts further away farther away from blue to green, as
shown in the main figure, with less overlap with IDD data
(the red distribution, as shown in the inset.)

In Equation (1), ∇cf(x) is the back-propagated gradient
with respect to the class c. This raises a question of how to
calculate the gradient of the OOD input since their ground-
truth label Yood is not in the IDD label space Yin. To solve
this problem, we propose to use the predicted label Y Pred

ood ∈
Yin to calculate and cross-entropy loss L(Y Pred

ood ;Xood; Θ)
and do the back-propagation. From the manifold perspec-
tive, this means that we select the manifold closest to the
input sample. This manifold requires the minimal amount of
adaptation to the new input, i.e., the minimal gradient and
Mahalanobis distance. If such Mahalanobis distance is still
large, the input sample has a high probability to be an outlier.

As shown in Table 1, if only using the predicted label by
the IDD classifier, our proposed method is not competitive to
the state-of-the-art method. This is due to the high overlap of
the novelty score distribution between the IDD and OOD. In
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IDD (CIFAR-10) AUROC

OOD State-of-
the-art

Ours (with
predicted

label)

Ours (with
selected
label)

TinyImageNet 99.50 91.10 99.92
SVHN 99.90 91.63 99.99
LSUN 99.70 90.08 99.99

CIFAR-100 93.40 86.03 97.99

Table 1: Comparison of AUROC results between the state-
of-the-art (Lee et al. 2018; Sehwag, Chiang, and Mittal
2021) and our proposed novelty detector. The middle col-
umn is the performance of our novelty detector using the
predicted label from the DNN for IDD to calculate the
loss, gradients and Mahalanobis distance. The right column
shows the performance boosting if we intentionally select
the label to maximize the distance between IDD and OOD.

fact, the Mahalanobis distance is minimal if we use the pre-
dicted label as the ground truth label for back-propagation.
To overcome this barrier, we intentionally select a different
label to maximize the Mahalanobis distance for all the OOD
samples. By doing that, we expect to achieve a larger mean
of the novelty score distribution for the OOD. Consequently,
it will be easier to threshold these OOD samples to reach
higher detection accuracy.

Fig. 3 illustrates the novelty score distribution of the IDD
using the predicted label and OOD using both predicted and
a pre-selected label. After intentionally using the selected
label for all the OOD samples, the corresponding score dis-
tributions shift away from the in-distribution and thus, sig-
nificantly improves the AUROC result (Table 1, Column 3).
However, this raises a new problem: how to trigger the us-
age of different labels for IDD and OOD (i.e., predicted by
the IDD classifier and the selected label, respectively), in the
calculation of gradients? Here we introduce a binary classi-
fier to pre-screen the input and make the initial IDD/OOD
prediction. Based on the prediction result, our novelty de-
tector chooses different label for gradient calculation.

Label Selection: To select a label yOpt that gives the
maximum gradient distance, we propose to use the predicted
softmax class probability:

yCustom = argmin
c

(
∑
i

Softmax(f(xOOD
i ; Θ))) (4)

We use Equation (4) to select the class that has the mini-
mal average softmax probability for a batch of OOD data.
This is equivalent to finding the least likely class for an
OOD data to fall into. By using yOpt, its cross-entropy loss
L(yOpt;Xood; Θ) becomes the maximum which results in
the largest gradient and Mahalanobis distance. The only
question left is where to find the OOD samples to estimate
this label. We will address this issue in subsection .

Self-Supervised Binary Classifier
To guide our novelty detector to use either the predicted or
selected label in case of in-distribution or OOD input, we
introduce a simple self-supervised binary classifier to screen
IDD and OOD. The output from this binary classifier will be
used to guide label selection in the pre-trained IDD classifier
for gradient generation:

• For the predicted IDD input, the pre-trained model uses
the predicted label yPred for back-propagation.

• For the predicted OOD input, the model uses the selected
label yOpt.

Unsupervised Preparation of OOD Samples for Initial
Training: One key feature of our proposed method is to be
self-supervised, which means no OOD sample is available
in advance. Therefore to create a dataset for the training
of the binary classifier, we utilize the predicted IDD/OOD
samples selected by the gradient-based novelty detector. For
example, assuming the binary classifier is randomly initial-
ized and a batch X1 mixed with IDD and OOD data comes
in, our novelty detector will first calculate the novelty confi-
dence score S1 = {s1, s2, ..., sN}1 using the predicted label.
We select N/2 samples that correspond to the highest and
lowest confidence scores in the S1 as the binary classifier
training data set Xpred = {Xpred

in , Xpred
ood } . This step helps

select the best possible in-distribution and OOD data from
the current batch so that the binary classifier’s training in-
puts are reasonable. We use the Xpred

ood to select the label and
use the Xpred to train the binary classifier. Once training is
done, the following input batches will involve the coopera-
tion from both the gradient-based novelty detector and the
binary classifier.

Mutual Assistance Between the Binary Classifier
and the Mahalanobis Path
The entire system is continuously exposed to a stream of un-
labeled mini batch X1, X2,..., where each Xi consists of N
samples {x1, x2, ..., xN} mixed with IDD and OOD data.
Due to the small size of the first batch X1 and the rela-
tively low performance of the novelty detector using the pre-
dicted label, the initial training of the binary classifier could
not guarantee to be success. Therefore, an enhanced train-
ing (Fig. 2 and Algorithm 1) is required when more data is
available. The training routine consists of three major steps:
(1) Initial prediction of the binary classifier; (2) Calculation
of the Mahalanobis score; and (3) Re-training of the binary
classifier.

Initial Prediction of the Binary Classifier : When the
new batch Xk = {x1, x2, ..., xN}k arrives, the system first
concatenates this new batch Xk with all the previously
stored batches Xk−1...X1. Given this concatenated batch
Xall, the binary classifier makes its initial outlier prediction
Ŷ = {y′1, y′2, ..., y′N×k|y′i ∈ (0, 1)}.

Calculation of the Mahalanobis Score: The gradient-
based novelty detector takes the prediction result from the
binary classifier and the concatenated batch. For each sam-
ple xi in batch, our novelty detector first classifies it to
one of the in-distribution class yPred

i ∈ Yin , then checks
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the binary classifier prediction y′i. If y′i is 0 (predicted in-
distribution), use yPred

i as the ground truth label in the
loss function for back-propagation, otherwise, use the pre-
selected label yOpt. After the gradient is available, we cal-
culate the Mahalanobis distance si as the novelty confident
score.

Re-Training of the Binary Classifier: Given novelty
confident score Sall ={s1, s2, ..., sN×k} from the gradient-
based novelty detector, we select (N × k)/2 samples from
the concatenated batch that correspond to the highest and
lowest scores in Sall as a new training dataset for the binary
classifier. Before training, we re-initialize the binary classi-
fier to make sure the previous model will not be inherited
into the current stage. Once training is done, our system is
updated with the knowledge of all previous batches and is
ready to process next available inputs with higher detection
accuracy.

As shown in Fig. 2, this mutual assistance continues with
more unlabelled data, which keeps improving the accuracy
of both the unsupervised detection engine and the binary
classifier in this closed loop.

Experiments
We use three pre-trained ResNet-34 networks (He et al.
2016) provided by (Lee et al. 2018) as the base of our
gradient-based novelty detector. Each model is trained on
CIFAR-10, CIFAR-100 (Krizhevsky and Hinton 2009) and
SVHN (Netzer et al. 2011) with the testing accuracy of
93.67%, 78.34% and 96.68% accordingly. To calculate the
gradient-based Mahalanobis distance, we only use the gra-
dient extracted from the last layer of the feature extractor.
Our simple binary classifier has the structure of three convo-
lution layers and one batch normalization layer with a Sig-
moid classifier. It is trained by minimizing the cross-entropy
loss using Adam (Kingma and Ba 2014). The initial learning
rate is set to 0.0002 and the decay rate is controlled by β1 =
0.5 and β2 = 0.999. We train it for 500 epochs in both initial
training and re-training process. Regarding the batch size,
we find that the amount of IDD and OOD samples in each
batch, and the batch size itself have a strong impact on the
performance of the binary classifier and the overall system,
as discussed in subsection .

Our experiment includes three in-distribution datasets:
CIFAR-10, CIFAR-100 and SVHN. We test each of them us-
ing the other two as the OOD. In addition, we use two more
OOD datasets: the resized version of the ImageNet (Rus-
sakovsky et al. 2015) and LSUN (Yu et al. 2016) provided
by (Liang, Li, and Srikant 2017). Each of these two datasets
contains 10,000 images with size 32 by 32. For all three
in-distribution datasets, we use only the testing portion of
the images because the training portion has already been
used to train the novelty detector. For each IDD/OOD pair,
we randomly select 5,000/5,000 (IDD/OOD) as the train-
ing dataset and further divide them into mini batches with
size of 100/100 (IDD/OOD) to emulate the data streaming,
the rest 5,000/5,000 (IDD/OOD) samples are used to test
the binary classifier accuracy and the overall novelty detec-
tion performance after each new batch has been taken into
the system. We evaluate our detector with two performance

Algorithm 1: Gradient-based Novelty Detection Boosted by
Self-supervised Binary Classification

Input: In-distribution gradient distributions {µ̂, Σ̂−1},
batches for testing [X1, X2, ..., Xk]

1: function noveltyScore (X, µ̂, Σ̂−1, Ŷ , yOpt)
2: Mahalanobis Distance = list()
3: for each x in X do
4: c = yOpt //Label for back-propagation
5: if Ŷ is None or Binary Classifier predict x as

IDD then
6: c = Novelty detector predicted label
7: end if
8: Score = (∇cf(x)− µ̂c)

T Σ̂−1(∇cf(x)− µ̂c)
9: Mahalanobis Distance.append(Score)

10: end for
11: return Mahalanobis Distance
12: end function
13: Xall = None
14: while new batch Xk is available do
15: Xall = Xall +Xk //batch concatenation
16: if Xk is the first batch then
17: Sall = noveltyScore(Xall, µ̂, Σ̂−1)
18: else
19: Ŷ = binary classifier prediction on Xall

20: Sall = noveltyScore(Xall, µ̂, Σ̂−1, Ŷ , yOpt)
21: end if
22: Based on Sall, select samples from Xall

23: with the highest/lowest score as predicted Xin/Xood

24: Use {Xin, Xood} to train binary classifier
25: if yOpt is None then
26: yOpt = argmin

c
(
∑
i

Softmax(f(xood
i )))

27: end if
28: end while
29: return Xi ∈ Xall is an outlier if Sall

i > threshold

metrics: AUROC and AUPR. All experiments are performed
with PyTorch (Paszke et al. 2019) on one NVIDIA GeForce
RTX 2080 platform.

Batch Training of the Binary Classifier
Inspired from the discriminator in the GAN (Goodfellow
et al. 2014) that can successfully distinguish the real images
from the fake ones, we use the similar discriminator loss in
our binary classifier training, where the loss from the IDD
and OOD data are calculated separately. During the predic-
tion phase, the binary classifier achieves high accuracy if the
input batch contains either in-distribution or OOD samples.
This is because the batch norm layer averages the difference
within each group of data (i.e., IDD or OOD) while stress-
ing the difference between IDD and OOD inputs. For each
novelty detection experiment, we adopt this batch-based ap-
proach and present the results of using different batch size
where each batch contains only IDD or OOD data.

Table 2 present the performance of our proposed method
as compared to other novelty detectors. Our method out-
performs all previous supervised and unsupervised works
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Dataset AUROC / AUPR

IDD OOD Ours
(Batch=8)

Ours
(Batch=32)

Ours
(Batch=128) SSD1 Mahalanobis2

(feature based)
Confounding

label3 ODIN4

CIFAR-10

TinyImageNet 99.90/99.91 99.92/99.93 99.85/99.88 - 99.5/- 93.18/92.66 98.5/-
CIFAR-100 84.79/81.46 93.51/92.21 97.99/97.78 94.0/92.9 - - -

LSUN 99.99/99.99 99.97/99.95 99.99/100.0 - 99.7/- 99.86/99.87 99.2/-
SVHN 99.94/99.98 99.99/99.99 99.99/100.0 99.9/100.0 99.1/- 99.84/99.98 -

CIFAR-100

TinyImageNet 99.49/99.43 99.28/99.22 99.28/99.23 - 98.2/- - 85.5/-
CIFAR-10 72.61/70.07 89.76/86.99 91.38/87.82 84.0/81.7 - - -

LSUN 99.57/99.53 99.59/99.52 99.55/99.51 - 98.2/- - 86.0/-
SVHN 99.79/99.95 99.79/99.96 99.82/99.95 99.5/99.8 98.4/- - -

SVHN

CIFAR-10 99.94/99.72 99.96/99.46 99.95/99.87 - 99.3/- 99.79/98.11 -
TinyImageNet 99.95/99.82 99.97/99.91 99.95/99.85 - 99.9/- 99.77/97.93 -

LSUN 99.96/99.89 99.97/99.92 99.98/99.93 - 99.9/- 99.93/99.21 -
CIFAR-100 99.65/99.25 99.74/99.39 99.78/99.49 - - - -

1 (Sehwag, Chiang, and Mittal 2021).2 (Lee et al. 2018).3 (Lee and AlRegib 2020).4 (Liang, Li, and Srikant 2017)

Table 2: Comprehensive evaluation of AUROC and AUPR on multiple IDD and OOD benchmarks.

Figure 4: AUROC in our novelty detector (top) and the test-
ing accuracy of the binary classifier (bottom) during the mu-
tual assistance (i.e., number of iterations).

across all IDD/OOD setup. In particular, our method im-
proves the AUROC of the experiment where CIFAR100 as
IDD and CIFAR10 as OOD by up to ∼5 and ∼7 with batch
size 32 and 128 accordingly. These two datasets are very
similar to each other. Therefore it’s extremely challenging
to detect the outlier in previous approaches. With the new
framework, our method significantly improves the state-of-
the-art.

Fig. 4 illustrates the stepwise improvement of our frame-
work. Each point in the curve corresponds to the interme-
diate testing accuracy of the binary classifier and the AU-
ROC of the system after every new batch of unlabelled
data (100/100) arrives. From the curves, we can observe
the efficacy of mutual assistance between the binary clas-
sifier and the novelty detector. The initial testing accuracy
of the binary classifier reaches around 90 in all three ID-

CIFAR-10 (9+1) Single-head Accuracy

New task (OOD) Memory budget
500

Memory budget
1000

Airplane 90.58 95.56
Automobile 82.16 95.33

Bird 90.91 91.08
Cat 91.70 94.54

Deer 93.32 92.40
Dog 83.28 94.98
Frog 96.32 96.06
Horse 86.42 93.50
Ship 96.48 96.44

Truck 84.29 95.39

Table 3: Single-head accuracy tested on each class of
CIFAR-10 in continual learning. 9+1: 9 classes are first
learned together and the last one class is learned through
the OOD detector.

D/OOD experiments, which proves that our self-supervised
approach based on the novelty detector’s output is effec-
tive. As more data is received, every re-training on the bi-
nary classifier improves its accuracy, contributed by increas-
ingly higher confidence of the IDD/OOD prediction from
the novelty detector. In turn, the novelty detector’s perfor-
mance is boosted, benefiting from higher accuracy of the bi-
nary classifier and better label selection. Such positive feed-
back eventually drives the performance of the overall frame-
work, reaching high accuracy of both the novelty detector
and the binary classifier.

One-Class Learning with the OOD Detector
We further apply our OOD detector to one-class learning, us-
ing CIFAR-10 as the example. In this case, we first train the
ResNet-34 network with 9 classes (IDD) together and then
consider the last tenth class as the new learning task (OOD).
Different from previous experimental setup where an equal
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(a) (b)

(c) (d)

Figure 5: (a) Comparison of AUROC with (right) and with-
out (left) the binary classifier boosting. (b) Comparison of
AUROC between the good (right) and bad (left) OOD pre-
diction from the novelty detector. (c) AUROC by using dif-
ferent percentages of the selected images to train the binary
classifier. (d) Comparison of AUROC with (left) and with-
out (right) binary classifier re-initialization.

amount of IDD/OOD samples (5,000/5,000) are used, we at-
tempt to minimize the amount of IDD samples (i.e., 500 and
1,000 in our experiments) to emulate the memory rehearsal.
We still allow more OOD samples (2,500) streaming into
the system. In addition to predict each testing input as ei-
ther IDD or OOD, we further send all the predicted IDD
samples back to the pre-trained IDD classifier to recognize
the belonging to those 9 IDD classes. Therefore, this proce-
dure completes one-class continual learning. In the field, this
solution will temporally help the system to manage incom-
ing OOD data until a new model with updated IDD+OOD
classes is available.

We test the 9+1 single-head accuracy on each class with
different memory budgets (Table 3). Compared with (Du
et al. 2020) which used memory budget of 2,000 IDD sam-
ples with the accuracy <90%, our proposed method achieves
91-96% accuracy in any class with only 1,000 IDD samples
and competitive performance even with 500 IDD samples.

Ablation Study and Discussion
We first analyze the importance of the binary classifier and
the novelty detector individually by conducting two ablation
studies: (1) With and without the binary classifier, what’s the
performance difference of the gradient-based novelty detec-
tor? (2) If the novelty detector has a poor performance to
differentiate IDD/OOD and prepare the sample dataset for
the training of the binary classifier, how does it influence the
overall performance? Fig. 5(a) presents the AUROC results
of four OOD test cases. All four test cases benefit from the

boosting effect of the binary classifier. To conduct the sec-
ond ablation study, we randomly select samples from the in-
put batch as the training dataset of the binary classifier. This
emulates the situation when the novelty detector fails to out-
put meaningful novelty scores. As a result, the binary classi-
fier cannot be well trained through the predicted IDD/OOD
dataset. As shown in Fig. 5(b), a good prediction result from
the novelty detector boosts the inference accuracy of the bi-
nary classifier, which will in return help improve the overall
performance.

We further conduct two ablation studies regarding the
training of the binary classifier: (1) With different percent-
age of the selected images as the training dataset of the bi-
nary classifier, what is the influence on the overall perfor-
mance? (2) If the binary classifier is not re-initialized after
each iteration, will it still converge and provide good guid-
ance for the novelty detection? As shown in Fig. 5(c), when
fewer IDD/OOD images from the prediction of the novelty
detector are selected to train the binary classifier, the overall
AUROC result decreases. Even though the selection of fewer
data better separates IDD and ODD samples, we also ex-
clude the samples in which IDD and OOD are very similar.
Therefore, the binary classifier receives imbalanced training
and has a degraded prediction on the testing dataset.

Fig. 5(d) presents the CIFAR-10 vs. CIFAR-100 AUROC
results with and without re-training the binary classifier after
each iteration. In both experiments, the AUROC decreases
when we choose not to re-initialize the binary classifier. This
is because during the early stage, the novelty detector is not
able to accurately detect the outlier and thus, the predicted
training dataset for the binary classifier may suffer from in-
accurate IDD/OOD labeling. This ambiguity on IDD/OOD
affects the binary classifier in the following iterations dur-
ing our training process. On the other hand, re-training the
binary classifier helps improve the confidence of the novelty
detector with more accurate IDD/OOD detection.

Conclusion
In this paper, we propose a new framework for novelty
detection and one-class continual learning, which involves
the cooperation of a gradient-based novelty detector and a
self-supervised binary classifier with mutually assistance be-
tween these two components. Our proposed framework out-
performs previous supervised and unsupervised novelty de-
tectors, as well as one-class continual learning. For instance,
our method achieves superior performance on CIFAR-100
vs. CIFAR-10 case by improving AUROC from 84% to 91%
compared with the state-of-the-art. The success of the new
approach promises accurate and robust novelty detection in
continual learning and other applications.
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